Mechanics and Control of Robotic Manipulators
Professor Santhakumar Mohan
Department of Mechanical Engineering
Indian Institute of Technology, Palakkad
Lecture 45
Kinematic and Dynamic Models of a Mobile Robot Using DH Approach

Hi, welcome back to Mechanics and Control of Robotic Manipulator. This particular lecture is
like slightly different because we are taking the mobile robot and we are like trying to derive the
equation using what we have learned so far. So, what we have learned the robotic manipulator is
a; you call multibody approach then the Denavit Hartenberg approach we have used for even
deriving the kinematic and dynamic level. The same philosophy we are trying to use it for the

mobile robot that to like land based mobile robot how that would be work here.

(Refer Slide Time: 00:47)

Mabile robot

)

So, in that sense what we are trying to intend here. So, the kinematic and dynamic model
derivation of a land based mobile robot using Denavit Hartenberg approach. So, in that sense we
are trying to see how to derive a kinematic model that to up to velocity level then we will come

back to the dynamic model then we will end with the dynamic motion control.

So, if that is the case what we can see. So, the mobile robot I can show as a small you can say
rectangular box because it is a land based so, it can be plotted as a small you can say planar
object. So, now even we can like take it in a mechanics point of view it is a planar joint. So,

planar joint means it is like two, translation and one rotation would be possible.

So, now if | assume that there is an inertia or you can say inertial frame which 1 call I, so, this
inertial frame I, I consider as the reference can I like a refer the mobile robot. So, obviously yes,
but in this case, there are n number of points within the mobile robot how we can like choose.
So, for that we assume that there is a body frame which is associated with the body or the mobile

robot, which is consist of xb yb and zb are the coordinates or you can say coordinate frames.

So, now can | like define it yes, we can do this simple you can say the spatial description manner
where we can consider the rotation about you can say rotation of B with respect to | we can write
as a rotation matrix of B with respect to | and the position vector of B with respect to | we can
write and then we can come back with the transformation matrix and then so on so, we can do it,

but if that is the case, so then you can see like the derivation of what we have come up with here

is not possible because that is straight away everything is a rigid body basis, but we talk about

what you call Denavit Hartenberg.

So, there are several constraints are coming. What are the constraints? So, you can see like
Denavit Hartenberg say that every link should be a binary link in the sense only two joints are
possible for one body, but in this case it is like three joints that to like one you take one body, so,

ground to one then one to one like that it keep goes but here it is not like that.

So, second consideration every joint supposed to be one DOF joint but it is a planar joint. So,
obviously you have to do some kind of modification for the frame arrangement. So, we cannot
take it straight forward like RB with respect to | and PB with respect to | that may not work in

Denavit Hartenberg approach.

So, for that what we are trying to do we are trying to bring the coordinate what we need to know.
So, here you can assume that inertial frame to body frame which is like we can write as a
position vector which is nothing but x and y because it is in a plane in addition to that the zb you
can see and zi are, you can say parallel, but the xb and xi are like non parallel that angle what we

call heading angle or you can say yaw angle whatever you can call it.

So, which is like come as a psi so now if you talk about the coordinates or the variables in terms
of Denavit Hartenberg so, in the sense here there are three joints. So, one is actual like x
translation joint y translation joint is the second one and the z axis rotation is a third joint. So,
now, we want to write it this in the Denavit Hartenberg approach or for that first we have to draw

the frame arrangement.

(Refer Slide Time: 04:14)

Mobile robot

So, how we can do the frame arrangement | can see that there are two translations, and one
rotation is coming. So, | can assume that. So, in order to make it their life comfortable or life is
easy, | assume that y axis translation as the first joint which is z1 and the x axis translation | take
it as a z2 which is second and the third axis eventually it is end up with the body frame which is |

am considering as the z3.

So, z3 is like a coincident with the B so these are the three joints which are active. So, now what
| am trying to see from the inertial frame, which | assume that this is the inertial frame from the

inertial frame, how this goes one to another. So, now | want to derive as a Denavit Hartenberg

approach. So, for that what we need to know. So, you need to know like where the x axis coming
so, the x axis I can like make it the first x axis which is x0 or xi can be written in that way so
where it would be the perpendicular to the plane containing z0 and z1 this is what we learned.
So, in that case what you can draw you can like draw this line.

So, which is like the plane containing you can draw. So, in that sense you can see this is the, you
can say forward direction of x0 or xi. So, once you obtain the same way you can go for x1. So,
the plane containing z1 and z2 the perpendicular to that so, it can come upward or downward |
took it as upward direction as x1. So, similar way you can go z3 and z2 are a plane containing on
the screen. So, now the plane piercing probably the x2 are coming out what can be x2 | have
taken coming out as the x2, now x3 | can choose as per my own because there is no proceeding

link. So, I can choose as simple where it is parallel to x naught.

So, in the sense x3 and xb are parallel. Now, coming to the screen where we can like see the
same thing what we derived | put it here just to derive the Denavit Hartenberg parameter. So,
here there are three variable y x and psi. So, now based on this what I can derive | can derive the
Denavit Hartenberg parameter we can like see again alpha k minus 1 in this case alpha 0. So,
alpha 0 is like rotation about x0 where z0 parallel to z1. So, you can see this it is like rotate 270
degrees that is why it is 3 pi by 2. Further you can see that the theta, theta k in the sense theta 1
here. So, you can see like x1 and x0 are like you can see minus 90 or 270 degree rotation about
z1.

So, like that you can like derive all other you can say joints where 2 and 3 once you derived what
you can do you can like go back you can say MATLAB or you can write it in the arm matrix and
you can derive the individual transformation matrix and then you can like multiplied you can say
post multiply and you will get the final kinematic model then you can go with the you can say
angular velocity and the linear velocity then you can get the differential kinematics. So, for that
what we are trying to do we are trying to do the MATLAB base which is we have seen in the

very second week of the course. So, that is what we are trying to show here.

(Refer Slide Time: 07:28)

Wh Kinematic and dynamic model of a mobile robot

clear all; close all; clc
*% Define symbolic variables
syns alpha d a theta

% state variables

syns pel x y peidot xdot ydot xddot yddot psiddot real
 nunber of joints of a planar RPR manipulator
N=3;

So, in the sense we are trying to derive the kinematic and dynamic model together. So, first we
are writing the general DH parameter which is alpha d a theta. So, further based on this particular
system, so, it would be having psi psi dot psi double dot then x x dot x double dot y y dot y
double dot which we have written here. So, y double dot we have written as y ddot or you can
say d dot so similarly, x double dot | have written as x ddot psi double dot like written psidd dot
like that and here how many joints so there are three joints excluding ground are excluding 0 it is

like three joints.

(Refer Slide Time: 08:10)

. end
' 4

%% DH Parameters of the mobile robot
DHTABLE = [3+pi/2,0,3¢p1/2,y;
3epi/2,0,p1/2,x;
pif2,0,pi/24psi 0]
%% The general Denavit-Hartenberg transformation matrix
TOH =[cos(theta), ~sin(theta),0,a;
ein(thera)+cos(alpha) ,cos(theta)scos{alpha),...
-gin(alpha) ,~d*sin(alpha);
sin(theta)+sin(alpha),cos(theta)*sin(alpha),
cos(alpha) ,decos(alpha);
0,0,0,1];

%% Build transformation matrices for each joint

A = cell(l,N);

for § = 1:N
alpha = DHTABLE(1,1);
a = DHTABLE(1,2)
theta = DHTABLE(1,3);
d = DHTABLE(1,4);
A{i} = suba(TOH),

end

¥4 Direct kinematics
T = eye(d);

for i=1:)

= TeA{i};
simplify(T);

"

%% Transformation matrices

TO1 = simplify{A{1})

T12 = sinplify(A{2})

T23 = sinplity(A{3})

%% Transformation matrix of the end frame

% with respect to base frame

TON = T % output TON matrix

% Position vector

p = simplify(T(1:3,4)) % output ON position
%% Orientation vectors

n=T(1:3,1) % output xN axis (normal vectar)
o = T(1:3,2) % output y¥ axis (sliding vector)
a = T(1:3,3) %output 2N axis (approach vector)
%h end

¥ Velocity kinenatics
RO1 = A{1}(1:3,1:3);
POl = A{1}(1:3,4);

R12 = A{2}(1:3,1:3);
P12 = A{2}(1:3,4);

R23 = A{3}(1:3,1:3);
P23 = A{3}(1:3,9);

%% Angular velocity propagation
w0 = [0;0;0];

¥l = RD1'e(v0) ;

2 = R12'«(v1) ;

3 = §23'0(v2) + [0;0;paidot] ;
% end-effector angular velocities w.r.t. base frame
»03 = RO1+R12+R23+ w3

-

%% Linear velocity propagation

vO = [0;0;0);

vl = RO1'#{vO+cross(w0,701)) + [0;0;ydot];
v2 = R12'#(vi+cross(w1,P12)) + [0;0;xdot] ;
v3 = R23'e(v2+cross(wz, P23)) ;

% end-effectortlinear velocities w.r.t. base frame
v03 = simplify(RO1*R12¢R23+v3)

%% Dynamic model
% location of centre of mass of links
syns xbe ybe m Icz real

Ped = [xbe;ybe;0];
)
010 b|
2 001 yf
v 1000
0001
0 1 |:I 0
0 0 1
'T 1 0 0
0 0 01
sn(v) os{e) 0]
" 0 0 1 0
T cos sinfer) 0 0
0 0 1
cos(v) —sin{e) 0]
or 0T iT? sin (1)4 cos(v) 0 y
31 =1 13T 4T 9 0 {0
0 0 01
®

So, based on that we can write the DHTABLE which we have obtained there so, we have
incorporated that DHTABLE then we can like see what you call the general Denavit Hartenberg
which is we call nonstandard one that is we have returned it here. So, then you can see like we
are building the transformation matrix for each joint we are substituting individual DHTABLE
row wise substituting into the individual transformation matrix then that would be you can say

freezing it into a cell.

So, here the cell, which is A so, A is consist of three sub cells. So, that is what we call A of i
within the braces. So, based on that what we can do we can do the direct kinematics, direct

kinematics in the sense forward kinematics which is nothing but post multiply with the further

matrices there is TO1 first then T12, T23 like that you can keep extending. So, that is what we
have done here based on the, for loop you can see like this is like doing it. So, once this is done
what you can do is so, you can like first identifies the individual transformation matrix TO1 then
T12, T23 after that you are trying to find out what is T03. So, TO3 here | have written as TOL.

So, then you can see the position vector and the orientation vectors all coming into a picture.
Once this all done what we can do we can go for velocity kinematics for that you need to know
individual rotation and position vectors. So, that is what we have obtained here. So, once we

obtained this then we can use the angular velocity propagation.

So, which is like straight forward here you can see the first two joints, or you can say linear joint
then it is very simple. The third joint is like rotary that is also we have done. The same extension
we can do it for the linear velocity propagation. The first two joints are linear joint you can see

that y dot and x dot is added here and then we can go cross.

So, similar way we can find the end effector velocity and angular velocity and linear velocity.
So, once these done we can go the same way for the angular acceleration propagation and what
you call velocity propagation before that, | just want to plot what is the individual matrices and
what is the final end effector convey position with respect to base which is fulfilling. You can
see the position vector x and y and the orientation which is like psi if you take the tan inverse

then you can see psi is the case which is the orientation angle about the z these all like fulfilled.

(Refer Slide Time: 10:41)

%4 Dynamic model

% location of centre of mass of links
syns xbc ybe m Icz real

Ped = [xbe;ybe;0];

%% Angular acceleration vectors

al0 = [0;0;0];

all = Ro1's(ald) ;

al2 = R12'+(all) ;

al3 = sinplify(R23’+(al2 + cross(vg, [0;0;psidot])) + [0;0;psiddot])
1103 = sinplify(RO18R12¢R23a13)

2 e

%h Linear acceleration vectors

a0 = [0;0;0];

al = RO1'#(aD+cross(al0,P0i)+cross(wd,crosa(v0,P01))) ...

+ [0;0;yddat] + cross(wi,[0;0;ydet]);

aZ = R12'«(al+cross(all,Pi2)+crose(vl,crosa(vi, P12))) ..,

+ [0;0;xddot] + croes{v2,[0;0;xdot]);

a3 = simplify(R23’» (a2+cross{al2,P23) +cross(vw2, crosa(v2,23))))
203 = eimplify(ROI*R129R23+a3)

%% Linear acceleration of cen$re of mass of links
ac3 = ad + cross(ald,Pcd) ¢ cross(w3,cross(vw3,Pcd));
%% Inertial forces of the links

F3 = p*acd;

I3 = diag{[0;0;1cz})

K3 = I3¢a13 + cross(w3,13ws3);

2 =

v,

So, now what one can see we want to derive the dynamic model. For deriving dynamic model
what you need to know, you need to know the angular acceleration, the linear acceleration and
the centroidal linear acceleration. So, we will do the forward propagation for finding the

centroidal linear acceleration you need to know the centroid and location.

So, here there is only one body exists. So, although we have taken three virtual links, but only
one physical link is there, so in the sense the centroid, we consider only that third body where the
B frame and the centroid is like away, we assume xbc and ybc is the; you can see x-axis and y-

axis coordinate.

So, based on that, we can like derive the, what you call the linear velocity propagation in the
forward. So, in this sense, first we calculate the angular velocity. So, the angular velocity you
can see like you have you can see the cross product which is like coming as what you call simple
gyroscopic effect and then you can see the angular acceleration of that particular joint. So, like

that, you can do it. so, now coming back to the linear acceleration.

So, linear acceleration is like straight forward where you can like do it al, a2, a3. So, once you
obtain then you can like go back the centroidal linear acceleration here the third body, so that is
what we can like to do it here. So, now, | hope once you calculate the centroidal linear
acceleration. So, what one can like expect the inertial force, the inertial effects, you need to like

come back.

So, the inertial effects what you have, so here you have inertial force and inertial moments. So,
what are the inertial force and moments so, F3 which is like m3 multiply with the ac3, where m 3
here only one body, which is like you can see, which is just m and here we assume that it is in a
plane. So, in that sense, it is having only centroidal moment of inertia that too z axis only second

moment of inertia only there the product of inertia we assume to be 0.

So, then you can see the inertial moment we can calculate once you calculate then you go across
the joint forces, the final joint does not have anything else because there is no end effector added
in the sense F3 would be simple inertial force, whereas n3 would be small n3 would be capital
N3 plus this what you call 3, which is acting on the centroid, that would be generate the couple

and when we come backward.

So, you 2, f1 and fO can be calculated in this way, because it comes from all the cases since
there is no body physical body. So, that is why it is just a transpose, or you can see just the

rotational operator added.

(Refer Slide Time: 13:27)

#4 Joint forces
3 = F3,

12 = R23 » {3 ;
fl = R12 » {2
fO = RO1 « {1,

%% Joint moments
nd = N3 + croea{Pc3, F3);
123,R23413)

nl = R12 ¢ n2 + cross(P12,R12¢12) ;

n2 = R23 * n3 + cros

n0 = RO1 ¢ nl + cross(PO1,RO1+£1);

)

So, the similar way you can come to the joint moment. So, n3, | said small n3 is a capital n3 plus
the moment are the couple generated by the inertial force, then you can come backward n2, nl
and n0, where fO and nO are the shaking force acting on the ground of the body. Similarly,
shaking moment acting on the ground based on the body motion.

So, now we will go to the input vector. So, here we have to like to get the first two joints are like
linear joint then the forces the third component of the force would be equal to taul and tau2 the
tau3 is like the rotational. So, moment third component would be tau3 but what you can write Fx,
Fy and Mz you are to write, but here the tau 1 is equal to Fy and tau 2 equal to Fx.

(Refer Slide Time: 14:19)

%4 Vector of inputs

taul = sinplify(f1(3))
tau2 = sinplify(£2(3))
taud = simplify(n3(3))

%% Dynamic model in state-space form
¥=simplify(equations¥oMatrix([tau2;taul;taud], [xddot;yddot;psiddot]))
n_v=simplify([tau2;taul;tau]-Ms[xddot;yddot;psiddot])

2 e |

ey iy g ————r—

1 t% Kinematic and dynamic model of a mobile robot g
2 clear all; close all; clc

3 £t Define symbolic variables

4 syms alpha d a theta

5

6 syms t vd
-

8 N=3;

9 %% DH Parameters of the mobile robot
10
11 DHTABLE = [3*pi/2,0,3*pi/2,y;
12 3*pi/2,0,pi/2,%;

13 pi/2,0,pi/2+psi, 0
14 §% The general Denavit-Hartenberg t

ST ST RS
tn n
~ «<
= =

= @» 7
™y bt
» D
o a
v

v
)
r
o
.

o
1]
-
-

9 %% DH Parameters of the mobile robot

11 DHTABLE = [3*pi/2,0,3*pi/2,y;
12 3*pi/2,0,pi/2,%:
13 pi/2,0,pi/2+psi, 0]

§% The general Denavit-Hartenberg tra

22 for i = 1:N

23 alpha = DHTABLE(1,1);
24 a= DHTAELE(:,Z);

25 theta = DHTABLE(i,3);
26 d = DHTABLE({1,4);

27 Ali} = subs(TDH):

(1]

end

%% Direct kinematics

W NN
o

0 T = eye(4);

3l

32 for i=1:N

33 T = T*A{1);

34 T = simplify(T);
39 and

|€’)

b ~ Py ————
e ———r—y
55 £t end
56 §% Velocity kinematics
57
58 RO1 = A{1}({1:3,1:3);
59 PO1 = A{1}(1:3,4);
60

o

A{2}(1:3,1:3);
P12 = A{2}(1:3,4);

[P O

oy o

64 R23 = A{3}({1:3,1:3);

635 P23 = A{3}(1:3,4);

66

67 ¥ Angular velocity propagation

N
vt =
85 it Dynamic model
86 101 antl
87 syms xbc ybc n‘. real
88 Pc3 = [xbc;ybe; 0]
89 §% Angular acceleration vectors
9 al® = [0;0;0];
9] all = RO1
52 al2 = R12
93 3l3 = simplify
94
95 3103 = simplify(R
9% %% Linear acceleration vectors
97 3
98 al =
i

103 %% Linear acceleration of centre of mass of links
104 acd = a3 + cross(al3,Pc3) + cross{w3,cross(w3,Pc3));
105 §% Inertial forces of the links >
106 F3 = m*ac3;
7 I3 = diag([0;0;Icz]):
108 N3 = I3*al3 4 cross(w3,I3*w3);
109 %t Joint forces
10 f3=F
111 f2 ;
112 fl ;
113 f0 = R
114 £% Joint moments
115 n3 = N3 + cross{Pc3,F3)
116 nZ = R2 3 + cross(P23,R2
D)

So, we have to like modified before modifying you can see like the dynamic model we can write
it in a state-space form in this way, where we can use the simple MATLAB command equations
to matrix, where we can like take the coefficient of this x double dot y double dot, and psi double
dot and you can see like | have interchanged already this is Fx this is Fy and this is Mz the same
way we can like make it n vector where this multiply with this would be the coefficient and M
that would be subtracted that would be the other effort.

| hope now you are like clear so we can like go to the MATLAB and then you can like see. So,
now we come back to the MATLAB window. So, you can like see this is what we have seen. So,

initially just to make comfortable everything is like clear, then we are like defining the individual

transformation matrix you can say variable alpha d a theta, then you can see the state variable

depend on the system.

So, here you can say psi, X, Yy, psi dot, x dot all those things are coming and as per the
DHTABLE we have written all the cases whatever we have obtained based on the frame
arrangement, this is the DHTABLE then we can like get the non-standard then we can like come

back with what you call the individual transformation matrix.

Then you can get the final direct kinematics and | want to show this then you can see like the
final position vector and orientation vectors all I am trying to show then coming to the velocity
kinematics for the individual rotation and position vector supposed to be known. Then the
angular velocity propagation then the linear velocity propagation we have done then we are

coming back to the centroidal linear acceleration for that we are coming back this.

So, here we have added the, you can say inertial effects. So, then we are coming to the angular
velocity propagation. So, then the linear velocity propagation then the linear acceleration of the
center of mass then we are coming back to the inertial force and moments. So, here only you can
see you F3 and N3 would be coming, then the joint forces we have calculated as such, then the
joint moments, then we can like get the tau 1, tau 2, tau 3 then we can rewrite the M and n v like
this.

(Refer Slide Time: 16:57)

‘

“Dyn_control RR_
“Dyn_control RR_
“Dyn_control RR_
“Dyn_control_RR_
“Dyn_control RR_
“Dyn_control_RR_-
“Dyn_control RR_

“Dyn_control RR__~
“Dyn_control RR _-
“Dyn_control RR__
*Dyn_control RR_—

yddot
“Dyn_control RR |
“Dyn_control RR_— :
“Dyn_control RR__.
At = taul =
“a 3
) -m* (psitidot*ybc*sin(psi) -

]

3
0 | psiddot*xbc*cos(psi) - yddot +

1 psidot*2*ybc*cos(psi) + psidot®2*xbc*sin(psi))
T

“Dyn_control RR__"
“Dyn_control RR
“Dyn_control RR_—
“Dyn_control RR_—
“Dyn_control RR -
“Dyn_control RR_—
“Dyn_control RR__.

-m* (psiddot*ybc*sin(psi) -

cos(psi) - ydde
psidot*2*ybc*cos(psi) + psidot*2*xbc*sin(psi})

“a e tau2 =
A ll.j

£a0 [0 ﬂlNuwvH“”SP"<m“*
xbc*sin(psi) + psidot*2*xbc*cos (psi)

{’) 1+ frpsidot*2*ybc*sin (psi)l

o -
EKETETEEE——_—— @00 e
o% o 5L 0 i ® i & Settep @ Laen b .

e—mae

; . taus =
“Dyn_control RR_.

“Dyn_control RR_-
“Dyn_control_RR -
“Dyn_control_RR_.
“Dyn_control RR_
“Dyn_control_RR_-
“Dyn_control RR

neiddat tuvhetrac ingt
-m* (psiaqaot*yi SIPSL

A X
*a03 3x1

“Dyn_control RR._.
“Dyn_control RR_-
“Dyn_control RR_.
“Dyn_control RR_
“Dyn_control RR_
“Dyn_control_RR_-
“Dyn_control RR

So, now if I run this, so what | can do, you can see like if I run this, so | will get a benefit. So,
just to show that I am just skipping to the, what you call MATLAB window. You can see like
these are the output which we are like obtained. So, you can see like this is the individual

transformation matrix.

This is a DHTABLE and this is the individual transformation matrices and this is the final end
effector matrix with respect to base frame and this is the position vector and this is the you can
say normal sliding and you can see approach vector and this is the final or you call end effector
angular velocity with respect to base and this is the end effector linear velocity with respect to

base and this is the end effector angular acceleration with respect to base.

And this is the end effector linear acceleration with respect to base. So, like that, you can like get
it then you can get the tau 1, tau 2 and tau 3 these are the three values which we needed, but this
is equal to Fx, this is equal to Fy and this is Mz. So, then we derived the, you call inertia matrix
and then we have like get the other effects or other vector which is like you; even you can do it
in Newton Euler approach with the rigid body method the same equations, which will get the
same thing we derived it here. So, now we will go back to the MATLAB window itself. So,
where we are trying to show the dynamic model so for that, | will just show the slide then we can

get understand.

(Refer Slide Time: 18:15)

m U M Yoe COS L = Xp SN YY)

Mi(q) 0 m m (X COSE — v Sin 1Y)

m(ys COS be SINV) m(x cO Ve SNt n(xt +yi) + b

[~m Npe COS 1 Vhe SIN L)
n(q.9) = | —mi? (yae cOs 1! + X SiNDY)

0
Miq) g+ nig.q) =7
+

9

m
Miq) 0
m{yse COS Y + Xpo SiNVY) m(xp, COSE
~m? (Xpe COS U — Yae SN)
n{q.q) mi? (yae COS ! + Xpe ST
0

Mig) g+nig.g) =7

F, =mx — mg! (. cose + xp 50 v')

M (Xpe COS U — yae SIN YY)

Fy =my + me>(xpe COS 1~ ype sin ')
) \ 1
M (Vg CO5 1V + N SN YY) (1)
A' my | Ve COS L + Xpe SIN :

= my | Xpe €051

Vi SN EY)

q=Mq) " [r-nq.q)

Computed-tou?ue control

T=M(q) \% ~K,q+Ksq| +n(q.q)

q- 9 -9 Q : ‘b
PD control

"‘KFQ'an

q

0

m

VocSint)

m(Ype COS L + X SINYY)
m (X COS T — e SIN YY)
3 v {
m (X + ¥ie) + ke

The cubic (third-ceder) polynomial function with wia point. In
this case, the trajectory has two segments

Fort=1t5tot,
x(t) =ag + a1t - tz) + 2t - &) = a1t
¥(t) =3y + 23t — &) + 3a(t - 1p)°
"l::l :3] T 'JJ;!Y' f.=
+

Fort=1t, to t;
x(t) =by + by(t = t,) = balt — t,)° + bt
x(t) =by + ba(t - t,) + bas(t — t,)°
x(t) =bay + bay[t - t,)

So, these are the outcome, so, these outcomes like can be written as the M of g and n of g comma
g dot and this is a way, we can write the final dynamic model. So, once you derive the dynamic
model what we wanted, we wanted the control aspect. So, before that, I just want to show what is

Fx what is Fy and what is Mz.

So, these are the values which you can like see it which we have derived in the MATLAB even
you can do it in by hand, but MATLAB is easy that is what we have seen in the regular course.
So, based on that, we can go for the control aspect. Even before that you want to make a dynamic
model then this is a dynamic model relation where g double dot double integrate you will get g,
but now we are interested in the control aspect. So, in this sense, if | see the tau based on the

desired and the model parameter, this is the case.

So, now we can try even two different controls just for demonstration you can see the computed
torque control we can use which is very popular in our course. Similarly, the PD control is other
popular. So, here there is no gravity coming that is why it is a simple PD control because it is a
land based mobile robot. So, based on that what we wanted, we wanted to write a controller

code.

So, we can like see for that there are several segments, | just want to show one simple segment
where we are like having a via point. So, if it is a via point what you can see there is two

segments will come. So, individual segment we can do it in that case, even in the motion

planning or trajectory generation we have seen there are two sub cases, one is with the via point

velocity specified then it is a two independent segments.
(Refer Slide Time: 19:57)
Trajectory 1: The cubic (third-order) polynomial function with

via pomt's velocity specified
The general situation, where t; =0

1 0 0 0 [a9]
0 1 0 0 EN
¢ £ o
0 +1 3 N
1 0 0 0 by
0 1 0 0 b
L (tr-t) (=80 (=00 &
0 1 2tr-t) -t L&)

)

Trajectory 2:The cubic (third-order) polynomial function with
via point's velocity not specified

a) =X
3 =X

a+ aty - to) + axlt, -) + ayfty - o)’ =x,
by =¥,

T ' 2 3
by+ by(ty = t) + bolty = &) + balty = 8,)° =x
by + 2bafty —) + 3u(ty — 8,) =
3 + 2ty - to) + 3ay(ty — to)* =by
2&1 +6as(t, ta) =2y

(3)

The general situation, where t; =10

9

function tc = Cubic_via_mr2(x_0,x_f,x_0_dot,x_f_dot,xv,tf,tv)
%h Coefficient matrix, A
A=(1,0,0,0,0,0,0,0;
1,0,0,0,0,0,0;
BN BN, N8040 5.0,:03
31005500005 1590157045703
0,0,0,1, (tf-tw) , (tf-tv)2, (t.f-tv)

s

0,0,0,0, 1, 2(t_f-t_v) , 3s(t_f-t_v)"2
y 1,2ty 34 ¥v2,0,-1,0,0;
0,0,2,6stv,0,0, -2, 0];
%4 known imputs
b=[x0; x0dot ; xv;xv;xf,;xfdot; 0;
%4 Trajectory coeeficients
tc = inv(A)*b;
ba end

Y,

O O O O - O

%% Dynamic model of a gemeralized mobile robot
% (land-based)in inertial frame
clear all; clc; close all;
W4 Simulation parameters (Euler’s method)
dt = 0.1; J step size
ts = 60;) total simulation time
t = 0:dt:ts; % span 0,0.1,0.2,...,9.9,10.
%% PhysTcal parameters
m = 30;
Icz = 0.1;
xbc = 0; ybec = 0
% Initial conditions
q0 = [0;0;0); ¥ initial conditions
qdot0 = [0;0;0];
(:,1) = q0;
(E)Z_dot(:.l? = gdot0;

'

W Trajectory details

% Trjectory boundary conditions (known)

tv =1ts/2; t.f=ts; x_v.dot =0; y v dot =0;
x.0=0; x.¥v=2; x 1= 0; x_{_dot=0; x_0_dot=0;
y.0 = 0; y.v =2; y.I= 4; y_f_ dor=0; y_0_dot=0;

%4 Trajectory details

% Trjectory boundary conditions (known)

tv = ts/2; t.f = ts; x_v.dot =0; y_v_dot = 0;
x.0=0; x.v=2; x 1= 0; x_{_dov=0; x_0_dot=0;
y.0=0; yv=2; yi= 4f'y_$_dot=ﬂ; y_0_dot=0;
%% Trajectory with via point's velocity is not specified
tcx = Cubic_via_nr2(x_0,x_f,x_0_dot,x_f_dot,x_v,t_f,t_v);
tey = Cubic_via ar2(y 0,y_f,y 0_dot,y_f dot,y_v,t f,t

% Trajectory details

% Trjectory boundary conditions (known)

tv =1ts/2; t.f=ts; x_v.dot =0; y_v_dot = 0;
x.0=0; x.v=2; x 1= 0; x_{_dot=0; x_0_dot=0;
y.0 = 0; y_v = 2; y_f= &Fy_f_dor=0; y_0_dot=0;

%4 Trajectory with via point’s velocity is not specified
tex = Cubic_via_mr2(x_0,x_f,x_0_dot,x_f_dot,x_v,t_f,t_v);
tcy = Cubic_via_nr2(y 0,y_f,y 0 dot,y_f dot,y_v,t f,t v),

%k Trajectory with via point's velocity is specified
tex = Cubic_via mri(x _0,x_f,x_0_dot,x_f dot,x_v,x_v_do
tcy = Cubic_via_ari(y 0,y_f,y_O_dot,y_f dot,y_v,y_v.d

o

Wh Trajectory details

% Trjectory boundary conditions (known)

tv = ts/2; t.f = ts; x_v.dot =0; y_v_dot = 0;
x.0=0; x.v=2; x.1=0; x_{_dot=0; x_0_dot=0;
y.0 = 0; yv = 2; y_f= 4} y_f_dot=0; y_0_dot=0;
%4 Trajectory with via point’'s velocity is not specified
tex = Cubic_via_mr2(x_0,x_f,x_0_dot,x_f_dot,x_v,t_f,t_v);
tey = Cubic_via mr2(y 0,y f,y O_dot,y_f _dot,y v,t f,t v);

%k Trajectory with via point’s velocity is specified

tex = Cubic_via_mri(x _0,x_f,x_0_dot,x_f_dot,x_v,x_v_dot,t_f,t_v);
tcy = Cubic_via_mri(y_0,y_f,y_O_dot,y_f_dot,y_v,y_v_dot,t_f,t v);

h Circular trajectory details
rx=3; ry=3; wx=0.2; vy = 0.1;

2 e en |

for 1 = 1:1ength(t) YNumerical integration starts here

if t(i)<t_v X Desired values based on Cubic polynomial

x(1) = [1,8(1),t(1)72,t(i)"3)stex(1:4);
xdot(i) = [0,1,2%t(i),3=t (i) 2] etcx(1:4);
xddot(i) = [0,0,2,6+t(P]stcx(1:4);

y(1) = [1,t(1),v(1)"2,t(i) "3]*tcy(1:4);
ydot(1) = [0,1,2+t(1),3st(i) 2] stcy(1:4);
yddot(1) = [0,0,2,6+t(1)]*tcy(1:4);

else

x(i) = [1,(e(i)-t_v), (e(i)-t_v)"2,(t(i)-t_v
xdot(i) = [0,1,2¢(2(1)-t_v),3=(t(1)
xddot(i) = [0,0,2,6¢(t(i)~-

y(i) = [1,(e{i)-t_v), (t(i)-t_v)"2,(

ydot(i) = [0,1,2¢(t (i)t v),3s(t(i)-t_v) "2 stcy(5:8);
yddot(i) = [0,0,2,6+(t(i)-t_v)]stcy(5:8);

)= R —

So, that is what we can like see where the via are point velocity specified? So, this is the
equation which we have derived that can be portrayed in MATLAB. So, this is the way we can
portrait. Similarly, the trajectory two which is like you can write as a third order polynomial, but
you can see via point velocity is not specified. So, then you can see this will you eight cross eight
and eight unknowns and then you can do it the same way we can like write it in a MATLAB

code.

So, these all like we have done then what we can do even some cases we want to do the; you can
say simulation we can like make it this. So, for that you can see the same Euler method we have
used the vehicle mass is 30 kilograms and all other cases we have given, and you can see these
are the trajectory generation for that we have considered the you can see trajectory boundary

conditions.

And then this is the first you can say via point case where there is no velocity specified then this
is like with velocity specified even further you want to go with a circular profile can we like
bring it the circular trajectory details. So, once these all obtained, we can like do the numerical
integration. So, you can see like for that so, we are like taking two segments. So, t of i which
goes up to t 0 to t v that is the first segment and then t v to t f that is the second segment.

(Refer Slide Time: 21:19)

W% Desired values based on a circular trajectory
x(i) = rx‘31n(wx¢t(i?3;
xdot(1) = rxswxecos(wxet(i));
xddot (1) = -ryswx 2esin(wxet(i));
y(i) = ry-ryscos(wyst(i));
ydot(i) = ryswyssin(uyst(i));
yddot(i) = ryswy 2+cos(wy*t(i));

- e e

psi_desired = wrapTo2Pi(atan2(ydot(i),xdot(i)));
q.desired(:,1) = [x(1);
y(i);
psi_desired];
if xdot(i)==0 && ydot(i)3=0
psi_dot_desired =0;
else
psi_dot_desired = (yddot(1)/xdot{i)...
-(ydot (i) *xddot (1)) /xdot(i)*2)/(ydot(1)"2/xdoz (i) "2
end
q.desired_dot(:,1) = [xdot(i);
ydot(1);
pei_dot_desired];
q.desired_double_dot(:,i) = [xddot(i);
yddot(i);
0l;

0

Wh system dynamic terms
q{:,1) = q_desired(:,1); gq_dot(:,1) = g _desired dot(:,1);
psi = q(3,1); psidot = q_dot(3,1);

J_q = [cos(psi),-sin(psi),0;
sin(psi),+cos(psH ,0;
0,0,1;1; % Jacobain matrix
n_v_zu = [-nepsidot™2#(xbcecos(pei) - ybeesin(psi));
-n+psidot™2¢(ybcecos(psi) + xbeesin(psi));
0;1; %% Other effects
% Inertia matrix
D.mu = [m,0, -me(ybcrcos(psi) + xbessin(psi));
0,n, m*(xbcecos(psi) - ybeesin(psi));
-n*(ybcrcos(psi) + xbeesin(psi)),...
m*(xbcrcos(psi) - ybeesin(psi)),...
Icz + me(xbc™2 + ybe"2)];

%4 Errors
q.tilda(:,1) = g.desired(:,i) - q(:,1);
q.tilda dot(:,1) = qidesired dot(:,i) - q_dot(:,1);

%% Inmput vector based on Computed-torque conmtrol
tau_mu(:,i) = D_mu * (q_desired_double dot(:,i) ...
+4¢q_tilda_dot(:,i)+4=q_tilda(:,i))+n_v_mu;

)

%4 Errors
q.tilda(:,1) = g desired(:,1) - q(:,1);
q.tilda dot(:,1) = qidesired dot(:,i) - q_dot(:,1);

%% Input vector based on Computed-torque conmtrol
tau_mu(:,i) = D_mu * (q_desired_double_dot(:,i) ...
+4¢q_tilda_dot(:,i)+4=q_tilda(:,i))+n_v_mu;

%A Input vector based on PD control
tau_mu(:,i) = diag([120,120,0.4])+q_tilda_dot{:,i
+diag([120,120,0.4])*q_tilda(:,i);

@)

W Accelerations
q_double_dot(:,i) = ipv(D_nu)'(tau_nu(:.1)-n_v_nu);
% Velocities (time update 1)
q.dot(:,i+1) = g dot(:,1) ...
+ dte(q_double_dot(:,1));
i Positions (time update 2)
ql:,i+1) = q(:,1) + dta(q_dot(:,1))...
+1/2+4t "2+ (q_double_dot(:,i));
end | nuzerical imtegration eands here

s

%4 Animation
v=04;1=10.86;

box_v = [-1/

O

for 1 = 1:5:1ength(t) +

R_psi = [cos(q(3,1)),-sin(
{

veh_ani = R_psi * box_v;
fill(veh_ani(1,:)+x(1),veh_ani(2,:)+y(1),'y
hold on; plotix,y,’k--’);

plot(q(1,1:1),q9(2,1:1),’b~’

set(gca, 'fontsize’ ,16)
xlabel('x, [n] ', Interpreter’,’Latex’),;
ylabel('y, [n]', Interpreter’, ’Latex’);

__axis square; grid on; pause{0.1);hold off
(*)end

So, this is what we have done then we come back to the desired values based on the circular
trajectory if I want to do it, so, this is a simple circular, where rx is the radius if rx and ry are
different than it will give an ellipse. And similarly, omega x and omega y are different then that

would be giving different profiles we can see in MATLAB.

So, now we can like see this is we assume the circular trajectory. So, now, based on that we can
like see that we can go for the circular trajectory cases also then we can come to the system
dynamics. System dynamics required Jacobian matrix just for further end. So, then you can see
like so, n v underscore mu and D mu we have got it. Here like it not supposed to be called D mu

and n mu because here mu and g are same.

So, that way we can like get it then we calculate the error just for even you can say position and
the velocity error then we can like go for the tau. So, then you can see like it is a simple
computed torque control or we can go for the velocity control you can see the same thing. So,
based on that we can like go for the system update, then the acceleration calculated then time
velocity time update for the velocity and the position update which is the second velocity update
then we can like plot as animated view where the box is moving because we have considered the

rectangular box as the vehicle. So, that is what the case.

(Refer Slide Time: 22:49)

—— eyt ‘

1 %% Dynamic model of a generalized mobile robot

i >y . A

\ g 5 B
clear all; clc; close all:
t% Simulation parameters (Euler’'s method)
dt = 0.1;

s =6

Y L B S I XY

t = 0:dt:ts; span 0,0.1,0.2,...,

w

t% Physical parameters

g m = 30;
10 Icz = 0.1;
1 xbc = 0; ybc = 0;

12 £% Initial conditions
13 q0 = [0;0;0]; % initial condit

14
|§)

romm neds S B iwmt abe © St Sl Al D
-
T t = 0:dt:ts; pan 0,0.1,0.2,...¢9

8 §% Physical parameters

9 m = 30;

10 Icz ¢ 0.1;

11 xbc = 0; ybc = 0;

12 %% Initial conditions

13 q0 = [0;0;0];

4 qdot0 = [0;0;0];

5- q{:,1) = q0;

16 q dot(:,1) = gdot0;

§% Trajectory details

"~
w N

™~

)
"N

~ ’:

WO W o RN NN NN N
W N e O W O - o O & N

L)
i

35
)

%% Initial conditions

ql = [0;0;0];: initia ndi
qdot0 =4[0;0;0];
qf:,1) = qb;

= / 7
L v ts/é: Lt £ =
« =0: x v =2
Y =W yvs=y4

tex = Cubic via mr2(x 0,x f,x O

tcx = Cubic via mr2(x O,x f,x 0 dot,x _f dot,x v,t f,t v);
tcy = Cubic via mr2(y 0,y £,y 0 dot,y f dot,y v,t £,t v);
%% Trajectory with via point's velocity is specified

tex = Lub;c_v;a mri(x 0,x L,x_u_dot,x_:_c:t,x V,x_v_dot,t
) dot,y £ y v dot,t

tcy

i3 Numerxcal integration starts here
for 1 = 1:length(t)
%% Desired values based on Cubic
if t(i)<t v
x(i) = [1,t(i),t(i)*2,e(i)"3]
xdot (i) = [0,1,2*t(i),3*t(1)"2

49

50

51

[5]

L

53

54 =-XY n"'l])

55 psi_desired = wrapToZPi (atan2(ydot (i) 1)));

36 q desired(:,1) = [x(1);

57 yi{i)s

58 psi_desired];

59 if xdot(i)==0 && ydot(i)==0

60 psi_dot_desired =0;

61 else

62 psi_dot desired = (yddot (i)
i

.
o oS B 2o + A AN T § =
16 q dot(:,1) = qdotl; :
17 §% Trajectory details
18 't :
19 tv==ts/2; t f=1ts; xvdot=0; yvdot=20;
20 x0=0; xv= !; x f=0; x £ dot=0; x 0
21 Yy 0=0; yv=2; yf=4; y £ dot=0; y (
59 ,
23 tex = Cubic via mr2(x 0,x f,x 0 dot,x f_ t v);
24 tcy = Cubic via mr2(y 0,y £,y 0 dot,y £ t v);
23 §% Trajectory with via point's weloci
26 tcx = Cubic via mrl(x 0,x f,x 0 dot,»
27 tcy = Cubic via mrl(y 0,y f,y 0 dot,
28
29
0]

So, now we can like go to the MATLAB window where | already open it here for your benefit.
So, you can see like this is the dynamic model code. In fact, here | already made the controller
code. So, you can see like this is the mass value this is the inertia value need not to be 0.1 even
you can substitute different value, but I have taken a rough and | assume that the centroid and the

body center are like same that is why xbc and ybc are 0.

And then initial condition | assume that the vehicle starting from 0 with the 0 orientation, then
we can like see that the trajectory coefficients are given. And we can like generate so right now |
am like trying to see the first case which | am like trying to see that the; you can say trajectory

with via points velocity is specified. So, in that case, so | am like making this circular profile, or

actual like subdue, so I am just commenting this.

So, then we can like see that this is like trying to follow what you call this via point. So, you can
like see what via point | have given here it is really tricky. So, you can see like x displacement at
via is like 2 and y also 2, but the second point which is the final point x axis there is no
displacement and y is like 4, in the sense it is like v shape in the sense you can see it is like
greater than or equal or greater symbol. So, that is what we are trying to see. | will just try to run
it first.

(Refer Slide Time: 24:24)

7

EECTICEE
16 1 dot(:,1) [RERESAEAG
17 §% Trajecto
10 . g B
10
19 tv=_ts/Z 1 t
X - r :(

tex = Cubic

24 tcy = Cubic
t Trajecto g a2
= Cubl CowsmomrsyA AT Epacv

brw = Frhis tia mrd 1 g € . u
y = Cubic via mri(y 0,y £,

™
o o NN
NS D 3 @y O

D)
d -
ST R S———

TR NN NN NN
WO O d N WD N e

~

- e] e P

q dot(:,1) [PadsaaE 3 B
§% Trajecto

' 2 4
'__s’ = ts/2; 3 £ =0;
x0=0; x| =
v0=10:v =2
0 ve Y. >

1
tex = Cubic H
tcy = Cubic 0
%t Trajecto g6 1 23 ¢
= . rm

tCX = L»‘Jbl‘:_-xu-uuAvn_v,A-L,A_u_uvu'n L

tcy = Cubic via mri{y 0,y £,y 0 dot,y

»

x0=0; x17
o N vis
yu=9vi yl=s

tex = Cubig o

v):
Cubic vl

%t Trajecto] 0 10 20 ¥ & @

tex = Cubick

i
¢

|

« f dot,x v,t f,t v);

via mr2(y 0,y £,y 0 dot,y f dot,y v,t f,t v);

tcy = Cubic
%t Trajectory with via point's velocity is specified

"

1Y S0y

rcular trajectory details

rx = 3; ey = 3;wx = 0.1; wy = 0.1;
$% Numerical integration starts here
for 1 = 1:1length(t)

%% Desired values based on Cubic
if t(i)<t v

x{i) = [1,t(i),t(i)*2,L(i)"3]*t
xdot (i) = [0,1,2*t(1),3*t(1)"2]

NN N N R e
W N o w

[Y
- N O i

nN

(=]

o

tv= t = 0; Y
x 0= dot=0;
= | dot=0;
] Y 3 3
tex = Cubic = i vl
=2
tcy = Cubic 2 V) ;
¥t Trajecto 1
tey = Cubl 0 dot
f A 258 %
| x,im
0y fy PN WL P YRy

§% Numerical integration starts here
for i = 1:1length(t)
%% Desired values based on Cubic

b Juk Dere Bres iy .

D2de 308 LT t =0;

| dot=0;
21- y0=0;y X | dot=0;

22 3 3

23 tex = Cubic = v);
24 tcy = Cubic éz v);
25 %% Trajecto q

26 .

27 t uk ° dot
28 ircul (T [(S

29 L T SRR, . SPR——

30 %% Numerical integration starts here

31 for 1 = 1:length(t)

(32 %% Desired values based on Cubic
l 2

P — PR 1 e e Jet D e e '!
-

20 x0=0; x| 05 dot=0;
, dot=0;

™~
b
I
<
|
o
«®

NN
[P

no
o

~
o
e

-3
'

4 ux

28 3! 2) [
29 ; ~ =, B v
30 %% Numerical integration starts here

3 for 1 = 1:1length(t)

2
N .

3 %% Desired values based on Cubic po
10

10 2 N 40 30

... - E—
¥ Numerical integration starts hers
.477:‘]-..|'.,

32 1% Desired values based on Cubi
19

First of all, it is running or not we can see you can see this is with two segments in the sense the
endpoint velocity 0 and you can see it goes and it is like goes backward. So, you can like see it is
like making it. So, there is a switchover happening. Because it is ending, but you want to make it
this in a mobile robot it is not really preferred. You want to like smooth so for that what we are

like trying to do.

So, we are like trying to make a smooth profile. So, that is what | said via our point velocity is
not specified in the sense, the initial what you call so, initial you can see velocity of the second
segment is the final velocity of the first segment. Similarly, inertial acceleration of the second

segment, we assumed the final acceleration of the first segment.

So, second segment initial and final would be matched with the first segment that is what the
idea so, in this sense the second profile we take. So, now in that case so, if | ran you can see like
the same via point would be maintained, but you can see that the profile itself smooth what is the
via point it is 2 comma 2 which is like fulfilling but what addition the vehicle is like making a

smooth profile.

So, this is the beneficial of the even the trajectory generation which we have generated because
in the manipulator it is not very clear, but the vehicle profile you can see it is very very
important. So, now, you can see in the error case it is like one pulse only. So, whereas, the other

case you can see like there are two pulses have come. So, this is what the idea behind.

(Refer Slide Time: 26:03)

P

et 1 Lt A s et § Ot

[T P — T

%% Trajectory with via point's velocity is specified

W N = O W oo DYy WD

- o U a

a0

BN W W W W W W W B RSN NN

=

~
»

[

- W B N ke

Oy & W LN LN W WL N Wt Wn
“*© o

on
P

v

®

X =
§% Numerical integration starts here

for

113 mr] (% vy f v v F Anr v

“id 1{X eA L X } A L Q s XV, XV

113 mrl y L,¥ aot,y T aot,y V.,V V aot
v ’) ’) ') '

1lar trajec ry get

3; ry =35 wx = 0.1; wy = 0.1;

i = 1l:length(t)
%% Desired values based on Cubic polyn
if t(i)<t v
x(i) = [L,t(i),t(3)*2,t(i)"3]*tcx
]

xddot {i) = [0,0,2,6*t(i)]*tcx(1:4)
yli) = [1,t(i),t(i)*2,t(i)"3]*tcyl

ydot (i) = [0,1,2*t(i), 3%t (i) 2] *tey

e K L0t G s et § O wawd

psi_desired = wrapToZPi (atan2 (ydot (i i)
q desired(:,1) = [x(i);
y{i):
psi_desired];
if xdot (1)==0 && ydot (i)==0
psi dot desired =0;
else o

psi_dot desired = (yddot(i)

6

6
-
|

\".'\ o
L &)

-

N

psi_desj”

q_desiri

o

vl

else 0
psi .
£

end

q_desired double dot{:,i) =

rn'm

| TS
) xdot(i)));

FaveTETr

psi _dot d

s e
Fsl_cesi- “012(. 11
q desig 0Ot

0.006

if xdof®
psijz 9
:‘1:‘_‘ |
0008
psy
end |

e

) lm

), xdot (i)));

T T T p——— I

q tilda dot(:,1)

ti*q tilda dot(:,i)+4*g tilda(:
%% Input vecter based on PD control
dot(:,1)...

(:,1);

<

[tau mu(:,3i) = diag([120,120,0.4])*q_
7 +diag((120,120,0.4])*d
98 %% Accelerations

99 g_double dot(:,i) = inv(D _mu)*(tay
100 Velocities (time update

101 q dot{:,i+#l) = q_dot(:,1)

02 + dt* (q_double dot(:,1)};

104 qf:,1#1) = qi:,1) + dt*(q dot(}

L O - Lt At e e § O st >
- Ve st i et e B

91 q tilda dot(:,i) = q desired dot(:,i) - g dot(:,i); -
92 Input vector based on Computed jue cont
93 tau mu(:,i) = D.mu * (q desired double dot(:,i}
94 +4*q tilda dot(:,i)+4*q tilda(:,i))+n_v_mu;

95 %% Input vector based on PD control

w1 dy 4 11an | 17 | *q 1

+diag([(120,120,0.4])*q |
98 %% Accelerations

99 g_double dot(:,i) = inv(D_mu)*(tau 3

100 Velocities (time update
101 q dot(:,1+l) = q dot(:,1)

02 + dt* (q_double dot(:,1)};
103 Positions (time update 2)

104 q(:,itl) = q(:,1) + dt*(q dot
g

{:,1))

[~ . -
9] q tilda/2=dea0043) - g dot(:,i); 8
52 f : torque
93 tau mu{ le dot(:,1i} ...

94 44 ¢ i))+n v mu;

95 %% Inpu =

% | tw{ < {z,4).
97] 0 1 Enh

98 %% Acce . T

99 q doubly z

100 2 0 2 4 &

101 q_4OT { : parvap———gwwere pag—

102 + dt* (q double dot(:,i});

103
104 qf:,1+1) = ql:,1) + dt*(q dot{:,1)).

i
.

—) mm
6]] tildaf@=ded T } - g dot(:,i); E
92 P 10 i e
43 au mu{ - le dot(:,i)

94 44 2 ' i))tn v m

95 %% Inpu 3 ’

% | 33;1 20 dot{:, 1),
97 | _ 33 (1, 1)

98 %% Accel

99 q_doubl}

00 2

101 q dot{: —

102 ¢ dt*(q double dot(:,1)};

103 ions 7
104 qf:,1#¢1) = gi:,1) + dt*(q dot(:

1)

So, now, even you want to give us a circular profile. So, | assume that there is a circular profile
we want to indent. So, | assume that the circular radius are like equals. So, | just see that is like
happening here. So, the circular radius is equal and the frequency also equal. So, in the sense it is

supposed to follow a circular profile we can see whether it is like happening or not.

Now, you can see it is like line of sight also we have used so, in the site it is like following on the
line. So, this all like happened. So, these all the whole idea behind the Denavit Hartenberg
approach. So, now you can see even the mobile robot can be used in the case of what you call in
the sense of you can see Denavit Hartenberg approach we can derive the equation and even we

have done the motion control. So, here we have done the, you can see motion control with the

computed torque control even for the mobile robot even simple PD control is sufficient.

So, just to demonstrate you can see already the PD control is executed now, | am trying to show
the computed torque control performance. So, you can see them the performance is like little
more improved. So, that is what | just wanted to show it. So, now you can see like this is a
computed torque control performance. So, | hope you have enjoyed the whole course is like
given a whole idea and this particular lecture is like recap of whatever we have seen from the

beginning to the end that is what the whole idea.

So, now even if you look at the error, so error earlier it was like 0.01 or something now it is like
10 power minus 5 that is the beauty of what you call model-based control. If your model is very
accurate, then you can go the classical control like model base. So that is the whole idea behind
here. | hope you have actual like got the whole essence what we intended this particular lecture.

So, with that, I am like ending here. So, see you again. Thank you. Bye, take care.

