Mechanics and Control of Robotic Manipulators
Professor Santhakumar Mohan
Department of Mechanical Engineering
Indian Institute of Technology, Palakkad
Lecture: 43
Simulations Related to Dynamic Control Schemes Using MATLAB

Hi, welcome back to Mechanics and Control of Robotic Manipulator. In the last lecture we
have seen cascaded design last to last class we have seen how to simulate you can say
dynamic control of you can say robotic manipulator using joint space. So, this particular
lecture is like in addition to that, because last lecture or you can say last simulation itself, |

said, the task-space | did not include it here.

So, this particular lecture is like towards task-space. So, in the sense inverse dynamics in
task-space and the; all motion control which is like which includes a computed torque control
or PD or PID. So, these all will be seen. In addition to that we have attempted the cascade
which we call integrated backstepping or simply backstepping control or dual-loop control

that is also we are going to see in this particular short video.

(Refer Slide Time: 01:05)

{ SIMULATIONS

Inverse dynamics

8 Computed torque or model-based contro

Motion-based control

n Cascaded contral or double loop contral scheme

w4 Inverse dynamic simulation of a AR planar robo
clear all; close all; clc;
Wh Simulation parameters

dt = 0,01, % stepsize

); % votal simulation tinme
t = D:dtits; X tinme span
global al a2 ml n2 g
W System parameters
ml = 2; #2 = {; } link nassess
al = 0.5; a2 = 0.4; || link lengthe

g = 059,81;) gravity

)

So, in that sense we are like trying to see what is inverse dynamics in task-space. So, then we
would be going like how we can modify the computed torque control when we required the
task-space variable or the; you can say desired variable. So, similar way we can see the
motion-based control which we call like PD and PID control and then we will go to the dual-

loop or double-loop or cascaded or backstepping control.

So, in that sense we will like take the same scenario what we have seen in the dynamic
control of you can say joint space. So, one only thing here | would be trying to show a small
tricky one because, so, there we have seen like if the theta 1 desired and theta 2 desired has
given us a profile how we can do it? So, instead of this so, | am trying to show us our circular
profile in task-space how that would be followed. This is one of the common you can say

practices used to do for the control performance of any system.

So, in that sense we are trying to see that way. So, now we will talk about the first thing is
inverse dynamic simulation. So, of straight away like we talk about to our serial planar or you
can say planar serial manipulator. So, in this sense, we will talk about the Euler integration
parameters then the mass of link1, link2 and the link length and the gravity again since we are
talking about inverse dynamics, the gravity would be playing a different role. And most of
the common manipulators are gravity balance. So, we assume that 0 gravity here so we will
come back later on. So, if we make it O instead of O if we put it some gravity value as 9.81

what would the happen.

(Refer Slide Time: 02:46)

W4 Numerical integration starts here
for i=1:length(t)
%% Desired values
nu_desired(:,1) = [0.4+0.3%2in(0.2°¢(1));..

0.4-0.3%cos(

mu_dot_desired(:,1) = [0.3%0.20cos(0.2¢t(1));
0.3¢0,2024n(0.2¢t(1))];

nu_double_dot_desired(:,1) = [<0.3+0,2°2¢ain(0.2+¢(1));..

). 3¢0,2"2%cos(0.2+t(i))1;

So, in that case, we are like talking about the circular profile. So, if you look at it here, the
link length is like 0.5 and 0.4. So, | am trying to see that 0.4 is the radius both x and y sorry
0.4 by 0.4 is the centre, and the 0.3 radius as a circle | am trying to draw. So, in that sense the
mu desired is like coming in this way. In addition to that, it is like 0.2 times of t in the sense it

is omega t theta | can write as omega t where omega is 0.2.

So, now based on that, you can like take a time derivative that would be mu dot desired then
further you take the second derivative that would be you can say mu double dot desired. So,
these are like we have like use. So, in the last joint space, we have seen how the cubic
polynomial can be used, but here even without cubic polynomial, how the circular profile can
be generated that is what we have seen here.

(Refer Slide Time: 03:44)

W Desired joint positions and velocities
(q.desired(1,1) ,q desired(2,1)] = IK2R(nu_desired(1,1),m_desired(2,1));
Jd = Jaco2R{q_desired(l,1),q deaired(2,1));
q.dot_desired(:,1) = inv{Jd)*m_dot_desired(:,1);

W Initial Conditions

q(:,1) = q desired(:,1);

q.dot(:,1) = q_dot_desired(:,1);

)

W% Desired dynamic terms

Hd = inertia2R(q desired(:,1));
oe_vd = other_effects?R(q desired(:,i),q.dot_desired(:,
g.vd = gravity_effects2R(q_desired(:,i));

Jdotd = Jacodot2R{q desired(:,1),q.dot_desired(:,1)};
k% Actual dynamic terms
M = inertia2R(q(:,i));
o8V = u;hcx_o!tec!s!hlql1,;5.q_dorl;,131.
g.v = gravity_effecta2h(q(:,!

So, further what we can see once this. So, we are trying to find the inverse kinematics. So,
that just for our own reference, we tried to find out what would be that q desired and what
would be the q dot desired. So, once we obtained this, then we are like going back to the
initial condition, since the initial condition supposed to be same for the actual desired; actual

and desired the initial condition. So, we are like using it this condition.

So, instead of actual like deriving it directly, so whatever the desired, the first value, the first
value, we are like equating to the g and q dot. So, in the sense you are initial condition
defined as here. So, after that, we are going for the dynamic terms since it is inverse
dynamics. So, we are trying to find out the desired dynamic term in the sense inertia matrix

based on the desired value. Similarly, other effects due to the desired value and gravity due to

the desired value calculated. Similarly the actual value for the simulation in the real time we
do not require this but we are doing the simulation, we need to find out the actual inertia

matrix other effect and the gravity.

(Refer Slide Time: 04:55)

function M = inertiaZR(q)
global al a2 ml n2
thl = q(1); th2 = q(2);

% Inertiz matrix

nil = al"2en] ¢ a1™2em2 + a2°2m2 + 2ealea2en2ecos(th?
n2! = alwm2¢(a2 + al=cos(th2)),

nl2 = a2e;2¢(a2 + alegos(th2));

"

n22 = a2*2«m2;
H=(m11,n12;021,022];

function oe_v = other_sffecta2R(q,qdot)

global al a2 ml n2 4

thl = g(1); th2 = q(2);

thidov = qdot(1); th2dot = qdot(2);
hother effects
oe_vl = -al*a2en2¢th2dot+sin(th2)e(2¢thidot + th2dot);
oe_v2 = alv*a2+m2¢thldot™2#sin(th2);
oe_v=[oe_vl;0e_v2]:

end

v,

function g v = gravity effects2R(q)
global al a2 ml n2 g
thl = ql1); th2 = q(2};
Kgravity effects
gl = aQ=m2+cos(thl + thl3 ¢ alemlecos(thl) + alsm2ecos(thl);
g2 = a2sm2+cos(thl + th2);
gr=g+igl;g2);
end

‘H

function J = Jaco2R(thl,th2) t
global al a2
J = [~aleain(thl)-a2+sin(thi+th2),-a2esin(th1+th2);

+alscos(thl)#a2¢coa(thl14th2) +a2scos{thi+th2);};

end

‘H

function [x,y] = FK2R(thl, th2)
global &l a2
x = alscos{thl)+a2ecos(thl+th?2),;
y = alssin{thl)+a2+sin(th1+th2);

end +

function [thi,th2] = IK2R(x,y)
global al a2

¢2 = (x"2+y"2-a1"2~a2"2)/(#al%a2);
82 = gqre(1-627°2);
thl = atan2(y,x)-atan2{a2es2 al+al2¢c?);

th? = atan2{s2,¢2)

end

function Jdot = Jacodot2R(q,qdot)
global al a2

thl = g(1); th2 = q(2);

thldot = qdot(1); th2dot = gdot(2);

j1 = -alecos(thl)*thidot;

J2 = -a2+cos(thl+th2)e(thidot+th2dot);
§3 = -alegin(th1)sthidot?

j4 = -~a2¢sin(thl+th2)+(thidot+th2dot);
Jdot = [11442,32;

§3+J4,34);

Now, based on this we can like use the, what you call the sub functions. So, we can use the
inertia sub function then the other effects of sub function, the gravity effects sub function
these all we have derived in the last you can say class itself. So, then this is the Jacobian
because here Jacobian is required forward kinematics and inverse kinematics are required.

So, we can use it this.

So, based on that we come back what you call one additional variable which is J dot because
like, so, q double dot desired can be derived in that way for example, you take mu dot equal
to J of q into g dot so then you can see like mu double dot can be returned as so, J of g into q
double dot plus J dot into g dot since this is the J dot is required. So, we have derived the J

dot based on the time derivative and then like we got this additional sub function.

(Refer Slide Time: 05:50)

The inverse dynamic model: F =M g, + 0 (g4 py)

+
1Y Inverse dv -
&h inverse dynamics

Ainput vector in task-space
F(:,1) = ¥M_mu_de(mu_double_dot_desired(:,i))..
+ n_mud;

I input vector in joint-space
taul:,1) = Jd'*F(:,1);

% acceloration vector
q.double dot(:,L) = inv(M)e(tau(: i)-(oe_veg v));
% velocity propegation
q.dot(:,1+1) = g dot(:,1) + q.double_dot(:,1)edt;
% position update
ql:,141) = q:,1) 4q._dot(:, 1)edt
+ 1/2%q_double_dot(:,1)=dt"2;

[x(1),y(4)] = FK2R(qtL,1),q(2,4));

end

Once we did the sub function this is the inverse dynamic model. So, where M of mu into mu
desired double dot, plus n of mu comma mu like a mu desired comma mu desired dot. So,
this is actual like we use as a F, but like F we can write as tau. So, and this is tau is J

transpose of F that is what we are going to use.

So, in this sense this is the inverse dynamics. So, where first we calculate the; you can say the
end effector forces in moments based on the known model and this is the; you can say inverse
dynamic you can say model in input vector in task-space that we convert it into joint-space
because so, the original system would be derived based on the joint-space because the

actuator fixed on the joint. So, then we derived this So, we are like trying to use the simple

you can say Euler integration where the velocity propagation the position update and then

once you update then we will do the forward kinematics just for animation.

(Refer Slide Time: 06:55)

F

- T . . - i, »
-

%t Double-loop motion control of a RR planar robot
clear all; close all; cle¢;

1

2

3 t% Simulation parameters
4 dt = 0,0%; 2

5 ts = 30;

6- t = 0:dt:ts; pat
7 global

8 ¥t System parameters

9 = 4 = 1;

10 = V.2, - N

11 = 9,81;

(if- q= [-pi/4;pi/3]; | |
-4 q dot = [0;0]; nitia

22 ! mu double dot desired(:,i) = [=0.3%0.2*2%sin(0.2*t (1)
23 0.3%0,2%2%cos{0.2%t (1))

24 %% Desired joint positions and velocities
25 q desired(l,1),q desired(2,1)] = IK2R(mu desired(l,1

26 Jd = JacoZR(q desired(l,i),q desired(2,1));
27 q dot desired(:,1} = inv{Jd)*mu dot desired({:,i);

8 %% Initial Conditions

9 qi:,1) = q desired(:,1);
0 q dot{:,1) = q dot desired(:,1):
31 %% Desired dynamic terms

32 Md = inertialR(q desired(:,1]):
33 o vd = other effects2R(q desired {
A

g vd = gravity ef ts2R({q desir

~35 Jdotd = JacodotZR(q desired(:,d

el M - " - . - - - - TINUIERD

16~ for i=1:length{t) R
7 %% Desired values

18 mu desired{:,1) = [0.4+0,.3*sin(0.2*¢t(1)):...

19 0.4-0.3%*cos (0.2t (1))];

20 mu dpt desired(:,i) = [0.3*0.2*cos({0.2*t(1));...

21 0.3*0.2*sin(0.2%t (1))]

22 mu double dot desired(:,i) = [-0.3%0.2 0,2t (1)

23 0.3%0,2M

24 %% Desired joint positions and velocit
|q desired(l,1),q desired(2,i)] = IK2R red(l,i

26 Jd = Jaco2R{q desired(1,1),q desired(Z

27 q dot desired(:,1) = inv{Jd)*mu_

(?f %t Initial Conditions

-4 qi{:,1) = q desired(:,1);

25- q desired{1,1),q desired(2,i)| = IKZR(mu desired(l,i
28 Jd = JacoZR(q desired(l,i),q desired(2,1)};

27 q dot desired(:,i} = inv{Jd}*mu dot desired{:,i);

23 $% Initial Conditions

29 ql:,1) = q desired

30 q dot(:,1) = q dot deaired(:,1):
%% Desired dynamic terms

1
32 Md = inertiaZR(q desired(:,1]);
i3 oe vd = other effectsZR(q desired(:,1) esired|

34 g vd = gravity effects?R{q desired{:,1)

35 Jdotd = Jacodot2R(q desired(:,1),q dog 2,1));
38 inertia matrix in task-spa

¢ Mmud= inv(dd')*Md*inv{Jd);

P a2 poe
mpm—Tryyo gty " 1k e rey o= g—r LTI

40 ~Md*inv(Jd) *Jdotd*q dot desired(:,i));
41 %% Actual dynamic terms

42- M = inertia2R(q{:,1)):

43- oe v = other effectsZR(q{:,1),q dot(:,1));

14 g v = gravity effectsZR(q(:,i));

45 %% Inverse dynamics

46 t task-sg

17 F{:,1) = M mu d*(mu double dot desired
48 ¢ nmu d;

44 input tor 1ir int-

50 tau(:,1) = Jd'*F(l:,1);

51 seoalaration vect

(ﬁf q double dot(:,i) = inv(M)*(tau(
~53

. - TN

46
47
48
49

50

So, then you can see like then you can like see in the MATLAB code. So, | just want to show
that this is the inverse dynamics model which we derived in the MATLAB you can see these
are the cases which we have seen in the you can say earlier slides. So, now this is the desired

value and then this is the joint desired value just for our reference and this is the initial

F{:;i) = M mu d*{mu double dot desired{:,i))...

fn mu d;
tau(:,1) = J@'*F(:,1);

q double dotX:,i) = inv(M)* (tau(:,i

q{:,141) = q(:,i) +q dot(:,1)*dt

x{1},y(1)] = FKZR(q{1,1),q(2,1

qi:,i+1) = g(:,1) #q dot{:,i)*dt + 1/2*q double dot(:

x(1},y(1)] = FK2R(q{l,%),q(2,1)};

$% Animation

r i=1:10:1length(t)

.
trnein) 14 .
slq(l,if);

‘sinfag(l,1});
= xl4al*cos(gqll,1)+ql(2,1});

y2 = yl+al*sin(qg(l,1)+ql2,1}));

plot ([0,x1, o [0ryl,y2),'e=0',!
1rl ’

hol

plot (mu desired(l,:),mu desire

condition, and this is the dynamics.

So, we have derived actual, and you can say desired the dynamics then this is the inverse
dynamics which is like based on you can see like known values and then you can calculate
the force then based on that you can like calculate the tau based on J desired transpose to F.
So, then you can like go this so, after that you can see like these all the sub functions, and |

am trying to plot before that | am trying to you can see animate. So, now in that sense if | like

ran this code.

(Refer Slide Time: 07:49)

T uds T JE

-y " »
-

58 qi{:, i+l {2*q double dot(:
K

39 X(1},y

62 £% Animatiol

63 for i=1:10:

y.[units)
o

% R K 0 1
X A xLumts]
3 plot ([0y XIy X2 IO YL, V2T, " T=0= 7= 1Ine

69 grid on, set(gca,'fontsize',20)

'/:,‘)'I hold
~1] plot (mu desired(l,:),mu desired

59 X(1},y
60 n

61

62 $% Animatio]
63 for 1=1:10:
64 Xl =

&35 yl

6o x2 = xl

67 y2 = yli

{a I E'Js]v =
68 plot ([0 xXTTXET IO Y V2T T~ IInew

69 grid on, set(gca,'fontsize’,20)
f’:.‘ { hold

~1] plot (mu desired(l,:),mu desired

The inverse dynamic model: 7 = M(q,)q, - nl?.‘ql.)

The inverse dynamic model: 7= M(q,)q, = n(q,.94)
+

%4 Inverse dynamics
iinput vector

tau(:,1) = Nde(inv{Jd)*(mu_double_dot _desired(:,1).
-Jdotdeq dot _desired(:,1)))..
+ oe_vd+g_vd,

So, you can see like, so, it is this is the profile which is given as a desired and you are system
also like following it. So, this is what you can see as inverse dynamics in the task-space, and
this is the theta 1 and theta 2, how it gone based on what you call the circular profile of mu
which is given. So, now the same thing, same thing can be done in the joint space just for

your benefit.

So, we have like taken that. So, the inverse dynamics in the joint space so, then what
happened this was the equation for that you need to know q double dot desired because the g
dot desired and q desired, we have already calculated in the earlier code. So, now we have to
change. So, now you can see like this way we can take it the q double dot desired can be

written as mu double dot desired minus J dot desired multiply with q dot desired.

(Refer Slide Time: 08:57)

40 %% Inverse dynamics "
41

42

43

14

45

46 1 double dot(:,i) = inv(M)* (tau(:,1i)=((R
17

43 ‘

44 7 dot |) g dot{:, i) + g uble

50

51 : I

oGy qi:,i#1) = q(:,1i) +q dot{:,i)*dt

53 x{1),y(1)} = FKZR(q{1,1),q(2,

(1))]

20 mu dot | ! L24E (1)) 00as

21 L2%t(1))1:
05 x

22 mu doub

el
y.[units)
o

24 %% Desi

05 2R c1red(l, 1

4 0 1

23 % Init

i . xunits|

29 ql(:,1) =goesireo(:,; 117

30 q dot{:,1) = q dot desired(:,1);

/ %t Desired dynamic terms

-2 Md = inertia2R(q desired(:,1));

(1))]+
b2*E (1)) 2aas

L2%t (1)));

22 mu doubi _ 22%2*sin (0,24t (1)
23 T gh2*cos{0.2*t (i)
" .1 &

24 %% Desi = ities

25 q desl gsired(l, i
2t Jd = Ja

28 % Init

o : Ls|

29 ql:,1) =goesirec(:;11;

30 q dot{:,1) = q dot desired(:,1);

(')1 %t Desired dynamic terms

-32 Md = inertia2R(q desired(:,1));

global al a2 ml n2 g

Wi System parameters

ml = 2; 2 =1, ¥ link nassess

al = 0.5; a2 = 0.4; % link leagthe

g = 0#9.81; X graviy

% %% Initial conditions

q = [-pi/4;pi/3]; ¥ initial joint positions
g.dot = [0;0]4% initial joint velocities
%% Control paramaters

KEp =4, fd = 4,

0

So, that is why we have calculated this J dot. So, now you can like use it. So, you go back to
the MATLAB, and you can see and put the, that particular function has joint space. So, you
can see like the final equation we are directly writing in the, what you call tau. So, we are not
calculated in the F. So, you can see like this is mu desired which is like M mu desired has
changed as the M desired then inverse of J desired that comes So, after that mu desired

double dot minus J dot desired into q dot desired. So, then these are other effect.

So, now you can see the same profile, what we have done in the earlier case the same thing
we have used when you can see like this is also like following it. So, now this is what the
inverse dynamics case. So, now we will go to the, what you call the motion control and the
model-based motion control. So, in this sense we will go to the computed torque control the
same code we are trying to change only thing the initial conditions we are giving it as it is, we
are not equating to the q desired. First value is equal to g of first value that is we are not
doing it we are directly using it some initial condition and then we are adding the control

parameter which is Kp and Kd.

(Refer Slide Time: 10:11)

r=M(q)d(q) " iy -d(q)q+Tje =T = niq.q)
T J:q\' M, gty =Ty =Tl 40y ()

Wb ETYOrS

nu_tilda(:,1) = mu_desired(:,i) - mu{:,1);
mu_dot_tilda(:,1) = mu_ddt_desired(:,1) - Jeq dot(:,i)
Ik Computed-torque control

Ainput vector in task-space
F(:, 1) = M mu_d+*(mu_double_dot_desired(:,i)
t¥pemu_tilda(:,1)+Kdenu_dot_tilda(:,1))
+ n_nu_d;
4 input vector in joint-space
tau(:,1) = Jd'F(:,1)

)

So, now based on this word this is the equation we are talking about the task-space either you
can write it this way directly tau or we can write it in this way. So, we are writing in the
second form. So, first we derived F then we are like multiply with J transpose that will give
the tau. So, that is what we are like writing it here. So, you can see the mu tilde. So, we have
like calculated the error mu tilde is like mu desired minus mu and mu dot tilde is like mu dot

desired minus J of J into g dot this is nothing but mu dot. So, then the computed torque

control we have used this is in the task-space. So, we can calculate the F then based on the F

we can convert it into tau.

(Refer Slide Time: 11:01)

r=M{q)d(q) " jig-I()q+Fyji+ it +nlq.q)
i .]
7= 3(q)" M, g + Toji + T} + 0, (e)|

+

7 %% Numerical integration starts here

18 for i=1:;length(t)

19 %% Desired values

20 mu desired(:,1) = [0.440,3*sin(0.2*t (i

2] 0.4-0,3*cos(0.2*t (1

22 my dot desired(:,i) = {0.3*0,2%cos (0.2

23 0,3*0.2%sin{0.2

24 mu double dot desired(:,i) = [-0.} 1)
2% %% Desired joint positions and

" - \ . - —E Rg— - e 38 30 10 1111 .
-

0.3%0.22%cos(0.2%t (1))

%% Desired joint positions and velocities

w

-

q desired{l,1),q desired{2,1)] = IE2R{mu desired(l,i

<o

Jd = JacoZR(q desired(l,i),q desired(2,1));

NN
-J

q dot desired(:,i) = inv{Jd}*mu dot desired(:,1);
30 %% Initial Conditions

33 %% Desired dynamic terms
34 Md = inertiaZR(q desired{:,i));

35 ce vd = other effectsZR(q desired(:,1
38 g vd = gravity effects2R(q desire
-

7 Jdotd = Jacodot2R(q desired(:,i)

?;.,

92 %% Computed-torque control <
53 nput vector in task-spacs

54 Fl:;1) = ¥ my d*{mu double dot desired{;,1i)

55 4 L

56

57 input vector {i: int-spai

58 tau(:,i) = Jd'*F{:,1);

60~ q double dot(:,1) = inv(M)*(tau(:,i)-|(

62 ¥ 1LYy prepoagat

63- g dot{:,1#l) = q dot{i,1) + q dou

w sl M) e o B a1 L0 e e A e * » MYl 1 .

'de QA8 LT D

58 tau(:,1i 2
£g ool 04
g —,
&0 q doubl) +{oe véq v});
61 02 —Y,

on
w
o)
a <=
o 5
o

jumits
o

J' _dst(:,L)‘dt;

6o qi{:, i+l D4
67 [%(1},¥y

(af $% Animation
1 for {=1:10:1ength(t)

28 Jd = Jaco2R(q desired(1,1),q desired(2,1));

29 q dot desired(;,1) = inv(Jd)*mu dot desired({:,i)’;

30 %% Initial Conditions

31

33 %% Desired dynamic terms

4 Md = inertiaZR{q desired{:,1));

35 ¢ vd = pther effectsZf(q desired(:,1) isired |

y effects2R(q desired(:,1

t2R(q desired(:,1},q dot (:,1)):
Mmad= inv(Jd') *Md*inv{Jd};

nmtd=

inv(Jd')* (oe v
|
[- | (S
28 d = Jait eyl (2,1)); .
29 q dot d ! gesired{:,1)
3 $t Init !
31 ’q(m}’l ?DS /
32 SINORIS T
33 %% Desi z
24 Md = in 05
35 e vd =
j vd = | 1
7 Jdotd = 2 ¢ ‘
38 N S— .. T—
39 Mmud= inv(Jd')*¥d*inv{Jd};
(:‘l)'l 1 1 |
&1 nmud=inv(Jd')* (ce vdtg vd..
|

So, now we can like go to the MATLAB code. So, this is we have written as CTC. So, now
you can see like what we have added. So, this is added and now, you can see like this is we
have commented. So, we are not equating that so, now the q at t equal to 0 and q desired that
equal to 0 are not equal. Similarly, q dot t equal to 0 and g dot desired at t equal to the 0 also
not equal.

So, in that sense you can see like we have just added this. So, you can see like this Kp mu
tilde plus Kd mu tilde dot has added and we can like come back So, now this is like feed
forward and feedback linearization in addition, the feedback control PD has come. So, that is
what we call computed torque control. So, now we can like see so, how this is like beneficial

now, you can see it is starting from some different initial condition and it is like following it.

So, now, if you look at the error, error is like converge to O it started with some nonzero
initial error, so that is like converge. So, now if I like include this so, I am just saying that the
g dot and g at initial both are like equal to 0. So, then you can like see, so, that would like you
much more, smoother. So, you can like see it to why we are like saying you can see it is like

much more super impose the actual even switching is not happening.

(Refer Slide Time: 12:27)

7
FErTeEETaE
28 Jd = JarRaeERs (2,1));
29 q dot di g X 10 desired(:,i);
30 %% Init
3 gqu
4 dot (=
3 ¥4 Desil=
14 Md = 1n| q \
5 e vd = S i), sired(
L/] vd = | 2 7 "-]
7 Jdotd < © 0 s a 0 b (:,1));
38 INert A maTTIXTIN '4~L-'ﬁﬁ“f
34 ¥ mo d= inv(Jd')*¥d*inv(Jd};
-1 nmyd=inv(Jd')* (ce vdtg vd,.
|
illlllllllllllll‘ . TP TRNFL]
25 q desi/ ¥ L AL ’ PR(mu desired(l,i-
26 Jd = Jai ! (2,1)});

27 q dot di desired{:,1);

23 v #% Init
2 | qt:ﬂ ° >

q_dof

y.[units]

i %% Desi 05

2 Md = in

i3 0¢ vd = 8| i) asired |
34 q ':‘p = | 1 0 1]

2 ol 5}unmﬂ [

35 Jdotd ="uaconoTex(q aesIten Iy 1y q nbg 2,1))»
16 : N :
N Mmud= inv(Jd')*Md*inv(Jd);

10
11
12
13
15
16

"

18

10
11
12
13
15
16
18
4

- ! . T —r-rm —_ T ’
global
$1 System parameters

' e Y
= 0.5; = 0.4;]
=9.81; | ar

q = [-pi/§;p1/3];

q_dot = [0;0]); init
%t Control parameters
Fp = 4; Kd = &;
%% Numerical integration starts here
for i=1:length{t)

%t Desired values

mu desired(:,1) = [0.440,3*sin{

global
%% System p

“r

= 0.5

n
0
'
—
y.[units]
o

q = [-pi/4;

q_dot = [0;

%t Control | 1

Kp = 4; Kd #t ¢)
xlumt!i}t

$% Numerical INTegrarion STATTS nere

for i=1:length(t)
%t Desired values

mu desired(:,1) = 10,440, 3*sin(

global
%% System p

= 0.5

n
(¥ =]
o
—
-

i Junits]

q = [-pi/4;
q dot = (0;
%t Control | 4
Kp = 4; Kd

10 20
i
t% Numericar integration rrs nere

30

for i=1:length(t)
%t Desired values

mu desired(;,1) = [0.440,3*sin{(

So, now you can see like this is in the order of 10 power minus 5 in the sense it is almost like
micro level of error, or you can say sub millimetre level error in terms of meter if | talk. So,
now why this is required you can see like the task-space so if | am like equating this, you can
| am just bringing it and so, this | am bringing it so this I am like commenting in the inverse

dynamics.

So, you can see like this would not work as the desired manner that is what we are like trying
to show. In fact it may be unstable also you can see it is starting somewhere here this is the
starting point and the circle supposed to follow you can see it is not making a circle because
the initial velocity at desired and the initial velocity actual are different an initial position
desired are different. So, you can see it. So, that is why | said it cannot be directly used as a
control it can be certain extent we can use the open loop control, but provided that initial

conditions are supposed to match, and you can see other dimensions also make it.

So, now | hope you are clear why the CTC has come. So now you want to even improve the
system even you assume that the, you call the other effect is not compensated you imagine
that. So, now | am like seeing that the gravity is there. So, now | include the gravity and you
can see like the error maybe the same order. So, now you can see like we have not
compensated that directly. So, that is what | want to like make it.

So, we are not compensated that gravity here anywhere. So, because of that it is like a giving
what you call this additional adverse effect. So, now you got idea why we need to like
account this. So, these all like additional input which you need to know. So, now | am like
why we are like making it all the time gravity compensated you would have like got it now

clear.

(Refer Slide Time: 14:40)

[- N =0k

10 1.5 de Q38 L5
11 = (45,8 |
12

5 05
13 q -p1/4 ==
14 o q).

4 q act H = 9 ‘

. SR : 3 \
15 §% Control | <« \

™

16 Kp = 4; EKd 05
17 %% Numerica

18 for i=1:len| 8

8| 1

19 %% Desi 0
e xJunits]
20 BU desireay s Iy = TUiyr UL s s I ULz T

7= J{af* K, (q; - q) = Ky (d, - q)] < ()

W Errora
nu_tilda(:,1) = mu_desired(:,i) - mu(:,1);
nu_dot_tilda(:,1) = nu_dot_desired(:,1) ~ Jeq dot(:,1);
44 PD control
Ainput vector in task-gpace

F(:,1) = Kpenu_tilda(:,i)+Kdsmu_dot_tilda(:,i);

% input vector in joint-space
tan(:, i) = Jd’oF(: $)+g v,

So, now this is the additional you can say input which | want to give. So, now we will move
to the motion-based control. So, in that sense, we are like going for PD and PID. So, first a
PD with the gravity compensation we are trying to do so in that sense the complex terms are
all gone and it is just a J transpose multiply with the PD and the gravity compensation. So,
that is what you can see the F is added and the gravity compensation is added with this. So,

now we will like go this.

(Refer Slide Time: 15:17)

s - e Caotetate: Ambumtne jood 8 & ne Me
EErTrErTl . 0 [
52 %% PD control
53 1npu X 15k-gpa
54 F(:,;1) = Kp*mu tilda{:,1)+Kd*mu dot tilda(:,1);
55 1nput Lol Int=s8pa

wn
o

tau(:,i) = Jd'*F(:,1i)ig v;

v
-~J

q double dot(:,1) = inv(M)*(tau(:,i)=(0

unt
ey

vl);:

"
yy

t

o
o

1
puua

—

q dot{:,i4l) = g dot(:,i) + q double ¢

o
=3

[

63 gition updats
(if ql:,i+l) = q(:,i) +q dot({:,i)*dt
5 xii),y(i) |} = FK2R(q{1,1),q9(2,1

10 = 0.5; = 0.4; link langtl

11 = 0*B.81; Jravity

2 . i
13- q = [-pi/4;pi/3]; % initial joint position:
4 q dot = [0;0]; nit

15 %% Control parameters

16 Kp = 16; Kd = B;

1 %% Numerical integration starts here
18 for i=1:length(t)

19 %% Desired values

20 mu desired{:,1) = [0.440,3*sin(0.2%t(

21 0.4-0.3*cos (0.4
(%f mu dot desired(:,i) = [0.3+0.2*
23 0.340,2

|

i - — 44500t e - 1€

EEETrEET T 0 [
10 = 0.5; = 0.4; link lengtt

13- gq = [-pi/4;pi/3]:

4 q dot = [0;0]%

15 t% Control parameters

16 Kp = 4; Kd = 4;

1 %% Numerical integration startes here
18 for i=1:length(t)

19 %% Desired values

20 mu desired{:,i) = [0.440,3*s1
21 0.4-0.3
29 mu dot desired(:,i) = 10.3
(* BU got gesire . {u.3
‘) 0.3%0,2

-

28~

29

- - -

B A B Al ¥ It 8411 1ad I ¢ it RIS T S B IS T e ma i '
Jd = Jaco2R(q desired(l,1),q desired(2,1)); E
g dot desired(:,1) = inv(Jd)*mu dot desired{: i);

%% Initial Conditions
1(:,1) = q desired(:,
%% Dasired dynamic terms
Md = inertia2R{(q desired{(:,1));
oe vd = other effects?R(q desired(:,1}), sired|(

g vd = gravity effects2R(q desired(:,i

Jdotd = Jacodot2R (g desired(:,1},q dot
tia matrix in task-space

M mu d = inv(Jd')*Md*inv(Jd};

thor off

ffart in t k=804

nmad=inv(Jd')* (ce vdtg vd.,

Jd = JafttaeNESVE . (2,1));
q_dot_d| ! gesired(: i);
#* Init

i 05

B >

e 4 e 0

d 2
W Desi| %
Md = in| 05
oe_vd = i) esired|

q vd = | 4
2 B 0 1 :
Jdotd = x (:,1));
xJunits] ‘

[TE TATTIX I TANX=Spars
M mud=inv(Jd')*Md*inv{Jd};
ither effect in t VLA

nmud = inv(Jd')* (ce vdtg vd.,

Jd = Ja™" P (2,1));
g dot di 04 : 1 gesired{:,1);
%% Init >

units|

¥% Desirs |/
Md = in| _042;
oe vd = | | esired|
qfv(j = 4

Jdotd =

INercIE marTrIX™In "-'!"‘l"'l"ﬁr‘-‘

M

0 10 2 K

M mu d=inv(Jd')*Md*inv{Jd};

nmyd= inv(id')* (ce vdtg vd..

i : 05
13 q= [-pi/4:] _
o
14 q dot = € /
0 /
15 $% Control | = \J
>
16 Kp 16; Kd 05
17 %% Numerica
18 for i=1:len| -1
19 % Desi # : 1
2 xJunits
20 mu gesireqars;l
21
@ i
2 7 o
|
e
0 W el 3 \ P
' X 0.4
- —.-l>
12 A
i . [02 =
13 q = [-pi/d;}_ }
1? 1 dot = ; o f
15 $% Control | ;‘
17 %% Numerical -‘
18 for i=lilen J4
o '3 Desi 0 10 20 30 40
: et tls
20 ::u':wlmTY‘TTTT“—"'"TWlJ’T?‘mT"TT'V’l
21 0.4-0.3% (0.2

So, I am just showing that PD control. So, now you can see like PD control even the gravity
we can include later on. So, right now we can like see the PD control is like coming into our
picture. So, now you can see this is PD and the gravity compensation in this case any way
gravity is not there, and you can like see it is starting from nonzero and it is like trying to
follow the circle and you can see initially there is an error after that it is like a much more

improved. So, you can like see there is a small error.

So, now if I include the gravity, you can like try to see. So, what will happen whether the
gravity is trying to compensate here or not that we can like see it. So, you can like see it does.
So, you can like find it. So, now the same way you can like see here, so the computed torque
control so you have assumed this is the initial and this desired I am not making it equal. So,
now | am just trying to show that the gravity is coming, but my computed torque control is
like working or not.

So, you can see like this is working but if | start from here itself that gravity is not properly
compensated that is what the happened earlier. So, now you can like see, this is the error for
this, but the PD control is like giving more-closer result. So, that is why I said if the gravity is
compensated if you are moving in very slow speed even the PD control is sufficient. So, that
is why most of the industrial manipulator the PD control is using but you can see like small

hitch up here and there will come this is due to what you call the constraint on the Jacobian.

(Refer Slide Time: 17:09)

=) [Ks(a, - q) + Ky (g, - q)l < 8(q)

W Errors
nu_tilda(:,1) = mu_desired(:,i) - mu(:,i);
nu_dot_tilda(:,i) = nu_dot_desired(:,1) ~ Jeq dot(:,1);
%% PO control
Ainput vector in task-space
F(:,4) = Kpenu_tilda(:,i)+Kdsmu_dot_tilda(:,i);
% input vector i{n joint-space

tan(:,1) = JA'oF(: L)+g.v;

-

Y PEENDF

%% PID Contro

1 of a RR planar robo
lear all; ge ally cigy
3 %% Simulation parameters

4 dt = |

5 tE = total mulation time

7 global
d %t System parameters

o 3 oo

LN oW W own AN

)

Ltnput gCcrLor N Lask=H1
F{:;1) = Kp*mu tilda{: i)+Ki‘ei+Kd*mu dot tilda{:, i);
input vecter 1LNt-Epa

tau(:,i) = Jd'*F(:,i)4q v;

q double dot(:,1) = inv(M)*(tau(:,i)-(oa vig ¥));

t ’ ’
FOaa

q dot{:,i¢l) = g dot{i,i) + g double

ql:.i+l) = q(:,1) #+q dot{:,i)*dt
[x(i),y(i)] = FK2R(q{1,1),q(2,1)

4
Eé- i'%. deadg g e -
56~ Fi:,) | ! b dot tilda(:,i);
57 1nput
2 05
58 tau(:, o
59 L
33 E 0
60 q_doubll -i .\\l tloe vig v]);
61 25
&2

10~

q dot(: -1 ;.
A 0 1]

it Tomupnare S
ql:,141) = q(:,1) +q dot{:,1)*dt

1

[x(i),y(i)] = FK2R(q{1,1),q(2,1)

global
¥t System parameters

2; L;
= 0.5; = 0.4; k It
= 0*9.8

q = [-pi/4;p1/3];

q dot = (0;0]; nit

%% Control parameters
Kp-= 16; Kd = B; Ki = 0.5 el = {0:0];
%% Numerical integration starts here

for i=1:length{t)
%t Desired values

mu desired(; 1) = [0.440.3

S—yTTIYYe wg—T Yy T b Bl " . MUnAle ¢ &
7- global RONINNT

anf?
A %% System p| !

3 = 2;
10~ = (.5;
11 = 0*9.81;

13 q = [-pi/4;]

=]
o

y.[units)
o

05
5 q dot = [0; 3

15 %% Control | -1

16- Kp = 16; Kd o ¢)

7 %% Numericar mteqranonllggﬁts nere
18 for i=1:length(t)
ay %t Desired values
-3E muy desired(;,1) = [0.440,3*sin{

—y T e R i P Iy o 0 el 1101 .

global

=
.
i)
d
r
J

.,
8 %% System p| 04 s ;
. = 2; | [
; 02 —Y,

11

12 f

|
13 £2]
14~ q dot = !

'
15 113 ControlJ £4
16 Kp = 16; Ke 0 10 20 30 40

| I.I&I
17 t% Numerica

18 for i=1:length{t)
(;ﬁ %t Desired values
~20 mu desired(:,1) = [0.440,3*sin(
|
P T I S Ty
7- global "
3 %% System parameters
3 = 23 = 1
10~ = (.5; = 0.4; nk lengtl
11] =9.81; jravity
12 Initia :
13 q = |-pi/4;pi/3]; \ initial joint positior
14 q_dot = [0;0]; init
15 tt Control parameters
16 Kp = 167 Kd = B; Ki = 0.5; ei = [0;0];
17 %% Numerical integration starts here
18 for i=1:length{t)
as %t Desired values
20 mu desired(:,1) = [0.440.3*sin

05 -

3
10 = \

0 /

| =

1 = 1) '/

-
1.‘ —

-
14]
15 s ontr 1

) 1 0 1
1€ Kp € .
o X junis

17 t¥ Numerical InTegration STALTS nere
1

So, now people may think they error probably further improved if | use PID control it need
not be all the cases. So, probably I will show an example. So, this is a PID control, and we
are like trying to show this. So, now we can add the | term and we are like coming back here.
So, in that sense we go to the controller directly. So, the PID control and the gravity we can
like initially ignore then we can like show so, what you can see like the PID control we have
like added Kp, Ki and so Kd is coming.

So, this is a PID, and we have like compensated that with the gravity compensation. So, | am
trying to show you can see it is not actual like PD control performance. So, that is why if you
add the third order you can see integral error dynamics that may like end up with even

destroyed the performance it may not be all the time the error would be converge to 0.

The error converges to 0 however, you can see the dynamics is like modified. So, now in
order to verify that, so, I am just reducing the; you can say integral value for example, I am
putting it 0.5, I am just trying to show. So, earlier it was 5 and now it is 0.5 you can see, so,
the performance is very close to PD and the integral error is like trying to make. So, you can

see it is like more or less closer you can see. So, clearly you can see.

So, earlier case it was like more converge now, the integral is like making some you can say
pushing different region. So, now this is what | want to like emphasize the PID control is not
preferred, most commonly in the robotic manipulator community rather than the PD because
the item can end up with what you call wind up. So, that is why we can like avoid this
particular PID control. So, now you are like clear. So, we can like see further cases if I
increase the, you can see PD value or probably I can like add the gravity value you can like

see something going to happen.

(Refer Slide Time: 19:31)

[- v - -)

55 I r i 1sk-gpa

56~ F{:,1) = Kp*mu tilda{: i)+Ki‘el+Kd*mu dot tilda{:,1);
57 10y E-3

58 - tau(:,i) = Jd'*F(:,1)40,99%q v;

59

60 q double dot(:,i) = inv(M)*(tau(:,i)-(oe v+g ¥});

63 q dot(:,1¢l) = q dot{i,i) + q double d

65 position updats
66 ql:,141) = gq(:,1) 4q dot{:,1)*dt 4
(ii' [x(i),y(i)] = FK2R(q(1,1),q(2,1)

5-5 int deQJE WD —
5§ Fi:,1) ! b dot tilda{:,i);
57 L1y

. - 05

58 tau(:, 1

59 1

tloa v+g v})¢

60 q doubli

y.[units)
o

o
bl

(=

(5.}

63 q dot|: 1 5
; B 0 1 [
4

xJunits]

3

65 positromupnare

68 ql:,141) = g(:,1) 4q dot{:,1)*dt 4

(if [x(i),y(i)] = FK2R(q{1,1),q(2,1)
a

- e P oy ’ . 30 hnd *
de Q3843

YR -

on

i dot tildaf{:,1);

[|

Sy W W W oW AN
=)

Hloa v+g V])}

10 20 30 4 |
18]

66 qi:.141) = q(:,1) +q dot{:,i)*dt 4
(ii- [x(i),y(i)] = FK2R(q{1,1),q(2,1i)

J posioromnpoeaTe

TR iy W oy - -)0 el 1111 .

de 3V LG
1 450

13~ q = [-pi/4;f
- q dot = [0;
15 t% Control
li—= Kp = 167 Kd

17 £t Numerica g
18~ “for ielilen) &
L or i=l:iién =

19 $% Desi 05

20 mu desi

21 1 (

22 = dot | o ¢) 2
E X Junits] ;
23 Ut UTZTSINw, 2
24 mu double dot desired(:,i) = [-=0.3

3
~
-

W

%% Desired joint positions and

- o annd B A IR 1 10 - e it P Iy . AT *
q = [-pi/4;]

q dot = |03 04

L

— g g
o e W

%% Control

 /
Kp = 16; kd_ %2

—
o

v
17 it Numerzca‘§ 0
18 for i=1:lenf%

SR
FL

]
i
%% Desil .02;
j
|

o W

mu desi

4 (1
0 10 20 30 0

L8]

I UTZ STV, 2

mn aot |

mu double dot desired(:,i) = [-0.3

OO I R S
L P e

%% Desired joint positions and

X
n
y

13- q = [-pi/4;] Ide Qa8 LS ;
4 q dot = [0;] *
15 % Control |
16~ Kp=16; Kd
| |
17 $% NumericalE
18 for i=1:len|<
| &
19 % Desil

20 mu desi

21

22 mo dot |

< 1 qu
23

24 mu double dot

26 %% Desired joint positions and

& ———CII 1600t At Ne 00 1 B tut B

S0 1 S A SRSl ¥ Syrt B IR —yw g vy '
Kp = 16; Kd = 6; Ki = 5; &1 = [0;0];

1 %% Numerical integration starts here

18 for i=1:length(t)

19 9% Desired values

20 mu desired(:,1) = [0.4+40.3*sin(0.4*t(1));...

21 0.4-0.3*cos(0.2*t (1))]2

22 mu dot desired(:,i) = [0.3*0.2%d0os{0. 254k

23 0.3*0,2%sin(0

24 my double dot desired(:,i) = [-0.3*0

25 0.3%0,

26 %% Desired joint positions and veloci

) e

17
(0.2%t (1)
). 2%t (1))

27 q desired(l,1),q desired(2,1)] = . 1

(2‘* Jd = Jaco2R(q desired(l,1i),q de

-4 q dot desired(:,1) = inv{Jd)‘m

|

Bt tiegiei Ml et R
22- my dot desired(:,i) = [0.3%0.4%cos(0.8*¢(i));.n.
23 0.3*0.2*sin{0.2%t (1))]
24 mu double dot desired(:,i) = [=0.3*0.&%2*%sin(0.4*t (2
25 0.3*0.2%2*cos (0.2t (i})

26 %t Desired joint positions an& velocities
27 q desired(l,1),q desired(2,1)] = IK2R({mu desired(l,i
28 Jd = JacoZR{q desired(l,i),q desired(2,

29 q dot desired(:,i) = inv(Jd)*mu _dot des
30 %% Initial Conditions

31 (:, 1)) desired{:,1);
32 1 got(:,1) 1 dot dasired(:,1)

33 %% Desired dynamic terms

M Md = inertiaZR(q desired(:,i));
35 - oe vd = other effects2R(q desi
I
oo -
T R}
"R —y—

“Dyn_control RR__ |
“Dyn_control RR_."|
“Dyn_control RR_

“Dyn_control RR__
“Dyn_control RR_-
“Dyn_control RR_.
“Dyn_control RR_

|

irror in Dyn_control RR _ID task PID>IKZR {line

thl = atan2(y,x)-atanZ{a2*s2,al+a2*c2};

| EBrror in Dyn_control RR ID task

‘ [q desired{l/),q desired(:

al 0.5¢
232 0.4

fidt 00 | &
00

o e M3 &

ikJFlm_ri-Sll“iﬁl._|,wuv)ﬂn 1});:

So, now you can see like I have not changed the Ki value but I have like included the gravity.
So, you can like see the performance is as similar to the earlier it is not like a change because
the gravity is compensated. So, now we assume that the gravity is compensated only 99
percentage. So, now the model is like not accurate.

So, now we assume that it is only 99 percentage, gravity is compensated. So, you can see
like, it is more less working good, but you can see like there is an error steady state error is
coming because the gravity is not completely compensated. So, that is what the whole idea
you can see it. So, now in order to make this so if I increase i value will it like make it any

you can say deteriorate performance or improved performance that we can like see it.

So, now | am like seeing it. So, now it is like, you can see that i is really working good. So,
that switching is like converge, so the error is like converge. So, now if | increase the value of
you can say the frequency. So, what will happen for example, 1 am increasing, the frequency.
So, one frequency | am like increasing probably this 0.4 times. So, in the sense it like going
to make, you can say 8 profile, which is very complex. So, you can like see people usually
won’t do that, so | hope so it is, so | am just trying to show so there is an error because some
multiplications missing, it is like not able to do. Because the, you can say the inverse
kinematics is not happening.

(Refer Slide Time: 21:33)

1

1 t Control parameters

1€ Kp = 16; Kd = B; Ki 17 el M
1

|

|

t Numerical integration starts here
r i=l:1length(t)

t Desired values

18- for i=l:length{t) | e T .
19 %% Desired values

20 mu desired(:,1) = [0.440.3*sin(0.2*t(1));...

21 0.4-0.4*cos (0.2t (1))]

22 mu dot desired(:,i) = [0.3*0.3%cos{0.2%t(i));:...

23 0,340,2%sin(0,2*t (1))];

24 mu double dot desired(:,i) = [=«0.3*0.2%2%sin(0.2*t (i)
25 3*0.%2 U.2%t (1))

27 [q desired(l,i),q desired(2,1)] = IKZ ired(1,i
23 Jd = Ja des;
¥

29 q dot de

oZR(q desired(l,i),q

" |
I
dn - i et AN o0 1 2 P
4 s L ‘s >
10 = 0.5; a2 = 0.4; k lengtl

11 = 9.81; 11
13 q = [-p1/4;p1/3]; tial joint positiog
- q dot = [0;0]; nitia nt t
15 %t Control parameters

16 Kp = 167 Kd = By Ki = 5; el = [0;0];
¢ $% Numerical integration starts here
18 for i=l:length(t)

19 %t Desired values

20 mu desired(;,1) = 10.440.3%sin(0.2

2 4= 3tcos(0
8 ate

mu dot desired(:,i) [0,3%0,2¢

73
din - — 4 8 Vet A Ne @0 R 1 e P
[T T ST -t 5 [T —y T ’
15 %% Control parameters >
16 Kp = 167 Kd = B; Ki = 5; e1 = [0;0];
2

7 $% Numerical integration starts here
18 for i=1:length(t)
19 %% Desired values

20 mu desired(:,i) = [0.440,3*sin(0,2*t(3)):..
2 0.4-0.2*cos(0.24t (1)) s

22 mu dot desired(:,i) = [0,3%0.2%cos{0.2

23 0,2*0.2*sin{0./

4 mu double dot desired(:,i) =

(2? q desired{(l,1),q desired(2,1i)]

Jd 0ZR(g desired(l,i),q de

q = [-pi/4;p1/3];
q dot = [0;0]; % initia nit
%% Control parameters
Kp = 16; Kd = B; Ki = §; e1 = [0;0];
%% Numerical integration starts here
for i=1:1ength(t)

%% Desired values

mu desired(;,1) = [0.440.
0,.4-0,

mu dot desired(:,i) = [0.3*0,

0
'
o
e
-
y.[units)
o

%t Control

Fp = 16; Kd

%% Numerica

for 1=1:1eni 41 0 1
%% Desi xJunits]

mu desired(;,1) = [0.440.3%sin(0,24

mu dot desired(:,1)

q dot = [0;

1
-
[05
q= [-pi/4;] 2B
{ E 0
=
>

%% Control
Fp = 16; Kd
%% Numerica

for i=1:leni 8 0 1
%% Desi xJunits]
mu desired(;,1) = [0.440.3%sin(0.,2

0.4-0.24

o0
08

mu dot desired(:,i)

13- q = [-pi/4;|&
- q dot = (0}
15 %% Control
16~ Kp = 16; Kd
17 t% Numerica
18 for i=1:lenf 0 10 20 30 L
19 %% Desil Ls]

20 mu desired(;,1) = [0.440.3*sin(0.
21 0.,4-0,2%cos (0
G)ﬁ mu dot desired(:,i) "
|
i - et a0 600t b e (a0 18 1 s R4
EEETraSET T 0§
N LIRS ¥ Sol s 1 e e, E—— e mery -
0 £t = U:at:ts; timeé spal -

1 qlobal
3 t% System parameters

9 2; = 17
10 = 0.5; e 0.5 1ink length
1 = 0*9,81; t

13 q = [-pi/4:pi/3]; ¢ initial
< q_dot = [0;0];

15 ¥ Control parameters

16 Kp = 16; Kd = B; Ki = 5; ei = [0;0];
17 %% Numerical integration starts here

(LB for i=1:length(t)

lk ¥t Desired values

ki1 mit dasiradls 1)

|

4

ETEETTEETEE | RS
e —R O AR] (5 & P b WRpp—— B - s Yy T S
0 £ = U;at:tsooue i -

7 global & ’ 4
3 t% System p

9 = Z; 05
10 = 0.5; ® &25\
11 = (*9,81; Ei 0

>

&
(]

13 q= [-pi/&:
M q_dot = [0; A

15 t% Control | 4 0 1
16- Kp = 16; Kd xJunits]

7 §% Numerical integration starts here
(18 for i=1:1length{t)

}L %% Desired values

) miL dasiredls 31 = I 441 3rain

So, then what we have to see, so whether you are touching, like, probably improve your
control gain values. So, probably I am just deteriorating this just for PD control. So, | am just
giving it a PD control whether this particular performance is like a making it or not, it is not
because it is very fast, it is like not able to do it. So, | am just bringing it back. So, I am just
bringing it back. So, I am trying to reduce this, that hopefully work well. I am just trying to

See.

So, that make work. So, in this sense, | am trying to show a complex profile which is like 8
kind of profile I just want to show it is still it is like not working because the gravity be
compensated only 99 percent. So, | just want to show for that | am just assuming the gravity
is negligible amount. So, | am trying to show this. So, still that particular point is like not
converge or you can see the inverse kinematics is not happening because this is like very fast

that 8 profile is like not making it so completely.

So, that is what we can like visible, so | am just trying to show only one thing. So, in the
sense | am just increasing this profile probably this is trying to show probably 0.4. So, | hope
this will work. So, in the sense | am trying to make an ellipse, so this is also like not working
for us. There is an error so, because 0.8 is not possible so, | just to make it the ellipse as a
way around. So, that is you can see like I make it an ellipse, so that ellipse is actual like

following it.

So, now | am just trying to show you can see that PD control it is like converge. So, now we
can like make it this kind of complex profile or complex entity and other things we can like
try to do it. For example, now | assume that this is also like 0.5. So, you can see like the
variation is, actual like a completely different. So, these all we can like experience and then
try to do you can say different kinds of simulations and all. The cascaded design we will see
in the next short video, and then we can like go across this. So, until then see you Thank you.

Bye.

