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Welcome to week five of inverse methods in heat transfer. In the last few weeks, we saw how to 

use linear models for forward problems and how to use linear regression in order to solve the 

inverse problems that occur from linear models. Secondly, we saw that using linear regression you 

could write the solution for the unknown parameters using the normal equations. So, the normal 

equations gave us, 

𝑋𝑇𝑋𝑊 = 𝑋𝑇𝑌 

where X is the design matrix. 

 

Now the same idea was extended to the idea of non-linear models and for this we use non-linear 

regression, non-linear models mean non-linear in W, not nonlinear in X so non-linear in W. So, 

with this we use non-linear regression specifically we you look at the Gauss Newton algorithm 

and it had a form which was very similar to the normal equations except it was linear in delta W 

rather than being linear in W. 

 



So, in this case we had the equation, 

𝑍𝑇𝑍∆𝑊 =  𝑍𝑇𝐷 

So, you can see that essentially if you take a sort of perturbation of the normal equation in linear 

you get the Gauss Newton algorithms. Now remember that Z here was 
𝜕𝑌̂

𝜕𝑊
 in fact you can see that 

that would be identical to the design matrix in case 𝑌̂ is a linear model. 

 

So, this is a simple check that you can do I think I talked about it also in the last week. D of course 

was 𝑌 − 𝑌̂. So, these are the two expressions that we have looked so far for inverse methods and 

also regression. Now there is a problem which we will see in this. So, both these models have 

problems in what is known as ill posedness and not get too much into ill posedness except for a 

short example that I am going to show right now which will give you this idea a little bit. We are 

going to show this example in the linear model. 
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Now this ill-posedness the actual solution in inverse methods and this is where inverse methods 

really take off is to use something called regularization. This regularization is very important both 

in inverse methods as well as machine learning which as I will argue later when we come to the 

machine learning type thing is basically, a subset. So, machine learning has actually belonged to 

inverse methods. 

 



So, we are going to look at a preliminary idea of what this problem is, why this ill posedness starts, 

what regularization is in the context of simple linear equations. So, that is what we are going to 

start. So, let us go ahead and do that. So, some of the slides that I am going to show are from the 

book pattern recognition and machine learning by Christopher Bishop. It is an excellent book but 

it is a very advanced textbook as far as machine learning is concerned. 

 

This book is available freely online, this is legally available freely online. so, this kindly been 

provided by I think Christopher Bishop who heads Microsoft research or some portion of 

Microsoft research he heads. So, he has provided the book entirely freely and the slides I am 

showing are actually due to a permission we have actually taken permission from him in order to 

provide some of these slides given a blanket permission. 

 

I also use this in another course of on online courses. So, this nicely illustrates this problem of both 

ill posedness as well as a regularization. Before we come there let me just briefly talk about the 

problem and then show the example that I have taken from Bishop's book. So, let us say we have 

a set of data points, so some points like this. Now if we don't know the physics of the problem and 

we do not have in mind a specific that we are going to do these points. 

 

Now you want to find out that function which when added noise to produce this. So, for example 

Y actual is our model plus noise. Now the hard part and the ill-posedness comes in the fact that 

what do you ascribe to the function and what do you ascribe with the noise. For example, do we 

say as we saw in the linear case also. I showed it to you while showing let us say the overfitting 

not overfitting sorry the normal equations I showed you that you could fit a line you could fit a 

best quadratic, you could fit a best cubic. 

 

Now how do you say which one is 𝑌̂ is it this which is 𝑌̂ and the rest of it which is noise or whether 

it is the quadratic which is 𝑌̂ and the rest of it which is noise. Some of it we can guess from physics 

but many times it is actually hard to sense. So, it is because of this that ill posedness starts. A 

similar example would be I give you an image and it is blurred due to some noise. Now if you 

want the original image you need to know something basic about the image. 

 



You need to know maybe it is an image of a cat taken in an open sky or something of that sort. 

otherwise, it is hard for you to denoise the image uniquely. So, ill posedness happens because there 

is no unique solution to this problem of separating out noise from signal. There is a second problem 

which happens which I will kind of demonstrate to you during these which will talk about the 

stability issue which I briefly alluded to in the first week. So, let us see both these in the example 

that we are going to take a look at right now. 
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So, here it is. Here is a polynomial curve fitting so these blue dots here that you see here are the 

original experimental data. So, for example we can assume so this is here, let us call this 𝑦̂ and this 

is x. So, you measure at x = 0 you got some 𝑦̂ at x equal to some value got some 𝑦̂. We have given 

a similar example which could occur within heat transfer or a semi within heat transfer within 

week five assignment. So, please take a look at that. 

 

so, we have this curve which is sitting here I have written the original curve and I will show it to 

you later I sort of modified the slides which were given by Bishop. So, I have hidden the original 

curve and all you see is the data points. Now remember all these data points are being generated 

as your 𝑦̂ or some model your y is 𝑦̂ plus some noise. So, let us call this noise. 

 

Now, what we are going to do in order to find out what the original curve is to fit polynomials of 

different orders. So, for example M = 0 means a straight-line polynomial, M = 1 means a linear 



polynomial, M = 2 means a quadratic polynomial. We are going to try to fit different polynomials 

and see which one fits best. So, the hypothesis here with which we are working is the better it fits 

the original data, the lower the error J or let us call this E just to stop distinguish it from the cost 

function. 

 

It is like the cost function with some mild difference. So, if we take the mean square error of our 

fit versus the original data that will tell us how good our fit is. So, here is what is expressed here 

same thing 𝑦̂ of x, w is some 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2. Remember this is still a linear model so I am 

showing this entire example within the linear model and we will see how to modify it for non-

linear cases also. 

 

Because this is still linear in the w’s. So, in short, we can write it as this model. So, let us go step 

by step. We will start with the m equal to zero case. 
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You can set in M = 0, you can how do you find this model simple find out J = half y - y-hat square 

sigma and let us say 𝑦̂ is simply 𝑤0 then you minimize J with respect to 𝑤0. In fact, if you do this 

if you recall our equations, you will basically get y - y part or 𝑤0 sigma if you actually calculate 

this will be 0 this will tell you that 𝑤0 will be 1 over M sorry 1 over N in this case the number of 

points times sigma of 𝑦𝑖. 

 



So, it will turn out that this line the constant line which you are saying is the model. This is our 

new model our model now is this is by hat that is we are saying. Regardless of what x is my 

prediction is going to be this and everything else is noise. So, the original signal was a straight line 

but noise random noise added to it. Now this does not look like a great model we can look at it 

intuitively and say maybe I can do slightly better. 
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So, we go to the next case and we fit the first order polynomial. So, now remember our first order 

polynomial is simply a linear fit 𝑦̂ =  𝑤0 + 𝑤1𝑥 and then optimize this and in fact you can use 

these normal equations approach. In fact, I would encourage you try this during the exercise for 

this week. We have given some data set just for you to replicate this kind of effect. So, you can try 

this and you get some 𝑤0 and 𝑤1. 

 

This looks better it looks like if you look at for example R square etcetera, it looks better lower 

error. Then it was before in the previous slide you can see errors are much higher you can see 

errors are much lower and this fits better. Overall, you can look at it and say these fits better. So, 

we can keep going let us say why stop at one I am not shown two but let us say we go to three. 
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So, the green stuff that you see here is the hidden model or the hidden original data which I have 

kind of removed. You can see that some of it is still kind of appears here so ignore that for now. I 

will reveal this towards the end of this video. So, this is M = 3 this looks like it is even better it 

kind of captures the trend even better but you might be slightly suspicious but definitely lower 

error. 

 

So, again you can see three points are almost exactly fit compared to the linear case which had 

more noise, this is less noise. So, now you go really greedy and say I asked add a really high order 

polynomial. So, I have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 so I can always add a ninth-degree polynomial 

here. 
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And here I put a ninth-degree polynomial. Now let us see what happens. If you look at it has 

actually fit every point exactly but the question is this good, should you really fit every point 

exactly? If I give you a slab temperature data which looks like this. You know the function is linear 

if I start predicting temperature like this and I find heat transfer using the gradient will not it be 

really bad. 

 

So, in this case you might actually get a very high gradient when you actually want a slightly lower 

grade. So, see this, look at how the function varies. This is part of the stability problem that is, if I 

change the data a little bit so if I put slight noise to this data, you can imagine that the function will 

change drastically. So, small changes in x or data lead to large changes in y-hat. So, if I go from 

this position to a slightly different position see the change in y-hat, it is just huge.  

 

This is typically a stability issue and especially when our thermocouples and our measurement 

instruments are noisy this is completely undesirable. So, now let me show you what the original 

function looks like. So, the original function looks like this. This is what was added noise too. You 

can see that let us say there was a sinusoidal temperature distribution and due to thermocouples or 

due to inherent noise in the system there is some variation. 

 



So, there is some variation in the data but when you do this you can see that even though error for 

the ninth-degree polynomial is zero it is not a good fit. So, just driving the error to zero or driving 

the cost function to zero is not really as important as putting the model which is of the right order. 
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Now let us compare this with the third-degree polynomial as I promised I will now show what this 

looks like. Now if you compare what the third-degree polynomial looks like versus what the ninth-

degree polynomial looks like. The third-degree polynomial is not a perfect fit but is stable. It is 

more robust. What do you mean by stable? Suppose I find dt by dx here. This is still going to be 

approximately the same as what my model predicts. 

 

So, this is reality let me write that down. so, this is reality ground truth experiment whereas this is 

the model. So, you can see that model slopes are much closer to the original slope her. Come back 

to here look at this. So, if you see the slope here is much lower compared to this. So, it will seriously 

over predict transfer. When you see a model which E is 0 but the other quantities it actually predicts 

poorer. So, this is not a robust model, this is unstable. 

 

Now why does this happen? This happens due to the inherent ill posedness of the problem, ill 

posedness that we do not know what the function varies like in the middle. For the same data set I 

can give many different function fits. So, that is the reason why ill posedness starts. Now within 



this machine learning literature this problem has a particular name this is that error is zero or error 

is low but the fit is bad means it is called overfitting. 
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So, overfitting will behave in the following way, overfitting will behave like this. So, this is called 

training, training means original data sector. So, remember the original nine points that I had I will 

train I will find the error you can see that when the model is of a low order. So, on the X axis is 

the order of the model on the Y axis is the error that we found. So, when zeroth degree model has 

a high error, third degree model has a very low error and that keeps on going. 

 

A ninth-degree model actually has completely zero error. But even though the error is zero there 

is something else which is high which is test. So, I will explain. The test means this you instead of 

having only nine points let us say you have 12 and three of them you held back in the sense just 

like a teacher. A teacher will show you some examples during class that is the training set and 

when I hold a final exam. I would have held out some few questions behind. 

 

So, if somebody mugged up you know just memorized the training, they would do very well on 

the example problems but they will do very poorly in the test. So, how do we see the same example 

here maybe my original data set is at these points the original nine points that I showed you here 

but my test point could be here. So, I could have a test point here and I know that the original data 

is here but prediction is very far off. 



 

So, this will give you a high error. So, you can see this. It was doing well in training and testing in 

third. For example, if I held back this data point you can see actually the wave the prediction I 

made and the original is actually fairly close as against once again something like this. This point 

here is the actual data and prediction is way down. So, that is why typically this is the graph that 

you will see in overfitting within machine learning. 

 

If time permits, I will show this later but this is too even for the linear regression example that we 

did. So, the normal equation solution will give us these bad results for problems. In case you put 

too high order of model or this is called complexity of model in case of non-linear models too 

many parameters, too many knobs to turn was too high so this leads to over 50. This on the other 

hand is under fitting, I could have gone a little bit better. So, that is under fitting. 

 

So, this is known as the classical bias variance problem and we will come to that again later on 

when we come to the machine learning portions of this course. 
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So, how do we cure this problem so for this we start looking at the coefficients of what the various 

degree polynomials are and this gives us a clue and we will use this idea to improve our non-linear 

Gauss Newton also. So, let us look at what the values of the coefficient are for the case of linear 

regression with various polynomial degrees. So, what you see here are the various coefficients.   



 

So, for example w0 optimum, w1 optimum etcetera of course this is the zeroth order model. This 

is the first-degree linear model; this is the cubic model and this is our so-called best fit. Notice a 

certain phenomenon, look at the size of the coefficients or of the parameters wi. So, these two are 

well balanced, these slightly start varying these travels or who your huge order of magnitude. So, 

this was small, this is really large. 

 

So, this has both large and small coefficients. So, this is just true observational. This always 

happens when there is overfitting. When there is overfitting, your w will travel through a large 

range of values. Now let us see if we can cure this. So, can we cure overfitting. So, I will show 

you two different cures the first cure is kind of a semi-practical the last cure is the one that we are 

coming to which is called regularization. 
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So, the first cure is this increase data size. Another way of saying this is suppose you do a few 

problems example problems and you do very poorly in exam obviously you are never going to 

know what the exam questions are but one thing you can do is solve more example problems. So, 

we are still going to stick with the same order polynomial same complexity as before but we are 

going to increase the number of data points, training data points increased. 

 



So, we fit the ninth order polynomial for 15 data points. This is still easy because our original 

equation still works, our normal equation approach still works. This will be 10 cross 1, this will be 

10 cross 10 and this will also be 10 cross 1, I request you to do these exercises. For example, what 

will be the size of y? y itself will be 15 cross 1 because there are 15 data points but x transpose 

will actually give you 10 cross 15. So, please check this out and do this problem. 

 

It would take some fake examples and do this problem; it is an interesting exercise problem for 

you just to understand what the matrix sizes are like. So, we come here we see that the fit is slightly 

better. It is still overfitting it is still not as good as the original line but you can see that this is less 

noisy. So, the student who has done more example problems these are all example problems if I 

test somewhere at a new problem, it does not do so poorly as before. 

 

So, again I introduce a new data point which was not there and check the gap between what is true 

and what is predicted is still not as time. So, less noisy lower test error. 
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Now suppose I increase it further and put a lot of so this person has done lots and lots of exercise 

problems. Now you can see this is a robust fit, it is still the ninth order polynomial but you are 

fitting it through 100 points. So, that is like lots of data points obviously you cannot fit it perfectly, 

no ninth order polynomial will go through all these data points. So, this is just going to go through 

and this best fit is actually much better than the original ninth order polymer. 



 

So, what we infer from this is number of data points should be large in comparison to the 

complexity of the model. So, we cannot just say ninth order polynomial is fine in case you have 

only 10 points. But it is not high in case you have 100 points in that case it actually fits really well. 

So, this is one way of solving overfitting that is increase training data points. But as you know we 

have only a few sensors in heat transfer or any such problem how are you going to increase data 

points. 

 

I mean that is the number of data points you have and you want a model. So, most of the times this 

usually it is not possible to do this. 
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So, then you have the second solution called regularization. So, this is the standard solution to 

overfitting and the idea is very simple you penalize large coefficient values. What does that mean? 

There are different ways of looking at regularization, I am showing you one way which is standard 

and linear. I will show you a couple of more ways in the next video when we come to non-linear 

regression and how we actually do regularization there. 

 

So, penalize large coefficient values means remember in our slide here we saw these w values 

some of these were very large whereas in the perfect model most of the w values are roughly small. 

So, you say I am going to make a new loss function this is called E here I am going to call it J. So, 



J is the J due to fitting data so let us call this y-hat here plus some cost or penalty for large w values. 

So, J for fitting data looks like 
1

2
 (𝑦𝑖 − 𝑦𝑖̂)

2. 

 

So, this only tells us how well data fits model. So, that we saw anyway. But this tells if coefficients 

are large you have to pay a price that is basically what the second part says. So, if coefficients are 

large, you pay a price and that price is given by a very simple term this I have told you earlier too 

this simply means sigma of wi square. For example, you can have 𝑤0
2 + 𝑤1

2 + ⋯ + 𝑤𝑛
2. 

 

So, as many coefficients there are you just add these costs and you multiply by a factor up front. 

This is called a regularization parameter. So, the regularization parameter lambda you can vary 

this and this is what is known as a hyper parameter much like our learning rate alpha. All you do 

is you keep on changing lambda and see what happens to your prediction as you vary lambda. Now 

there are specific tricks to do this and that is slightly beyond the limit of this course. 

 

But I might touch upon this once again if I come to the machine learning portions. But the idea 

here is clear and it should become clearer as I show later on. Suppose you have a fit so you have 

these data points that you want to fit and you are choosing between multiple models. Now as the 

model tries to fit these data points more and more perfectly what will happen is this portion will 

go down. So, J fit will go down. 

 

But what will happen invariably is if the number of data points is too few then J coefficient will 

go up. Why? Because it will require larger and larger W. So, the idea is somewhere in the middle 

you will automatically hit an optimum and this is kind of sort of like a damping term it damps out 

large oscillations. So, we will see this effect well not quite explicitly but we will see this effect 

also later on this week when I come to other the non-linear equivalence of this. 

 

This kind of damping is called has several names, it is called Tikhonov, after the name of a scientist 

Tikhonov regularization. It is also called ridge regression; it has other names also it is also called 

L2 regularization. So, I will come to L1 regularization when we come to machine learning. So, all 

these three names are equivalent names as far as we are concerned. All it boils down to is to 



changing our loss function to the usual loss function plus lambda times sigma of the weights of the 

coefficients divided by 2 and this you will have to play with. 

 

Now there is a significant advantage of playing with lambda rather than playing with the order. In 

this case as you will see also coming to neural networks you can simply fix the non-linear model 

and you are just changing a small penalty term. As it turns out this have a huge number of different 

interpretations. We will see two to three different interpretations a couple in the next video and 

one later on when we come to probabilistic method. 

 

So, this one simple term addition of one simple penalty term has several meanings within both 

inverse methods as well as machine learning. But let me show you the effect of doing. 
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So, let us say we set lambda = 0. So, if we set lambda = 0 this means no damping so or no 

regularization. So, you will get the same coefficients as before. These are the original coefficients, 

you saw there is a huge range of these values here. So, this is of course a bad fit it gives you low J 

of the fit and it gives you high coefficient. Now you come here log lambda is - 18 means lambda 

is e to the power - 18 when I do my experiments a couple of videos from now, I will go in powers 

of 10. 

 



But since you are giving ln lambda here it makes sense to go in powers of e being our 2.7 a e power 

1. So, now you see when you set log lambda = - 18 the coefficients are uniform do not vary much. 

So, it had be useful to see what it looks like, but currently all we are looking at is the intuition that 

we do not want coefficients to vary very much generally observationally, there is no direct logic 

that I can give you here, but observationally when the coefficients are all equally scaled. 

 

It turns out that you are your function is not very noisy. Now here is log lambda = 0 this of course 

means lambda = 1. This is a high value, high regularization. Notice, higher coefficients is going to 

zero so which means we expected to perform about as well as a lower order model. This would be 

a higher degree model; this is our lower order model and this is somewhere intermediate. So, let 

us see what it looks like physically. 
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Here is the high regularization and look at what it looks like. It almost looks like the equal to zero 

model but we still used an M equal to nine model. Please notice we have always put we are not 

putting lower order models here. We are always using ninth order polynomial but the optimum w 

is found out by adding this extra cost. So, if you use the original full ninth order it will say no that 

will not work because you will have to pay too much penalty for these coefficients. 

 

So, if the penalty is it is highly penalized then it just becomes like this function. You can compare 

this with the M = 0 model it will look somewhat similar. So, you can see the M = 0 model and you 



can compare it with the original also. So, you will see this is approximately similar to the M = 0 

model. 
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Now if I take that intermediate case, I already know what it looks like when I look at the lambda 

equal to zero case because that is just the bad fit. But if I look at the intermediate case that will 

look slightly better as you can see shortly. As you can see here when you use the intermediate 

model you see a very nice fit. So, this almost looks like the M equal to three fit that we had earlier. 

So, if you go back, you see the third order polynomial and the intermediate fit. 

 

Even though here we had stopped our polynomial at third here on the other hand we let it be a 

ninth order polynomial but we just changed the regularization parameter. So, the moment you 

change the regularization parameter you are able to traverse you are able to travel the entire thing 

from a very bad model to a decent model to a very high model and all of it depends only on the 

simple one single parameter which is lambda. 

 

So, if you vary in lambda, you can actually keep the model fixed and just vary the regularization 

that is the basic idea. So, this gives you intuition for why we will use this kind of damping within 

non-linear. So, what we looked at in this video was just this for linear models specifically 

polynomial models. The same trick tends to work very well in non-linear models also when there 

are a large number of parameters. 



 

So, I am going to do the theory in the next video and finally in the last video I will show you a 

code. As I said at the beginning of this video, we are actually not going to show you a practical 

case where we apply it because you still have to do the calculations by hand. So, I am stopping 

with a small number of parameters like A and B or just two parameters but as you go to a large 

number of parameters this kind of damping this kind of regularization becomes inevitable and very 

useful as we will see when we come to the neural networks case. 

 

So, thank you I will see you in the next video for non-linear regression how we modify it using 

similar regularization. 


