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Welcome back. In the last video we looked at the gradient descent algorithm and in we also 

took a simple example last time, but let us look at another simple example and I will show you 

a code also for this very simple example in this case. And in the future videos we will see how 

to apply gradient descent actually to inverse properties. So, let us look at this simple case here. 

 

Suppose we want to minimize this function. So, in this one in this case it is kind of hard for 

you to know the analytical solution though and you can actually theoretically calculate it. But 

the way to find out of course is to do a derivative of f with respect to 𝑥1 set it to 0, 
𝜕𝑓

𝜕𝑥2
 equal to 

0 this will give you the theoretical solution. But when we want to do gradient descent to find 

out the minimum we start with some arbitrary guess, in this case the arbitrary guess has been 

given to be (1, 1) with initial guess 1, 1. 

 

So, let us call this 𝑋0. So, just to be consistent let me call this capital 𝑋0. So, capital 𝑋0 is has 

to sub. Now we have the general formula as you remember, 

 

 



𝑋𝑖+1 = 𝑋𝑖 − 𝛼∇𝑥𝐹 

In this case with respect to x and this turns out to be, 

𝐹 =  

[
 
 
 
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2]
 
 
 

 

Now this is simple enough but we have to calculate this. So, given the function f of x or 

𝑓(𝑋1, 𝑋2) is this function here is, 

𝑓(𝑋1, 𝑋2) = 8 + 
𝑋1

2

2
+ 

2

𝑋1𝑋2
+ 6𝑋2 

 

You have to find out gradient of f is composed of 
𝜕𝑓

𝜕𝑥1
 which of course is this function will 

simply give, 

𝜕𝑓

𝜕𝑥1
= 𝑋1 − 

2

𝑋1
2𝑋2

 

and this function of course will give you nothing. Similarly, 
𝜕𝑓

𝜕𝑥2
 this gives nothing this gives 

nothing the third one gives us, 

𝜕𝑓

𝜕𝑥2
= 

−2

𝑋1𝑋2
2 + 6  

So, just as a sample calculation um say the initial guess not same but we are given an initial 

guess of 1, 1 in that case, 

∇𝑋𝑓|𝑖𝑛𝑖𝑡 = [
−1
4

] 

 

So, let us say Alpha equal to 0.05 this will give us, 

𝑋𝑛𝑒𝑤 = (1,1) − 0.05[−1,4] 

So, this is, 

= (1.05,0.8) 

So, you can keep on iterating. So, I just took some arbitrary value of alpha it is possible to play 

with more values of alpha. So, I will just write this down as a code and you can see how this 

performs for various values of alpha. So, let us go and see the code now. 

(Video Starts: 04:49) 

 



So, here we see our code as usual I have kept it in a MATLAB live file. so, that we can 

intersperse text with code. So, if you can see the question repeated here just to remind us of 

what we are looking at we have we want to minimize this function 8 + 
𝑋1

2

2
+ 

2

𝑋1𝑋2
+ 6𝑋2 and 

the way we have done it is first we specify the function and then we specify the gradient. So, 

here you have it, I have specified the function 8 + 
𝑋1

2

2
, this I hope everybody recognizes is a 

+ 
2

𝑋1𝑋2
+ 6𝑋2. 

 

So, this is the function here the gradient was exactly the thing that we already calculated just a 

little bit before in the video 𝑋1 − 
2

𝑋1
2𝑋2

 and the second component the semicolon here tells you 

that is the first component and this is the second component
−2

𝑋1𝑋2
2 + 6. So, we have written the 

gradient here number of epochs simply means the number of iterations that I wish to do. 

 

So, right now I have given this as 5 and I pre-specified the learning rate as 0.05 and you here 

you can see these are some variables which are useful for plotting you do not really need it all 

you need is just this. In fact, I can remember remove this line entirely and everything will still 

work this is just for some plotting that I am going to do later on below. So, let us now start 

running this program. 

 

So, as you can see after the initial guess the value of w is (1, 1) and after one iteration this is 

exactly what we had calculated theoretically you can see this 1.05 and 0.8. So, hopefully you 

can see that but of course it has done more iteration. So, you can continue your iterations 

1.1109, 0.6488 so on and so forth and I have visualized. So, you see this plot here we started 

at this location one, one and we started coming below. 

 

So, it has started reducing significantly and as I told you earlier typically the idea is that the 

orange and the yellow portions are higher values of the function, you can see the level which 

shows here on your screen is 22.13 to come a little bit below it is 21.49 and you can keep on 

seeing that this is reducing. So, same here at this location 1, 1 you would be at a slightly lower 

point and you are going to come down. 

 



But of course, we have not reached the real minimum here, which is somewhere around this 

point that I am demonstrating, as you can probably see, somewhere to the center of this 

seemingly elliptical region is our minimum level. So, somewhere there is our minimum level. 

So, all that means is we need to increase the number of epochs but before we go there, I want 

to show you what happens if we increase Alpha. 

 

So, suppose I increase Alpha you can see that the behavior starts becoming a little bit more 

erratic if I increase Alpha further you see the Contour is left here it has gone to some really bad 

values. So, it converts really bad if you increase alpha or if I even decrease Alpha to point one 

and let us say increase the number of iterations to 10, we can see what happens. So, it is actually 

not staying at the minimum and it starts moving out and this is what is known as you know 

divergence. 

 

And we need to do some hyper parameter optimization. Now I had done this beforehand I knew 

that 0.05 would work which is why I demonstrated it here but there is no easy way of finding 

this out beforehand. you have to play with the parameters. So, now I have made the number of 

epochs 50 and you can see it is sort of seemingly converges but maybe it diverges just a little 

bit we can make alpha a little bit smaller still let us say 0.02 and increase the number of epochs 

to let us say 500 and see if that works fine. 

 

And you can see that it is kind of converging right to the minimum and somewhere below here 

at the bottom you will see the converged value it is you can see. Now the gaps between any 

two subsequent values at least to four decimal places we have not changed. So, you can see 

that for a large number of iterations we are stuck here at least for four decimal places of 

iteration. So, we can be satisfied with the minimum for this function is somewhere around 

1.6438 and 0.4503 and you can check theoretical minimum is indeed somewhere around that.   

 

So, this is a very simple example of how you can program gradient descent just as long as you 

have the formula for the gradient you do not need anything as complicated as the normal 

equations you can see this is a simplification. So, this is very straightforward. Now whether the 

function is linear or non-linear and in fact you can see here the function is non-linear in the 

parameters remember we are minimizing with respect to x and even for non-linear parameters 

this function works just fine. 

 



So, we can experiment with this function with the non-linear case that I introduced to you at 

the beginning of this week, which was the non-linear regression with our temporal unsteady 

problem and we will try and do that next and see what happens, thank you. 

(Video Ends: 10:38)  

 


