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Welcome back. In this video, we'll be looking at some variants of linear regression. we are still 

in week three. Recall that so, far, we had seen um simple linear model, which was 

𝑦̂ =  𝑤0 + 𝑤1𝑥 

We had also seen the quadratic model, which was 

𝑦̂ =  𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 

All these were models that we just had one single feature which was x. Then we saw that we 

could extend our analysis to polynomial models and I showed a few examples of this in the 

last coding video. 

 

So, 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2, you can add a cube term and go on 𝑤𝑛𝑥𝑛. Now all these simply can be 

abstracted into a single idea of a linear model, the generalized linear model and the same 

generalized linear model can also be used for what is known as multiple regression or multi-

linear regression. So, in this case, 𝑦̂ equal to 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2, where 𝑥1, 𝑥2 are different 

features and you can keep on going till 𝑤𝑛𝑥𝑛. So, for example if x itself is made up of multiple 

Parts, x is a vector, 𝑥1 through 𝑥𝑛. 

 



So, you can use this multiple regression. Now we can also see that there is a one-to-one 

correspondence here. That is, you can think of x as simply 𝑥1 and 𝑥2 as 𝑥2 and this is how we 

actually solve the linear model and all of these including this, can be handled with normal 

equations, which is on the last couple of parts. Now what we are going to do in this video is to 

look at variance. 

 

Now this is already extremely useful as you would have seen. This is already very useful and 

it encompasses a large number of models, but we can extend this further and there are several 

variants of linear regression that exist in  various forms and we are going to look at that in this 

video thank you. 

(Refer Slide Time: 03:24) 

 

So, we have been consistently minimizing the following objective residual or loss function, 

which is summation of, 

𝐽 =  𝑅2 = ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑖

 

If you go back to the very first video that we did this in week one or week two, I believe  I 

think it is week two you saw that the original form was something slightly different we had 

this scaled by 
(𝑦𝑖−𝑦𝑖̂)2

𝜎𝑖
2   and we will come back to this point but generally this is what we have 

been looking at. 

 

So, this is what we call least square regression or LSR or sometimes, it is called ordinarily 

Square. you will see all these names within the literature. But we have other variants. So, we 



have other variants. each of them has their own uses. So, for example we can change J itself. 

So, one change is so, notice this is called an 𝐿2 loss because this power here is 2. We can also 

do this which is just summation of 𝑦𝑖 − 𝑦𝑖̂. 

 

Now why should we add squares we can also add absolute values this of course is not 

differentiable. So, that is we can minimize the sum of the individual losses and we will see 

what kind of utilization it has, if time permits, we can try to see this within the machine learning 

setting within the last few weeks of this course if we have the opportunity I will come back to 

them. another choice is what is known as the L Infinity. 

 

Notice this term L Infinity all this depends on a quantity or variations of what I call Norm the 

last time. So, you can look at L Infinity loss also called the Minimax loss. So, that is minimizing 

the maximum difference. So, what you do is instead of just minimizing some of the gaps, you 

see which one is the maximum different thing between your model and your prediction and try 

to minimize that. This of course works poorly in case you have outliers, but again if time 

permits, we will see some uses of this towards the end of this course. 

 

The final one is the example that I show here, we should call the weighted least Square. So, 

you can notice that if I set, 

𝜆𝑖 =
1

𝜎𝑖
2
 

you have a slightly different version; you do not have just the sum of least squares. but each of 

the squares is weighted by a different quantity 𝜆𝑖. So, this is what leads to what is known as 

the weighted least squares approach and we will see that within this video. 

 

We will not be seeing these two, but this we will see Within today’s video. Now apart from 

this uh there are also a couple of other variants, that can be created or problems which can 

actually come from other functions. So, seemingly non-linear functions can be mapped to 

linear functions. Now a simple example of that is here. So, for example we had x we had 𝑥2 

and we simply called this 𝑥1 and 𝑥2 and. Now what look like a non-linear function looks like 

a linear function. 

 

But of course, this was still linear in 𝑤0, 𝑤1, 𝑤2 but let us say we have a non-linear function 

in the parameters itself. So, the parameters we want to determine suppose it is non-linear there, 



it can be turned into a linear form through transformations. So, let me give you a trivial example 

and then we will see more important examples that directly arise especially in heat transfer. 

So, suppose somebody has a model saying 𝑦̂ =  𝑤0
2 + 𝑤1

2𝑥. 

 

When you will say, I will just call 𝑤0
2 as let us say 𝐶1 and 𝑤1

2 a 𝐶2 and now it is linearized. 

So, this is a simple example of how a seemingly non-linear function can be turned into a linear 

function but this is of course a trivial example I am just renaming constants. you can do 

something a little bit cleverer and again you would have kind of done this probably at school 

too, but we will just see the context here. The important thing is that it should be linear in the 

parameters and not necessarily in the functional form. 

 

So, here is an example 𝑦 = 𝑎𝑥𝑏. So, suppose we take this example 𝑦 = 𝑎𝑥𝑏. So, now notice 

it is kind of linear in a but this multiplies some 𝑥𝑏. So, it looks non-linear however if we 

transform this and take a logarithm on both sides and we have ln 𝑦 = ln 𝑎 + 𝑏 ln 𝑥. Now we 

do the renaming we call this variable as 𝑦̂, 𝑦̂  is now ln of the previous 𝑦̂ this I call 𝑤0 this I 

call 𝑤1. 

 

And this can simply be a feature or you can call it some other variable z. So, now you have 

𝑦̂ =  𝑤0 + 𝑤1𝑧 and this is once again a linear problem. So, this is a simple example of a linear 

problem. let us take this one which can subject itself to the same kind of trick. So, this kind of 

example, if you remember from the first week this kind of occurs within an infinite fin. So, 

there you would have something like 𝜃 =  𝜃𝑏 𝑒−𝑚𝑥. 

 

So, the parameters of the problem are these two 𝜃𝑏 and m these are the unknown parameters 

that we will typically solve in an inverse problem. So, if we take this example or let me take 

this example, 𝜃 =  𝜃𝑏 𝑒−𝑚𝑥, then I can take ln 𝜃 = ln 𝜃𝑏 − 𝑚𝑥. So, now this we can call 𝑦̂ this 

we can call 𝑤0 this we can call v and this is of course x. So, we once again have the form 𝑦̂ =

 𝑤0 + 𝑤1𝑥 which is linear. 

 

So, just for transformation by taking a logarithm on each side, we got there. Here is a very 

popular form. this is of course again coming from heat transfer. This is you will have in case 

you remember from heat transfer, this convection relationships or if you have multiple 

correlations, they come in the form of what is known as the Dittoes Bolter equation for a pipe. 



So, stuff like that when you come here. once again, you Now have noticed this case of two 

features so, now this is not just x this is 𝑥1 and 𝑥2 and your output is y. 

 

So, if we take that case and we do Nusselt number equal to, 

𝑁𝑢 = 𝐶 𝑅𝑒𝑚𝑃𝑟𝑛 

and we wish to determine what m and n are using a lot of data points again we take a logarithm, 

ln 𝑁𝑢 = ln 𝐶 + 𝑚 ln 𝑅𝑒 + 𝑛 ln 𝑃𝑟 

This we can call 𝑥1, this we can call 𝑥2, this is 𝑤1, this is 𝑤2, this is 𝑤0, this is 𝑦̂. 

 

And just renaming these variables gives you 𝑦̂ =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2. So, this kind of tricks, 

you can do multiple times. I will show you one further example you can come here. So, if you 

come to this expression here, this does not look like it is a simple linearizable example however 

with the transformation once again of setting one variable as 1 𝑥⁄  and another variable as 1 𝑦⁄  

let me show you that trick here. 

 

So, we had this case of 𝑦 =  
𝑎𝑥

𝑏+𝑥
. So, now take 1 over this. So, 

1

𝑦
=  

𝑏+𝑥

𝑎𝑥
, this gives you, 

1

𝑦
=

 
𝑏

𝑎𝑥
+  

1

𝑎
. Now once again you call this as 𝑦̂ take this 

𝑏

𝑎
 call that as 𝑤0 take this 

1

𝑥
 and call this as 

𝑥1 instead of calling this 𝑤0 I will call this 𝑤1 and 
1

𝑎
 is called 𝑤0  and once again you get 𝑦̂ =

 𝑤0 + 𝑤1𝑥1. So, this is once again linear. 

 

So, all sorts of cases that you can work out, now unfortunately you take some cases like this 

one. this regardless of what trick you try will always be not linearizable. So, there is no simple 

rule that I can give you give you to tell which one will be linearizable and which one will be 

not but in this case, it happens to be not linearizable any trick you do will not turn it into a 

linear problem. 

 

So, you have a here and you have 𝑒−𝑏 here and this is always going to be non-linear. So, for 

this is what we will do next week, we have what are known as non-linear regression analysis. 

So, we will do non-linear regression analysis here. Now another case this is of great use is in 

cases like 𝑦 = 𝑎𝑒−𝑏𝑡, this can be linearized because as you can see it is exactly of this form by 

𝑦 = 𝑎𝑒𝑏𝑥. 

 



Now this example we will use within the exercises today, this week for unsteady conduction. 

So, the exercises for week three will have an unsteady conduction example, which you are 

supposed to convert to a linear problem and then perform a linear regression. So, that is the 

exercise for this week. So, what we saw Now in the first part of this video is that there are 

multiple equations or multiple forward models which can even though they look non-linear in 

the parameters can be turned to be linear in the parameter simply through a transformation.  

(Refer Slide time: 16:19) 

 

Now we are going to look at this all-important case of weighted least square. So, now I want 

to show you this case of weighted least squares, remember what I had said that typically our 

loss function is, 

𝐽 =  ∑(𝑦𝑖 − 𝑦𝑖̂)
2 

This is of course the model this is reality. So, all we are doing is we are waiting each of the 

data points the same. that is the error in the first point is the same as, has equal importance as 

they error in the second point. 

 

Now imagine you have a few friends and one person says something like this movie is good 

and even though their taste differs from yours you know that; they are at least reliable whereas 

one other person keeps on like varying their outputs. So, they are very unreliable another way 

to say it. So, you are not going to wake the information by the first friend the same as the 

information by the second friend. 

 



Similarly, if you have multiple sensors in a slab. let us say multiple thermocouples and each 

of them like some of them are old, some of them are new and each of them is giving a reading 

you cannot wait them. So, these are different accuracies you cannot give equal weight to equal 

weightage to all of them. So, this kind of experiment which I am showing here is one such 

example, it is one of the oldest examples of a data set you can see this from 1877. This is by 

botanist whatever language we wish to use people then were multiple things, statisticians, 

botanists etcetera. 

 

So, this is why a person called Galton and the idea was this he was measuring peas. So, mutter 

as they say in Hindi. So, he was measuring peas and he was trying to see the how the parent T 

diameter affects the child. So, progeny here means child. So, here is the diameter and this is 

not one single parent obviously he is measuring up to you know 10 children from a given 

parent etcetera and all these are statistical. there are a lot of data points, this kind of is the mean 

or an average of this data point. 

 

So, what he saw of course was that there is some kind of correlation. So, you can see that as 

parent size decreases as it is with human parents. the child size also decreases, but notice that 

all these things are different. what are these? this is the standard deviation. all of you would be 

familiar with standard deviation from school. So, remember you would calculate, 

𝜎 =  √
(𝑦 − 𝑦̅)2

𝑛 − 1
 

We will come to this definition again when we come to the statistics portions. 

 

All you need to know is that not all data are equally reliable. of course, in this case, the variation 

is small. for example, this varies a little bit less at this size compared to something like this. 

So, if this is 16 then this is 20. So, 0.016, this is 0.020 but nonetheless these are at least different 

variations. So, the question is this, if you fit and you want to account for the fact that the errors 

are different, do we actually make a difference in the fit well the coefficients actually change 

once again we are going to try a linear model this is x. 

 

Now this is y. So, we are going to say 𝑦̂ =  𝑤0 + 𝑤1𝑥 but we want to see whether 𝑤0 and 𝑤1 

will depend on whether the accuracy of the sensors is more or not in this case the accuracy of 



the measured data is more or less. So, the way this makes a difference of course, is the 

difference that I had shown you earlier which was to say that J is no longer simply (𝑦𝑖 − 𝑦𝑖̂)
2. 

 

But I want to scale this by the inverse of this standard deviation or inverse of the variance 𝜎𝑖
2 

is called the variance as you might remember 𝜎𝑖 itself is the standard deviation. So, we can 

write this as, 

𝐽 =  ∑ 𝜆𝑖 (𝑦𝑖 − 𝑦𝑖̂)
2

𝑖

 

I don't want to use w because many people use w here but w we have already used for the 

parameter. So, Lambda i are the weights which is to say if it is highly accurate then Sigma will 

be 0 then I want to give a lot of weight to it because. Now Lambda is going to be, 

𝜆𝑖 =  
1

𝜎𝑖
2
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We will see a probabilistic kind of derivation to this idea, when we come to the probability 

portions of this course. Now how does this make a difference? So, remember, Now I am going 

to write, 

𝐽 =  ∑ 𝜆𝑖 (𝑦𝑖 − 𝑦𝑖̂)
2

𝑖

 

Now I again I have to set the same thing Del J if I have a model with the 𝑤0 and 𝑤1, I have to 

set 

𝜕𝐽

𝜕𝑤0
= 0; 

𝜕𝐽

𝜕𝑤1
= 0 



and this would say 

𝜕𝐽

𝜕𝑦̂

𝜕𝑦̂

𝜕𝑤0
= 0  

 

So, the first equation so, if you notice this, this will basically give me, 

∑ 𝜆𝑖 (𝑦𝑖̂ −  𝑦𝑖) = 0 

why because 
𝜕𝐽

𝜕𝑦̂
 is now going to be 𝜆𝑖 (𝑦𝑖̂ −  𝑦𝑖) almost no change from before except this 𝜆𝑖 

is extra. similarly, if I do 
𝜕𝐽

𝜕𝑤1
= 0 this will give me, 

𝜕𝐽

𝜕𝑦̂

𝜕𝑦̂

𝜕𝑤1
= 0 

So, this will give me, 

∑ 𝜆𝑖  (𝑦𝑖̂ −  𝑦𝑖)𝑥𝑖 = 0 

 

So, these are two equations and of course 𝑦𝑖̂ =  𝑤0 + 𝑤1𝑥𝑖. So, if you write these equations 

out, I am going to skip some steps, I would request you to go back to your notes for the case 

without the lambdas and check with this. But if you open this up, let me just open this up just 

for one case, 

∑ 𝜆𝑖 (𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖) = 0 

So, the first equation is going to become 𝑤0 ∑ 𝜆𝑖 + 𝑤1 ∑ 𝜆𝑖𝑥𝑖 that comes from here and this 

term moves to the right-hand side and you will get equal to ∑ 𝜆𝑖𝑦𝑖. 

 

So, if I write this in matrix form, just like last time I have 𝑤0, 𝑤1. So, you will see that the first 

term is multiplied by ∑ 𝜆𝑖 the second term by ∑ 𝜆𝑖𝑥𝑖 and on the right hand side will be ∑ 𝜆𝑖𝑦𝑖, 

go back to your notes and check you can check the normal equation mode also this would be 

∑ 1 this would be ∑ 𝑥𝑖 and this would be ∑ 𝑦𝑖, that is what happens when all of them are 

equally weighted. 

 

So, really speaking all we have is the same set of equations except in every Sigma there is an 

extra Lambda setting which is not surprising. So, if you go back to your notes, you will see 

that, all you will notice is instead of these lambdas if you just replace this Lambda by 1 you 

will get the previous one and if you replace each of the sigma’s with wherever there is a sigma 



you put Sigma of that multiplied by 𝜆𝑖 you will recover the weighted least square equations. 

So, these are the weighted least square equations and you just need to solve these for the values 

of 𝑤0 and 𝑤1 obviously this is affected by the value of Lambda.  

 

Now if the variation in Lambda is not much you can kind of take-out Sigma Lambda out more 

or less as an average in Lambda, in this case the variation is not much. So, you cannot expect 

too much of a big variation in the predictions of 𝑤0 and 𝑤1. if the variation in Lambda is high 

then you can expect of course big variation in 𝑤0 and 𝑤1. 

 

So, I am just going to quickly show you a code for this and you are welcome to write this code 

using the normal equation approach. I will quickly derive the normal equation approach again 

without too much detail. But you can use that for there is a weighted least square example 

given in your assignment two. You can use some version of that by yourself. I will encourage 

you to write a code by yourself for this. 

(Video Starts: 26:53) 

 

So, what I am showing here is a code for the Gallatin data and I have written coding the inverse 

conduction problem which is I should change it to the weighted least squares problem. this is 

a copy-based issue., let us come here the forward model is still 𝑤0 + 𝑤1 and x notice that I 

have done the same trick I have cut and pasted whatever I had in my slide here, it is just a 

convenient way of doing it I encourage all of you to do this within MATLAB scripts. 

 

Now the thing that has changed of course is that the weighted least square formula is now 

𝜆𝑖(𝑦𝑖 − 𝑦𝑖̂)
2, where𝜆𝑖 =  

1

𝜎𝑖
2 . 𝜎𝑖 are the standard deviations given in the data set. I have now 

written this data out you can see that here 0.2, 1.2, 0.19 etcetera and as usual I had taken a 

transpose, I have also written the y data, just like before you can compare this code with the 

inverse conduction code also. 

 

The extra thing here is the standard deviations, which basically measure how accurate or how 

much confidence we have in each one of these data points. So, the first one represents our 

confidence in the point to 1.1726 data points. the higher the confidence the higher the weight 

you wish to give. another way of saying is lower the sigma lower the error expectation the 

higher the weight you want it. 



 

So, here I have this Lambda so, which I have defined as 
1

𝜎2. Now a quick trick, I can do just to 

set the baseline is to declare one Sigma or zero the sigma zero is all once as you can see. And 

why am I doing this, this is to get the ordinary non-weighted least squares. So, I can try to get 

the normal weight Square least squares answer without accounting for this and I will take 

Sigma 0 here just to set a baseline and the formula remains the Same as I had shown you last 

time. 

 

So, you have ∑ 𝜆 you can look up your node ∑ 𝜆, ∑ 𝜆  𝑥, ∑ 𝜆 𝑥2and then ∑ 𝜆  𝑦, ∑ 𝜆  𝑥𝑦. If you 

remember the LHS it was which is shown here ∑ 𝜆, ∑ 𝜆  𝑥 it was a symmetric mix Matrix 

∑ 𝜆  𝑥, ∑ 𝜆 𝑥2 on the right-hand side we have ∑ 𝜆  𝑦 and ∑ 𝜆  𝑥𝑦 and as useful w is equal to 

LHS by RHS or inverse of LHS by RHS. 

  

So, I am going to run this code just. So, that you can see the w's, so notice the w at this point 

w, came out to 0.127 and 0.21. So, this is what happened without please remember without the 

correction due to least squares. So, please observe the physical plot here I have not drawn a 

parity plot in this case. So, the model prediction is the red line and the actual P data are on the 

dotted lines here. 

 

Now of course what we need is not Sigma0 but we need Sigma. So, this is the actual case. Now 

when you run the actual case, you will see that the value changed, not by much because there 

was not huge variation here. Now suppose I was super confident in some data point I will just 

show you that case. So, here you see it has changed by a little bit, but it is hardly visual. suppose 

I am really confident about this point here and I make this really small. So, now notice how it 

is doing here, versus when I make this really small, it will try to match that a little bit more 

closely that is this point. 

 

So, this is flipped. so, the 0.21, So, once again let me show the difference if I have 0.019 the 

Gap is 5 whereas if I am really confident about it and this error becomes really low, 10 times 

low, it will try to weight the least square line. So, that it tries to predict that correctly. 

 

So, this is the advantage of a weighted least squares approach if we are relatively confident 

about some points versus others, we can actually weight them appropriately. We will come 



back to this, when we consider also physics informed neural networks towards the end of the 

course. So, this here was a simple demonstration of a weighted least square code. this is of 

course explicitly programmed I will encourage you to program this in the normal equations 

approach also. 

 

I will quickly write down the expression for the normal weighted least squares approach 

shortly. 

(Video Ends: 32:14) 
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So, just to summarize what we saw was that without weighting. So, that is what is known as 

the ordinary least squares. we saw that the numbers were something like 𝑤0 equal to 0.127 and 

𝑤1 was something like 0.21, whereas with waiting which is the weighted least squares 

approach to get something like w0 equal to 0.128 and w1 equal to 0.205 or some somewhere. 

So, small change like I said the weight change can be large in case the differences in standard 

deviation are large. 

 

Now the question that we wish to ask is, can we write the normal equations for this? I am just 

going to give you the final result and I will let you derive it and if maybe time permits, I will 

do it towards the end of the course if required. otherwise, I am just going to give you the final 

equations for this. So, define x the same way you know 𝑥1, 𝑥2 etcetera. The same design Matrix 

y etcetera also the same as before but define one extra matrix which I am going to call Capital 

Lambda which is a diagonal matrix. 

 



This has Lambda 1, Lambda 2 up until Lambda m on the diagonals and it is 0 everywhere else.  

So, so Lambda is a diagonal matrix with lambdas on the diagonal. 

Λ =  [

𝜆1 0 ⋯ 0
0 𝜆2 0 0
⋮ 0 ⋱ ⋮
0 0 ⋯ 𝜆𝑚

] 

 In this case the normal equation turns out to be the following. So, they turn out to be 𝑋𝑇 

remember what the previous equation was it was simply 𝑋𝑇𝑋𝑊 in this case it is 

𝑋𝑇Λ𝑋𝑊 =  𝑋𝑇Λ𝑌 

 

So, of course in the non-weighted case. This is the most General Weighted Least Square 

formula. the non-weighted case was 𝑋𝑇𝑋𝑊 =  𝑋𝑇𝑌. this is for ordinary least square. you can 

derive from here to here by simply setting Lambda equal to the identity Matrix which simply 

means that all sensors are equally weighted. So, this is the expression for normal equations. 

 

I encourage you to try to derive it in the same way that I derived it earlier it is possible but I 

did not want to spend too much time on this thing here, where we have other portions to move 

out to. So, what we saw within this video were variance of linear regression, we saw that some 

of them could be linearized, some functions could be linearized and some functions are deserve 

a weighted least square approach. 

 

Both these are actually sitting within the assignment for this week. So, I hope you try the 

assignments and I will give you further insight into this procedure, thank you. 

 


