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Welcome back. This is week three of this course on inverse methods in heat transfer. This video 

is about the so-called normal equations for linear models. These normal equations are methods, 

basically the Matrix formulation for linear regression. This Matrix formulation for linear 

regression as you can see is a compact form. Now one thing of course is, this makes things a 

little bit easier to code in the general case. remember that in the last videos we had looked at a 

linear model, we had also looked at quadratic models. 

 

So, what we will see is that we can generalize this and make the form of linear regression work 

for any polynomial and also multiple variables. I had briefly alluded to this in the last week, but 

what we will do in this video is write one single form that encompasses for all linear models. In 

the future videos for this week, we will also see that the same form can be used for things that 

kind of look non-linear, but a case can be linearized. So, let us proceed with this Matrix 

formulation. 
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So, recall what we had I will write this as a table. Recall what we had as the general linear 

model. So, what we used to do for a general linear model is just have a lot of data points and 

we would have x which is the input variable, in the case of the slab problem this was the physical 

location for example and we also had y, which is from the experiment or what I called Ground 

truth. Apart from this we also have y-hat which is the prediction from our model. 

 

So, typically the input to the inverse problem or this x column and the y column and 𝑦̂ is what 

comes after we guess for the parameters of the model w. So, we have a whole bunch of data 

points. Let us say 1, 2 so on and so forth. And I had said we could have something like m is the 

number of data points that we have or let us say in the case of our slab, that is the number of 

sensors or the thermocouples that we have. 

 

So, let us say x, I am going to write a superscript for a particular reason 𝑥1 is the first location, 

𝑥2 is the second location. so on and so forth till 𝑥𝑚 being the m-th location. Now corresponding 

to this, we have ground truth or the experimental values 𝑦1, 𝑦2  so on and so forth into 𝑦𝑚. Now 

for a linear model for example, let us say we had the simple linear model which is our usual 

model which is, 

𝑦̂ =  𝑤0 + 𝑤1𝑥 

 

So, this is the usual linear model. This case is how we predict each one of these data points. So, 

for example, 

 

 



𝑦̂(1) = 𝑤0 + 𝑤1𝑥
(1) 

and  

𝑦̂(2) = 𝑤0 + 𝑤1𝑥
(2) 

 

and in general, 

𝑦̂(𝑗) = 𝑤0 + 𝑤1𝑥
(𝑗) 

Now, you might be wondering why I am spending so, much time on this. This is because 

frequently as we go ahead these superscripts and subscripts can get quickly confusing. 

 

So, I just want to make sure that, everything is really clear to you as we proceed. So, once we 

use this. So, suppose we guess or for any given value of w, given 𝑥(𝑗), you can find out 𝑦̂(𝑗), 

that is what I meant to say. So, you can similarly find out once you know 𝑥(1) you can find out 

𝑦̂(1),  𝑦̂(2),  𝑦̂(𝑚). 

 

Then you compare these 2 and find out the error etcetera, which we did in the last week all right. 

Now what I want to do is to write this entire thing as a matrix, which is one way of thinking 

about it is given 𝑥⃗, which is all these data points, 

𝑥⃗ =  

[
 
 
 
 
 
𝑥(1)

𝑥(2)

.

.

.
𝑥(𝑚)]

 
 
 
 
 

 

I am writing this as a column Matrix 𝑥(𝑚) where each o refers to a new data point and given 

𝑦⃗which is, 

𝑦⃗ =  

[
 
 
 
 
 
𝑦(1)

𝑦(2)

.

.

.
𝑦(𝑚)]

 
 
 
 
 

 

 

and also given w. 

 

Now w for example in our case for a linear model is 𝑤0, 𝑤1 if it is a linear model. 

 



𝑤 = [
𝑤0

𝑤1
] 

If it is a quadratic model, then w is as you might remember it has three coefficients 𝑤0, 𝑤1, 𝑤2.  

𝑤 = [

𝑤0

𝑤1

𝑤2

] 

 

So, our key question is this can we write these relations, that is the relationship between x, y, 𝑦̂ 

and w using matrices. Now why do we need matrices as you will see within this video, once 

you have matrices you can generalize every single linear form of model that we will be covering 

both in the that we had covered in the last week as well as we will be covering in this week. 
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So, let us come back here and look at this model. So, the data here can Now be abstracted into 

a simple model. So, the way we are going to do it, I have done the same thing for a quadratic 

model here. this is for a linear model and this is for a quadratic model. Now notice the 

differences between the 2 and this will give you a clue on how to sort of do the Matrix operation 

in general. 

 

Now this of course you can think of a serial number here 1, 2 etcetera on the left-hand side, but 

the important thing here is that I have one column for the x and another column for the x square. 

Now why do we do this that is because 𝑦̂ =  𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 and now, you can imagine an 

Excel sheet where this whole thing is written and what you would do in that Excel sheet, of 

course is have one column for just the serial number, one column for all the x values and then 

another column for 𝑥2 values. 



 

And then maybe you can have a column for  𝑦̂ and calculate this as some 𝑤0 + 𝑤1 the first 

Column + 𝑤2 the second column. If you add a cubic model, you would again do the same thing 

except you would have one extra column for the 𝑥3. Once again this becomes obvious as I will 

go further and further within this video, on how this helps us generalize to any sort of linear 

model. 

 

So, let us look at both these cases the linear case and the quadratic case and now start thinking 

about, how to abstract this into a matrix form. So, the way I am going to do it is to define 

something called a design matrix. A design Matrix is a matrix where all rows correspond to 

input data and columns correspond to features. For now, let us forget about this second part 

which is corresponding to features and just concentrate on input data. 

 

So, if I look at this data set, the input data is purely just x, there is nothing else there. but I am 

going to make a small change here. So, for the linear case, I am going to define my design 

matrix as this capital X which consists of,  

𝑋 =  

[
 
 
 
 
 
1 𝑥(1)

1 𝑥(2)

. .

. .

. .
1 𝑥(𝑚)]

 
 
 
 
 

 

and I am going to augment it by just one a constant one everywhere here. you will shortly see 

why we add this. So, this really is here is the actual data and this we call the bias or let us just 

call it the constant term. 

 

Now why do we do this? This will become a little bit clearer, when I actually do the quadratic 

data. So, for quadratic, my X the design variable for this, it is useful for you to refer to this. 

Now look at what the data we gave was the data input data was x as well as 𝑥2. Now you might 

say 𝑥2 can be inferred from x but that is not the point, as far as the model is concerned x is has 

to be given separately and 𝑥2 has to be set even separately because it is multiplying different 

coefficients. 

 

So, let us come back here and with an analogy to the linear case, this would be one all these 

biases, then I am going to call this 𝑥1 because we have to put a square up till 𝑥𝑚 and 𝑥𝑚
2. So, 



once again this, here is the data and this here is the constant. So, far we have done nothing I 

have just written a new matrix X we can also write the size of this matrix X you can see that 

there are 1, 2, 3, 4 up till m rows. 

𝑋 =  

[
 
 
 
 
 
1 𝑥1 𝑥1

2

1 𝑥2 𝑥2
2

. . .

. . .

. . .
1 𝑥𝑚 𝑥𝑚

2]
 
 
 
 
 

 

 

And in this case, you can see 2 columns. in this case, x has m rows and it has 3 columns all 

right. Now let us look at the Matrix w. w in the linear case is, 

𝑤 = [
𝑤0

𝑤1
] 

and in the quadratic case W is, 

𝑤 = [

𝑤0

𝑤1

𝑤2

] 

Now w here is a 2 × 1 matrix and w here is a 3 × 1 matrix. So, I am going to ask a simple 

question. you can see that at the very least just by comparing the sizes, you can always do an 

operation like x times w because this is 𝑚 × 2,  this is 2 × 1, this has to be a matrix some 

matrix which will have size 𝑚 × 1. 

 

Similarly, here xw will be 𝑚 × 3 and 3 × 1 this will have some matrix here which is going to 

have size again 𝑚 × 1. So, let us now look at what this matrix XW is? Let us go back here let 

us look at XW. The very first row of xw is going to be first row into first column, which is going 

to be 1 times 𝑤0 which is 𝑤0 + 𝑤1𝑥
(1). Now what does this remind you of let me just do it 

once more, let us look at the second row 𝑤0 + 𝑤1𝑥
(2) and the last one is 𝑤0 + 𝑤1𝑥

(𝑚). 

𝑥𝑤 =  

[
 
 
 
 
 
𝑤0 + 𝑤1𝑥

(1)

𝑤0 + 𝑤1𝑥
(2)

.

.

.
𝑤0 + 𝑤1𝑥

(𝑚)]
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Now if you look at this, this is exactly what you would expect, if you were writing the elements 

of 𝑦̂. why because, 

𝑦̂(𝑗) = 𝑤0 + 𝑤1𝑥
(𝑗) 

So, this is nothing but the prediction that you will get if you put 𝑥(1) into the model. So, you are 

just going to get your model prediction 𝑦̂. So, this is 𝑦̂(1), the next one is 𝑦̂(2) and the last one 

is 𝑦̂(𝑚). So, at least in the linear case we can immediately see, that xw equal to 𝑦̂. Now what 

about the quadratic case we can again check xw is like this. 

𝑥𝑤 =  

[
 
 
 
 
 
𝑦̂(1)

𝑦̂(2)

.

.

.
𝑦̂(𝑚)]

 
 
 
 
 

 

 

Now let us notice what x is, 1 multiplying by 𝑤0 is 𝑤0 + 𝑤1𝑥1 + 𝑥1
2𝑤2, which is exactly once 

again. I will write the sound 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥1
2. Similarly, the next term will be 𝑤0 +

 𝑤1𝑥2 + 𝑤2𝑥2
2. Notice that I am moving around the subscript and superscript a little bit, just 

because we do not want to get confused with the squares and the last term will be 𝑤0 + 𝑤1𝑥𝑚 +

 𝑤2𝑥𝑚
2. 

𝑥𝑤 = 

[
 
 
 
 
 
𝑤0 + 𝑤1𝑥1 + 𝑥1

2𝑤2

𝑤0 + 𝑤1𝑥2 + 𝑤2𝑥2
2

.

.

.
𝑤0 + 𝑤1𝑥𝑚 + 𝑤2𝑥𝑚

2]
 
 
 
 
 

 



 

 

So, put together these are of course exactly the predictions of the quadratic model. So, once 

again here too, 

𝑥𝑤 = 𝑦̂ 

In general, you can see this fairly quickly, the suppose I had a cubic model and I added one 

extra column here and made that 𝑥3 and my W's went to 𝑤0, 𝑤1, 𝑤2, 𝑤3, then once again 𝑥𝑤 =

𝑦̂ . So, we can write in general for any polynomial model we can write 𝑥𝑤 = 𝑦̂ . 

 

This happens to be also the general formula for any linear model and I will show that to you 

shortly. Now let us compare sizes for a polynomial of order n. So, which means a polynomial 

of order n would look like, 

𝑦̂ =  𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 + ⋯+ 𝑤𝑛𝑥𝑛 

w itself will be of size 𝑤0, 𝑤1, up until 𝑤𝑛.  

𝑤 = 

[
 
 
 
 
 
𝑤0

𝑤1

.

.

.
𝑤𝑛]

 
 
 
 
 

 

So, this is a (𝑛 + 1) × 1 matrix because of the 𝑤0 you have n of these terms then you have this 

added term 𝑤0. So, this is (𝑛 + 1) × 1 matrix. 

 

Similarly, X is going to be 

𝑋 =  [

1 𝑥1 𝑥1
2 . . . 𝑥1

𝑛

       
       
1 𝑥𝑚 𝑥𝑚

2 . . . 𝑥𝑚
𝑛

] 

So, if you look at this x is a matrix of m rows and n + 1 columns and 𝑦̂ and y are both 𝑚 × 1 

matrices all right. So, this is what happens, when you have General polynomial model. 
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But for General linear models, we may have more input features. So, for example we could 

have a case, where we have instead of one dimension, 2 dimensional models. So, for example 

we had temperature as a function of x in one dimension, but it could be temperature of x comma 

y and since we do not want to confuse the y which is also an output variable, we are going to 

call it 𝑥1 and 𝑥2. 

𝑇(𝑥1, 𝑥2) 

 

So, instead of a slab, let us say you have a plate and you want thermocouples at a lot of places. 

you need a model which depends on both x as well as y location and of course three dimensional, 

let us say you have some semiconductor stuff like that and you have a chip and you want a 

temperature model within that of course. Now it is going to be a function of three variables. So, 

3D you will have things like 𝑇(𝑥1, 𝑥2, 𝑥3). 

 

Now let us say you have a case like this and you have a linear model. Now these things here are 

called features or attributes. It is more accurate to call them attributes but I am going to call 

them features. we of course call them in the usual language independent variables. Now let us 

say you are solving an inverse problem with not one independent variable which is the only 

case that we did till now. But we are looking at multiple independent variables what does that 

look like.  

 

So, in this case, if you have multiple features or multiple independent variables, let us say you 

have a temperature model then you could have the temperature, which I am going to call 𝑦̂ 

again, it is a hypothesis would depend on, 



𝑦̂ =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 

This would be the linear model in 2 dimensions. Notice here I have used a subscript to mean 

the dimension and not the data point, ideally speaking if you have multiple such sensors. 

 

Let us say you have seven such sensors here or eight such sensors here, then what you would 

do is, suppose I want the fourth sensor, let us say or the fifth sensor then I would say something 

like 𝑦̂(5) would be the x location of that five multiplied by 𝑤1 + the y location of 5 multiplied 

by 𝑤2 and + some extra term. So, this would be a linear model. Now what happens to a quadratic 

model? 

𝑦̂(5) = 𝑤0 + 𝑤1𝑥1
(5) + 𝑤2𝑥2

(5) 

 

So, that would be something like so, suppose we know that the temperature also has a heat 

source such that the entire thing is going to be quadratic, then you would have something like, 

𝑦̂ =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1
2 + 𝑤4𝑥2

2 + 𝑤5𝑥1𝑥2 

 𝑦̂ equal to 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1
2 + 𝑤4𝑥2

2 + a quadratic model would also have cross 

terms let us say 𝑤5𝑥1𝑥2. Now this looks like a very complicated model but luckily this is where 

our matrix formulation is extremely helpful. So, I want to point out again this is a general model 

that handles linear quadratic any type of polynomial. 

 

And it also handles multiple Dimensions or multiple features. Now how does it handle that by 

a very simple trick, let us take this expression. I am now going to call it, 

𝑦̂ =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 

where it is our understanding that 𝑥3 corresponds to 𝑥1
2, 𝑥4 corresponds to 𝑥2

2 and 𝑥5 

corresponds to 𝑥1𝑥2. Now you might say that but this is not linear. the point is it need not be 

linear in x. why because these are given data points the problem, we are solving for is the 

problem of solving for w. 

 

So, all that matters is for linear models are linear in parameters and not in features or 

independent variables. for example, when we had a simple quadratic model such as this, it was 

not linear in x but it was linear in W. So, it is only 𝑤0, 𝑤1 and 𝑤2 you do not have terms like 

𝑤0
2, 𝑤1

2, 𝑤2
2, etcetera. All you have are terms that are linear in w. When you look at this 

formula 𝑥𝑤 = 𝑦̂ the main thing here is this is linear in w, x is basically a constant matrix. 

 



So, it does not matter whether it is linear non-linear whatever. So, for example I could make up 

a model with an additional term, if I wish like 𝑤6 times 𝑥6 where 𝑥6 could be sine of 𝑥1 anything 

of that sort anything of that sort is still linear as long as you have only 𝑤6 here and not 𝑤6 square 

or 𝑤1, 𝑤2, 𝑤3, 𝑤6 etcetera as long as that is the case this model is always linear.  

 

Now the second thing is when we look at an Excel sheet or that kind of format, all you need to 

do is you need to substitute, you had x, x-square here and y here in serial number instead of that 

you will write x1 which is the x dimension then you will write x2 which is the y dimension then 

you will write x1-square as another column x2-square is another column. so on and so forth and 

you can actually make up an entire design Matrix that way. 

 

For example, in this case the design Matrix capital X is going to look like a whole bunch of 

ones and then after that, 

𝑋 = [
1 𝑥1

(1) 𝑥2
(1) . . . 𝑥5

(1)

       
       

] 

Remember these are just Columns of our Excel sheet except for this first column. this first 

column is just adding attack done just to make the matrix multiplication work well. So, after 

that this will be x1 at the first point, this will be x2 at the first point remember each one of these 

corresponds to the thermocouples. 

 

The superscript corresponds to the location of the thermocouple and the subscript here 

corresponds to our Excel sheet entry. the first 2 are simply the x location and the y location. The 

third one would be as we already know x3 was x1-square, it is the square of the location. x4 is 

the square of the y-location and x5 is x-location into y-location and then w is  

𝑤 = 

[
 
 
 
 
 
𝑤0

𝑤1

.

.

.
𝑤5]

 
 
 
 
 

 

 

And once again if you see the model, it looks exactly the same y-hat equal to x times w. why 

for example at the first point 𝑦̂ =  𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 . So, you can 

basically use this Matrix in order to write the relationship. Now for any linear model not only 

the linear model that we saw which was very simple 𝑤0 + 𝑤1𝑥 but this is through the in general. 



So, this is the general expression as I wrote pick for any linear case but how does this help us 

solve the optimization problem. 
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So, let us look at that now. so, solving a general regression problem. Now if you recall last 

week, we had 2 independent Solutions. even though there was some pattern, that we could 

notice there were 2 independent solutions for a linear case and for a quadratic case and you can 

imagine redriving it for a cubic case or for a case where you are in 2 dimensions and you have 

multiple you have 2 dimensions and quadratic or three dimensions and cubic etcetera that 

becomes more and more messy. 

 

Can we write one single expression that works for every case and we are going to do that. this 

is what is called the normal equations approach. So, our model is as follows. I am going to use 

a particular couple of notations. Notations are this, if I say some vector v this thing is called  

‖𝑣‖2. This is how we pronounce it, this part is called the norm with the double absolute sign 

that part is called Norm of V. This is nothing but all the components of V, 

‖𝑣‖2 = 𝑣1
2 + 𝑣2

2 + ⋯ 𝑣𝑛
2 

 

So, if V is a vector which goes from, 

𝑉 = 

[
 
 
 
 
𝑣1

.

.

.
𝑣𝑛]

 
 
 
 

 



‖𝑣‖2 = 𝑣1
2 + 𝑣2

2 + ⋯ 𝑣𝑛
2. Now another way of writing this is 𝑉𝑇, if V is this Matrix, 𝑉𝑇 all 

of you would be aware is basically just the transposed case. 

𝑉𝑇 = [𝑉1 𝑉2 . . . 𝑉𝑛] 

It is the row Matrix and V is the column matrix. So, 𝑉𝑇𝑉 you can now see is, 

𝑉𝑇𝑉 =  𝑣1
2 + 𝑣2

2 + ⋯ 𝑣𝑛
2 

= ‖𝑣‖2 

 under the usual is the same as Norm of V Square ‖𝑣‖2. 

 

Technically speaking you are supposed to call this the 2 Norm of this and I am supposed to put 

a subscript 2 etcetera all that I am going to skip at least for now. So, this is 𝑉𝑇𝑉. Now let us 

come to our loss function. So, the objective function or the loss function that we are minimizing 

J was, 

𝐽 =  
1

2
 ∑(𝑦(𝑖) − 𝑦(𝑖)̂)2

𝑚

𝑖=1

 

Let us call this 𝑒𝑖, where 𝑒𝑖 is the error in the ith data point. 

 

Now of course e itself is a vector, 

𝑒 =   

[
 
 
 
 
𝑒(1)

𝑒(2)

.

.
𝑒(𝑚)]

 
 
 
 

 

So, it is an 𝑚 × 1 vector. So, this e is now a 𝑚 × 1 matrix. Now what we want to do of course 

is express J also as a matrix. So, remember we had expressed x, w, 𝑦̂ all as matrices. So, J also 

we want to represent in a matrix form. Remember J of course is a scalar. So, this is half of now 

you can see ‖𝑒‖2, 

𝐽 =  
1

2
 ‖𝑒‖2 

why e is a vector and e vector are basically, 

𝑒 = 𝑦⃗ − 𝑦⃗̂ 

and each element of ‖𝑒‖2and added just like before, this v example is what is happening here. 

So, this is ‖𝑒‖2 and which we just saw ‖𝑒‖2is nothing but half of 𝑒𝑇𝑒. 

𝐽 =  
1

2
 𝑒𝑇𝑒 

 



So, another way of writing J is to say J is 𝐽 =  
1

2
 𝑒𝑇𝑒. Now opening up e, this is half of  

(𝑦 − 𝑦̂)𝑇(𝑦 − 𝑦̂) and we can open this up further. This is half of let us take each term 𝑦𝑇𝑦 

minus the second term 𝑦̂𝑇𝑦, minus the third term 𝑦𝑇𝑦̂ and the final term which is plus of 𝑦̂𝑇𝑦̂. 

𝐽 =  
1

2
 (𝑦 − 𝑦̂)𝑇(𝑦 − 𝑦̂) 

𝐽 =  
1

2
 (𝑦𝑇𝑦 − 𝑦̂𝑇𝑦 − 𝑦𝑇𝑦̂ + 𝑦̂𝑇𝑦̂) 

 

So, these are the four terms this is of course equal to J. how is this useful I am going to take one 

further step. Remember that we have a model for y-hat we had the model this of course is an 

entire vector 

𝑥𝑤 = 𝑦̂ 

So, 𝑦̂ is equal to x times w. we can also write, 

𝑦̂𝑇 = (𝑥𝑤)𝑇 = 𝑤𝑇𝑥𝑇 

𝑦̂𝑇, which occurs in a couple of terms 𝑦̂𝑇 = (𝑥𝑤)𝑇 = 𝑤𝑇𝑥𝑇  . 

 

So, we are going to substitute these expressions here and write them out now. So, J equal to half 

of I am going to use capitals here to indicate that they are vectors; vector signs would get a little 

bit messy. 

𝐽 =
1

2
(𝑌𝑇𝑌 − 𝑊𝑇𝑋𝑇𝑌 − 𝑌𝑇𝑋𝑊 + 𝑊𝑇𝑋𝑇𝑋𝑊) 

 𝑌𝑇𝑌, minus 𝑌̂𝑇 which is minus 𝑊𝑇𝑋𝑇𝑌, that is this term here, then the next term minus 𝑌𝑇 

times 𝑦̂ is just xw. And the final term is 𝑦̂𝑇𝑦̂ which becomes + 𝑦̂𝑇 is 𝑤𝑇𝑥𝑇 and 𝑦̂ is xw. 

 

So, remember this is 𝑦̂. So, this is what we wish to minimize. So, what we wish to minimize, 

the minimization problem is minimize J with respect to all possible values of w. Now remember 

J is a scalar. So, it is only one function which we are minimizing but w is a vector, it is a vector 

of values which goes from 𝑤0, 𝑤1 up until 𝑤𝑛. So, n we will treat us in general the number of 

features and m in general as the number of data points. This is the notation that we will be 

following. 

 

Now this is the giant function, it does not look like we have simplified it looks like we have 

complicated things but as you will see this actually simplifies things. Now although in the 

beginning of this video, I started out saying that we will do our normal equations. This video is 



already a little bit long this is the objective function we want to minimize. And in the next video 

I will start with the subjective function and minimize this with respect to w. So, see you in the 

next video, Thank you. 

 


