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Welcome back. In the previous video we had seen that all linear models can be written in the 

form 𝑥𝑤 = 𝑦̂, where this x was called the design Matrix and consists of all the input vectors 

or all the input variables. The size of this is the number of, examples are the number of sensors 

that you have multiplied by the number of features with which you wish to represent it, where 

m is the number of data points and n is the number of features and I had explained features the 

last time. 

 

For example, if you have x, x itself the input variable could be made up of multiple 

components. For example, it could be made up of the x location y location of a specific point. 

more generally it could be other things also for any linear regression problem, for example, let 

us say you are trying to make weather prediction. 

 

And you could have pressure and temperature as 2 components or pressure temperature 

humidity in case you have three features so on and so forth. W is the parameter vector and W 

is made up of n + 1 components. This in machine learning language is called the bias unit and 



x if you remember is also augmented by a bunch of ones. So, as to multiply this and this of 

course is our model. 

 

So, this problem is or this model is linear in W, that is the important point. it is linear in 

parameter space. It does not have to be linear in x. So, x itself could contain as we saw in the 

last video, it could contain 𝑥2 or it could contain sin 𝑥, it could contain cos 𝑥 it really does not 

matter, because this is constant. it depends on data that we have given and W itself is the 

parameter vector and it is the parameter Vector which is the unknown, which we are trying to 

solve for. 

 

We also saw that if we take this matrix formulation, we can Now write the objective function 

as J the objective function is equal to 𝑊𝑇𝑋𝑇𝑋𝑊, this is a quadratic term. It is quadratic in x or 

it is quadratic in W sorry. These 2 are linear terms in W and this is constant and as I talked 

about last time to find the minimum of J, we need to minimize with respect to the variable. 

 

The variable here is not the data points, we cannot change the location of the sensors, the 

location of the thermocouples or what value they have measured. But we can minimize with 

respect to the parameter, with respect to W, which means we are minimizing with respect to 

these n + 1 variables in general. Now how do we minimize. So, we minimize in the following 

way, we say  

𝜕𝐽

𝜕𝑤0
= 0,

𝜕𝐽

𝜕𝑤1
= 0, . . .

𝜕𝐽

𝜕𝑤𝑛
= 0 

 

Now this can again in the same notation, this can again be written in a form which looks like 

a vector. So, it can be written in the form the vector or the Matrix form is we say 
𝜕𝐽

𝜕𝑤
= 0 notice 

J is a scalar, but W is a vector, (𝑛 + 1) × 1 vector or a matrix. So, this is the same as saying 

𝜕𝐽

𝜕𝑤
 can be written as 

𝜕𝐽

𝜕𝑤
= 

[
 
 
 
 
 
 
 
 

𝜕𝐽

𝜕𝑤0

𝜕𝐽

𝜕𝑤1.
.
.

𝜕𝐽

𝜕𝑤𝑛]
 
 
 
 
 
 
 
 

 



So, this is the definition of Del J by del w. So, this that we use, in order to actually set the 

equation. 

 

So, we will say 
𝜕𝐽

𝜕𝑤
= 0. This has the same meaning as the scalar system of equations. Here 

𝜕𝐽

𝜕𝑤
 

is a (𝑛 + 1) × 1 vector and 0 also actually is a bunch of zeros it is (𝑛 + 1) × 1. So, I am going 

to start with this equation which is 
𝜕𝐽

𝜕𝑤
= 0. So, we have this equation, let us call this equation 

star and we have this original equation, let us call this equation one. 

 

So, basically what it means is we need to find out 
𝜕𝐽

𝜕𝑤
. Now if we look at this it is made up of 

three terms, the quadratic term, 2 linear terms of course 
𝜕𝐽

𝜕𝑤
 with respect to a constant is zero. 

Now the way we are going to do it is first we will do the linear terms, then we will do the 

quadratic term, this is going to involve some amount of Matrix algebra. I hope you can follow 

it, even if you cannot really follow it. 

 

Though I do have a couple of questions with this, in the exercise you should be able to 

understand the overall sense at least the linear terms are fairly easy to calculate. So, I hope it 

is a useful skill that you learn even though that is not the main point of this course. So, let us. 

Now differentiate these terms. 
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So, now consider terms of 2 forms like. So, I am going to say some Matrix E is let us say, 

𝐸 = 𝐶𝑊 



and where C is a matrix and W is a matrix. So, for example C could be, 

𝐶 = [𝐶1 𝐶2 . . . 𝐶𝑛] 

 and W could be, 

𝑊 = 

[
 
 
 
 
 
𝑊1

𝑊2

.

.

.
𝑊𝑛]

 
 
 
 
 

 

It does not matter whether we start with 1 or n I am just trying to derive a general result. So, 

suppose I want 𝑑𝐸1 or 
𝜕𝐸1

𝜕𝑊
 which is the same as instead of calling it E1, maybe a better name 

we simply E just. 

 

So, that there is no confusion I am going to call it E. 

𝐸 = [𝑐1 𝑐2 . . . 𝑐𝑛] 

[
 
 
 
 
 
𝑤1

𝑤2

.

.

.
𝑤𝑛]

 
 
 
 
 

  

So,  

𝜕𝐸

𝜕𝑤
= 

[
 
 
 
 
 
 
 
 
𝜕𝐸

𝜕𝑤1

𝜕𝐸

𝜕𝑤2.
.
.

𝜕𝐸

𝜕𝑤𝑛]
 
 
 
 
 
 
 
 

  

We are going to differentiate with respect to each one of the components. So, all we need to 

find out is E. Remember E is a scalar, C is a vector W is also a vector. but C is a 1 × 𝑛 vector 

or 1 × 𝑛 Matrix and W is a 𝑛 × 1 Matrix. So, E is actually a scalar, which is equal to, 

𝐸 =  𝑐1𝑤1 + 𝑐2𝑤2 + ⋯+ 𝑐𝑛𝑤𝑛 

 

So, now if we see this and we try to find out, what 
𝜕𝐸

𝜕𝑊1
 is? 

𝜕𝐸

𝜕𝑊1
 all other variables are 0 and the 

only term that remains is 𝐶1.  
𝜕𝐸

𝜕𝑊2
 is 𝐶2 so on and so forth until 

𝜕𝐸

𝜕𝑊𝑛
 is 𝐶𝑛. So, this is the result 

of 
𝜕𝐸

𝜕𝑊
 what is this? 



𝜕𝐸

𝜕𝑊
= 

[
 
 
 
 
 
𝑐1

𝑐2

.

.

.
𝑐𝑛]

 
 
 
 
 

=  𝐶𝑇 

 If C is the row matrix, this then is 𝐶𝑇. I think that should be clear. So, let us summarize the 

result if you have a matrix or if you have a scalar which is 𝐸 = 𝐶𝑊, this means that 
𝜕𝐸

𝜕𝑊
 is equal 

to 𝐶𝑇. 

 

So, let us label this result as 3. Now I am going to write another case. similarly consider another 

case. So, the other case is D equal to, 

𝐷 =  𝑊𝑇𝐵 

Now what is B? B I am going to write as, 

𝐵 =  

[
 
 
 
 
 
𝑏1

𝑏2

.

.

.
𝑏𝑛]

 
 
 
 
 

 

So, B is a 𝑛 × 1, 𝑊𝑇 of course is, 

𝑊𝑇 = [𝑤1 𝑤2 . . . 𝑤𝑛] 

which means 
𝜕𝐷

𝜕𝑤
 is  

𝜕𝐷

𝜕𝑤
= 

[
 
 
 
 
 
 
 
 
𝜕𝐷

𝜕𝑤1

𝜕𝐷

𝜕𝑤2.
.
.

𝜕𝐷

𝜕𝑤𝑛]
 
 
 
 
 
 
 
 

  

And D is nothing but, you can now write it out 𝑊𝑇𝐵. 

 

So, which is, 

𝐷 =  𝑤1𝑏1 + 𝑤2𝑏2 + ⋯+ 𝑤𝑛𝑏𝑛 

So, which means 
𝜕𝐷

𝜕𝑤
 you can now write as differentiate with respect to 𝑤1, it is simply, 

 



𝜕𝐷

𝜕𝑤
= 

[
 
 
 
 
 
𝑏1

𝑏2

.

.

.
𝑏𝑛]

 
 
 
 
 

= 𝐵 

So, this tells you this is exactly the same as the original Matrix B. So, this tells you that if 𝐷 =

 𝑊𝑇𝐵, then 
𝜕𝐷

𝜕𝑤
 is simply equal to B. So, let us call this equation the previous equation was 3, 

this equation as 4. 
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So, now we are going to use 3 and 4 to solve for the linear derivatives. So, the linear derivatives 

are the derivatives here, these 2. So, let us look at the derivative of these 2 terms. So, the first 

term I am going to look at is this term here 𝑊𝑇𝑋𝑇𝑌.  So, let 𝐸 =  𝑊𝑇𝑋𝑇𝑌, I want 
𝜕𝐸

𝜕𝑊
, I think 

I called it D here. So, let me keep consistent notation. 

 

So, let this be D and let us call this term B. Now this is 𝑊𝑇𝐵. so, we know that 
𝜕𝐷

𝜕𝑤
 is B which 

is nothing but 𝑋𝑇𝑌. So,  

𝜕𝐷

𝜕𝑤
=  𝑋𝑇𝑌 

So, this result directly leads here. So, similarly the other term, we had was the term here, this 

term here which is 𝑌𝑇𝑋𝑊. So, let us call that E. we want 
𝜕𝐸

𝜕𝑊
 we had the result before let us 

call this C. 

 



So, 
𝜕𝐸

𝜕𝑊
 when E is CW is something we already know this is 𝐶𝑇. So, this means  

𝜕𝐸

𝜕𝑊
= (𝑌𝑇𝑋)𝑇 = 𝑋𝑇𝑌 

𝜕𝐸

𝜕𝑊
 is (𝑌𝑇𝑋)𝑇 which as you know (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇. So, this becomes 𝑋𝑇𝑌 again. Now notice 

both these terms are the same. So, this you should know with solving quadratics. for example, 

if you have something like 𝑥2, you tend to get 2x when you take a differentiation. 

 

So, something similar is going on here, but we will go further. So, now what we get is, finally 

let us look at the quadratic term. This I am going to do a little bit of hand waving; I will not do 

it in as much detail as the previous terms I am going to appeal a little bit to your knowledge of 

scalar calculus or one-dimensional calculus and not vector or Matrix calculus. So, the quadratic 

term here is if you go back here, it is 𝑊𝑇𝑋𝑇𝑋𝑊. 

 

So, I am going to call this quadratic term is 𝑊𝑇𝑋𝑇𝑋𝑊. So, let us call this term as A. So, that 

is 𝑊𝑇𝐴𝑊. Now let us say F equal to, 

𝐹 = 𝑊𝑇𝐴𝑊 

We want 
𝜕𝐹

𝜕𝑊
. the way we will do it is using something like the chain rule. So, you know that 

the chain rule works this way, if you have let us say 
𝑑

𝑑𝑥
[𝑓(𝑥)𝑔(𝑥)] the way we do it is we first 

differentiate this assuming g is constant. 

 

Then we differentiate it assuming f is constant and then add the 2. So, we will say something 

like 
𝑑𝑓

𝑑𝑥
𝑔(𝑥) + 𝑓(𝑥)

𝑑𝑔

𝑑𝑥
. So, the idea is hold differentiate this whole term assuming g is constant, 

then differentiate this whole term assuming f is constant, then add the 2. we are going to do the 

same thing here. So, we are going to treat it in the following way, we will differentiate this 

whole term holding this term constant. 

 

Then they will differentiate this whole term assuming this term is constant and we will just 

write a sum of the 2. 
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So, for example I am going to call this combination, let me be consistent with my notation 

here. I will call this term as C and this term as B. So, if I do that this basically, becomes, 

𝜕𝐹

𝜕𝑤
= 

𝜕

𝜕𝑤
[𝐶𝑊] + 

𝜕

𝜕𝑤
[𝑊𝑇𝐵] 

Now we know the result already when you do that. So, when you do this, you get what is 

derivative of C times W, we already calculated it, this 𝐶𝑇 and what is derivative of 𝑊𝑇𝐵 you 

know that that is B. 

𝜕𝐹

𝜕𝑤
= 𝐶𝑇 + 𝐵 

 

Now C was 𝑊𝑇𝐴, if you take transpose of that you get 𝐴𝑇𝑊 and B is simply AW. So, put 

these together you get, 

𝜕𝐹

𝜕𝑤
=  𝐴𝑇𝑊 + 𝐴𝑊 

𝜕𝐹

𝜕𝑤
= (𝐴 + 𝐴𝑇)𝑊 

Now A itself was 𝑋𝑇𝑋, I think that is the definition yes. So, x-transpose x, but x-transpose x, 

if you take a transpose of that you will again get x transverse x that is because it is symmetric. 

𝜕𝐹

𝜕𝑤
= (𝑋𝑇𝑋 + 𝑋𝑇𝑋)𝑊 

𝜕𝐹

𝜕𝑤
= 2𝑋𝑇𝑋𝑊 

 

So, you get 2𝑋𝑇𝑋𝑊. So, this means, 

 



𝜕

𝜕𝑤
(𝑊𝑇𝑋𝑇𝑋𝑊) = 2𝑋𝑇𝑋𝑊 

So, again like I said this is kind of a hand waving derivation, you can do a more formal 

derivation. but nonetheless none of what I said here was strictly speaking wrong in any way. 

All you need to remember again is to treat, if you treat this as a scalar. let us assume W is a 

scalar then it will look like 
𝜕

𝜕𝑤
(𝑊𝑇𝑋𝑇𝑋𝑊) = 2𝑋𝑇𝑋𝑊 . 

 

So, it works in a scalar and Matrix you have to be a little bit careful, in order to ensure that all 

the matrices match. 
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So, all put together, if we now some all terms together, you will get 
𝜕𝐽

𝜕𝑤
. Now you notice this 

half actually is very useful for us, this half up front. you will get a 2 from the differentiation of 

this term, you will also get a 2 from the sum of the differentiations of these terms. So, just look 

at the results, 

𝜕𝐽

𝜕𝑤
=  

1

2
 × 2[𝑋𝑇𝑋𝑊 − 𝑋𝑇𝑌] = 0 

 once you have this 2 times 𝑋𝑇𝑋𝑊 you also have an 𝑋𝑇𝑌 and another 𝑋𝑇𝑌 from here. 

 

So, when you add all that. So, you will get off times that would be at 2 then 𝑋𝑇𝑋𝑊 − 𝑋𝑇𝑌. If 

this is not entirely clear on how this came, I request you to just go back and look at each 

individual term. So, these 2s of course cancel out and this is equal to zero. So, this tells us that, 

𝑋𝑇𝑋𝑊 = 𝑋𝑇𝑌 

This set of equations are called the normal equations. 



 

So, these are called the normal equations and these are exactly the same equations, that you 

would get with the scalar approach, that is the approach with which we derived our x-bar 

formula etcetera on the last time. that is exactly what you would get with this approach also 

except it is compact and it is one general formula for every single type of model, true for every 

linear model. 

(Refer Slide Time: 22:28) 

 

A few other things about this model, I would like to say here. The first is this that let us take 

the case of a simple linear model which we did. So, the linear model that we had was 𝑦̂(𝑖) =

 𝑤0 + 𝑤1𝑥
(𝑖). So, if we look at the design Matrix capital X in this case, this is going to be, 

𝑋 =  

[
 
 
 
 
 
1 𝑥(1)

1 𝑥(2)

. .

. .

. .
1 𝑥(𝑚)]

 
 
 
 
 

 

Look at the size of x, x is an 𝑚 × 2 matrix what is 𝑋𝑇,  

𝑋𝑇 = [
1 1 . . . 1

𝑥(1) 𝑥(2) . . . 𝑥(𝑚)] 

 

Now suppose we want 𝑋𝑇𝑋. So, this of course 𝑋𝑇 is a 2 × 𝑚 Matrix. So, 2 × 𝑚 multiplied 

by 𝑚 × 2 is going to be sum 2 × 2 Matrix. Now what is that? So, let us see 𝑋𝑇, the first row 

into first column it is just a bunch of ones. I am going to write it as 1 + 1 + 1 of course it is just 

∑ 1𝑚
𝑖=1 , but I will leave it as ∑1. 

 



Next this location will be first row into second column you can see 1 × 𝑥1 + 1 × 𝑥2. So, this 

is simply ∑𝑥 or ∑𝑥𝑖 this symmetric. So, this one is also going to be ∑𝑥𝑖 the final 𝑥1
2 + 𝑥2

2 +

⋯+ 𝑥𝑚
2. So, this is ∑𝑥𝑖

2.  

𝑋𝑇𝑋 =  [
∑1 ∑𝑥𝑖

∑𝑥𝑖 ∑𝑥𝑖
2
] 

Now the equation was  

𝑋𝑇𝑋𝑊 = 𝑋𝑇𝑌 

𝑋𝑇𝑋𝑊 = [
∑1 ∑𝑥𝑖

∑𝑥𝑖 ∑ 𝑥𝑖
2
] [

𝑤0

𝑤1
] 

So, this is the 𝑋𝑇𝑋𝑊. Now we next have to do 𝑋𝑇𝑌, Y we already saw is simply, 

𝑌 = 

[
 
 
 
 
 
𝑦(1)

𝑦(2)

.

.

.
𝑦(𝑚)]

 
 
 
 
 

 

 

Now what is 𝑋𝑇𝑌 it has to be a 2 × 1 matrix. first row into First Column is simply ∑𝑦 and 

second row into first column is 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ So, this is ∑𝑥𝑖𝑦𝑖. Now notice what has 

happened this is the 𝑋𝑇𝑋 Matrix and all you got was a 2 × 2 you summed up across all these 

things and you got a 2 × 2. 

[
∑1 ∑𝑥𝑖

∑𝑥𝑖 ∑𝑥𝑖
2
] [

𝑤0

𝑤1
] =  [

∑𝑦𝑖

∑𝑥𝑖𝑦𝑖

] 

In case of a quadratic, this will become a 3 × 3. Now notice if you go back to your notes from 

the last week, this is exactly the same as before. 

 

So, this way is just a compact way. compact way means it will look like a long way. but it is 

compact way in the sense that you can do this one equation one normal equation derivation for 

every single case on earth for linear regression. So, this also is exactly the same as before. So, 

notice this. So, in general you are going to have an (𝑛 + 1) × (𝑛 + 1), if you have n features. 

So, in this case this is a 2 × 2 Matrix. 
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Now another thing about this, is x itself as an interpretation, which we will use later on when 

we move to non-linear regression. So, let us take the x matrix, I am going to write this again. 

x is 

𝑋 =  

[
 
 
 
 
 
1 𝑥(1)

1 𝑥(2)

. .

. .

. .
1 𝑥(𝑚)]

 
 
 
 
 

 

𝑌̂ =  

[
 
 
 
 
 
𝑤0 + 𝑤1𝑥

(1)

𝑤0 + 𝑤1𝑥
(2)

.

.

.
𝑤0 + 𝑤1𝑥

(𝑚)]
 
 
 
 
 

 

This is 𝑤1 should not look like w. Now if you look at the relationship between the 𝑌̂ and X, it 

is not immediately obvious but if you stare at it for a little bit longer you notice this. 

 

That the first term here one is nothing but 
𝜕𝑦̂(1)

𝜕𝑤0
. how am I saying this notice this, this is 𝑦̂(1). 

So, if I differentiate this term with respect to 𝑤0, I get one of course if I differentiate this term 

with respect to 𝑦̂(2)sorry with respect to 𝑤0, I get 1, 2. So, we I am going to write it this way 

the first term is 
𝜕𝑦̂(1)

𝜕𝑤0
, the second term is 

𝜕𝑦̂(2)

𝜕𝑤0
 and the last term is 

𝜕𝑦̂(𝑚)

𝜕𝑤0
. 

 



The next term here the next column this column you can. Now notice is 𝑥1 is nothing but the 

derivative of the first term with respect to 𝜕𝑤1 you notice the 𝑤1 coefficient is 𝑥1. So, this is 

𝜕𝑦̂(1) with respect to 𝜕𝑤1. Similarly, 
𝜕𝑦̂(2)

𝜕𝑤1
 and the last term is 

𝜕𝑦̂(𝑚)

𝜕𝑤1
.  

𝜕𝑌̂

𝜕𝑤
= 

[
 
 
 
 
 
 
 
 
 
𝜕𝑦̂(1)

𝜕𝑤0

𝜕𝑦̂(1)

𝜕𝑤1

𝜕𝑦̂(2)

𝜕𝑤0

𝜕𝑦̂(2)

𝜕𝑤1. .
. .
. .

𝜕𝑦̂(𝑚)

𝜕𝑤0

𝜕𝑦̂(𝑚)

𝜕𝑤1 ]
 
 
 
 
 
 
 
 
 

 

Overall, at least in this case, we saw that 
𝜕𝑌̂

𝜕𝑤
 with a little bit of abuse of notation this this kind 

of this Jacobian, you should have a few transposes here but we are going to this equals x. 

𝜕𝑌̂

𝜕𝑤
= 𝑋 

 

It looks at least like x, whether you want to write it as 
𝜕𝑌̂

𝜕𝑤
 we can debate but you can see that 

the differentiation of the 𝑦⃗̂ with respect to the 𝑤⃗⃗⃗ is related to the 𝑥⃗. So, these quantities have 

physical meanings and these are called sensitivities and we will use them and we are also going 

to use them for non-linear extensions in the next week. The final point when we solve for W. 

 

So, remember the equation is, 

𝑋𝑇𝑋𝑊 = 𝑋𝑇𝑌 

The way we solve for W is of course we can write the equation W is, 

𝑊 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

So, generally not a good idea to invert. In practice we use Gauss elimination etcetera. There 

are other methods too. but my point is you should not build the Matrix and kind of invert it, 

that is generally not such a great idea we will also look at alternative iterative methods later 

on. 

 

I will also show you a code later on this week, using partially this idea I am going to use some 

internal routines in MATLAB to do this. So, within this video we did a derivation of this some 

people call this also the normal equation, but it is preferable to call this equation the normal 



equation. But either way you take this gigantic Matrix as long as you have a linear model you 

can always come up with this. 

 

There are some other interesting things that are going on here, which I will come to when we 

come to the non-linear models. Now later on this week we are going to move on to certain 

variants and where all this one simple model is useful, you will see that in the future videos, 

Thank you. 

 

 


