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Hi, welcome back to Mechanics and Control of Robotic Manipulator. In the last lecture we 

have seen cascaded design last to last class we have seen how to simulate you can say 

dynamic control of you can say robotic manipulator using joint space. So, this particular 

lecture is like in addition to that, because last lecture or you can say last simulation itself, I 

said, the task-space I did not include it here.  

So, this particular lecture is like towards task-space. So, in the sense inverse dynamics in 

task-space and the; all motion control which is like which includes a computed torque control 

or PD or PID. So, these all will be seen. In addition to that we have attempted the cascade 

which we call integrated backstepping or simply backstepping control or dual-loop control 

that is also we are going to see in this particular short video.  
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So, in that sense we are like trying to see what is inverse dynamics in task-space. So, then we 

would be going like how we can modify the computed torque control when we required the 

task-space variable or the; you can say desired variable. So, similar way we can see the 

motion-based control which we call like PD and PID control and then we will go to the dual-

loop or double-loop or cascaded or backstepping control.  

So, in that sense we will like take the same scenario what we have seen in the dynamic 

control of you can say joint space. So, one only thing here I would be trying to show a small 

tricky one because, so, there we have seen like if the theta 1 desired and theta 2 desired has 

given us a profile how we can do it? So, instead of this so, I am trying to show us our circular 

profile in task-space how that would be followed. This is one of the common you can say 

practices used to do for the control performance of any system.  

So, in that sense we are trying to see that way. So, now we will talk about the first thing is 

inverse dynamic simulation. So, of straight away like we talk about to our serial planar or you 

can say planar serial manipulator. So, in this sense, we will talk about the Euler integration 

parameters then the mass of link1, link2 and the link length and the gravity again since we are 

talking about inverse dynamics, the gravity would be playing a different role. And most of 

the common manipulators are gravity balance. So, we assume that 0 gravity here so we will 

come back later on. So, if we make it 0 instead of 0 if we put it some gravity value as 9.81 

what would the happen.  
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So, in that case, we are like talking about the circular profile. So, if you look at it here, the 

link length is like 0.5 and 0.4. So, I am trying to see that 0.4 is the radius both x and y sorry 

0.4 by 0.4 is the centre, and the 0.3 radius as a circle I am trying to draw. So, in that sense the 

mu desired is like coming in this way. In addition to that, it is like 0.2 times of t in the sense it 

is omega t theta I can write as omega t where omega is 0.2.  

So, now based on that, you can like take a time derivative that would be mu dot desired then 

further you take the second derivative that would be you can say mu double dot desired. So, 

these are like we have like use. So, in the last joint space, we have seen how the cubic 

polynomial can be used, but here even without cubic polynomial, how the circular profile can 

be generated that is what we have seen here.  
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So, further what we can see once this. So, we are trying to find the inverse kinematics. So, 

that just for our own reference, we tried to find out what would be that q desired and what 

would be the q dot desired. So, once we obtained this, then we are like going back to the 

initial condition, since the initial condition supposed to be same for the actual desired; actual 

and desired the initial condition. So, we are like using it this condition.  

So, instead of actual like deriving it directly, so whatever the desired, the first value, the first 

value, we are like equating to the q and q dot. So, in the sense you are initial condition 

defined as here. So, after that, we are going for the dynamic terms since it is inverse 

dynamics. So, we are trying to find out the desired dynamic term in the sense inertia matrix 

based on the desired value. Similarly, other effects due to the desired value and gravity due to 



the desired value calculated. Similarly the actual value for the simulation in the real time we 

do not require this but we are doing the simulation, we need to find out the actual inertia 

matrix other effect and the gravity.  
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Now, based on this we can like use the, what you call the sub functions. So, we can use the 

inertia sub function then the other effects of sub function, the gravity effects sub function 

these all we have derived in the last you can say class itself. So, then this is the Jacobian 

because here Jacobian is required forward kinematics and inverse kinematics are required. 

So, we can use it this.  

So, based on that we come back what you call one additional variable which is J dot because 

like, so, q double dot desired can be derived in that way for example, you take mu dot equal 

to J of q into q dot so then you can see like mu double dot can be returned as so, J of q into q 

double dot plus J dot into q dot since this is the J dot is required. So, we have derived the J 

dot based on the time derivative and then like we got this additional sub function.  
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Once we did the sub function this is the inverse dynamic model. So, where M of mu into mu 

desired double dot, plus n of mu comma mu like a mu desired comma mu desired dot. So, 

this is actual like we use as a F, but like F we can write as tau. So, and this is tau is J 

transpose of F that is what we are going to use.  

So, in this sense this is the inverse dynamics. So, where first we calculate the; you can say the 

end effector forces in moments based on the known model and this is the; you can say inverse 

dynamic you can say model in input vector in task-space that we convert it into joint-space 

because so, the original system would be derived based on the joint-space because the 

actuator fixed on the joint. So, then we derived this So, we are like trying to use the simple 



you can say Euler integration where the velocity propagation the position update and then 

once you update then we will do the forward kinematics just for animation.  
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So, then you can see like then you can like see in the MATLAB code. So, I just want to show 

that this is the inverse dynamics model which we derived in the MATLAB you can see these 

are the cases which we have seen in the you can say earlier slides. So, now this is the desired 

value and then this is the joint desired value just for our reference and this is the initial 

condition, and this is the dynamics.  

So, we have derived actual, and you can say desired the dynamics then this is the inverse 

dynamics which is like based on you can see like known values and then you can calculate 

the force then based on that you can like calculate the tau based on J desired transpose to F. 

So, then you can like go this so, after that you can see like these all the sub functions, and I 

am trying to plot before that I am trying to you can see animate. So, now in that sense if I like 

ran this code.  
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So, you can see like, so, it is this is the profile which is given as a desired and you are system 

also like following it. So, this is what you can see as inverse dynamics in the task-space, and 

this is the theta 1 and theta 2, how it gone based on what you call the circular profile of mu 

which is given. So, now the same thing, same thing can be done in the joint space just for 

your benefit.  

So, we have like taken that. So, the inverse dynamics in the joint space so, then what 

happened this was the equation for that you need to know q double dot desired because the q 

dot desired and q desired, we have already calculated in the earlier code. So, now we have to 

change. So, now you can see like this way we can take it the q double dot desired can be 

written as mu double dot desired minus J dot desired multiply with q dot desired.  
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So, that is why we have calculated this J dot. So, now you can like use it. So, you go back to 

the MATLAB, and you can see and put the, that particular function has joint space. So, you 

can see like the final equation we are directly writing in the, what you call tau. So, we are not 

calculated in the F. So, you can see like this is mu desired which is like M mu desired has 

changed as the M desired then inverse of J desired that comes So, after that mu desired 

double dot minus J dot desired into q dot desired. So, then these are other effect.  

So, now you can see the same profile, what we have done in the earlier case the same thing 

we have used when you can see like this is also like following it. So, now this is what the 

inverse dynamics case. So, now we will go to the, what you call the motion control and the 

model-based motion control. So, in this sense we will go to the computed torque control the 

same code we are trying to change only thing the initial conditions we are giving it as it is, we 

are not equating to the q desired. First value is equal to q of first value that is we are not 

doing it we are directly using it some initial condition and then we are adding the control 

parameter which is Kp and Kd.  
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So, now based on this word this is the equation we are talking about the task-space either you 

can write it this way directly tau or we can write it in this way. So, we are writing in the 

second form. So, first we derived F then we are like multiply with J transpose that will give 

the tau. So, that is what we are like writing it here. So, you can see the mu tilde. So, we have 

like calculated the error mu tilde is like mu desired minus mu and mu dot tilde is like mu dot 

desired minus J of J into q dot this is nothing but mu dot. So, then the computed torque 



control we have used this is in the task-space. So, we can calculate the F then based on the F 

we can convert it into tau.  
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So, now we can like go to the MATLAB code. So, this is we have written as CTC. So, now 

you can see like what we have added. So, this is added and now, you can see like this is we 

have commented. So, we are not equating that so, now the q at t equal to 0 and q desired that 

equal to 0 are not equal. Similarly, q dot t equal to 0 and q dot desired at t equal to the 0 also 

not equal.  

So, in that sense you can see like we have just added this. So, you can see like this Kp mu 

tilde plus Kd mu tilde dot has added and we can like come back So, now this is like feed 

forward and feedback linearization in addition, the feedback control PD has come. So, that is 

what we call computed torque control. So, now we can like see so, how this is like beneficial 

now, you can see it is starting from some different initial condition and it is like following it. 



So, now, if you look at the error, error is like converge to 0 it started with some nonzero 

initial error, so that is like converge. So, now if I like include this so, I am just saying that the 

q dot and q at initial both are like equal to 0. So, then you can like see, so, that would like you 

much more, smoother. So, you can like see it to why we are like saying you can see it is like 

much more super impose the actual even switching is not happening.  

(Refer Slide Time: 12:27) 

 

 



 

 

 



So, now you can see like this is in the order of 10 power minus 5 in the sense it is almost like 

micro level of error, or you can say sub millimetre level error in terms of meter if I talk. So, 

now why this is required you can see like the task-space so if I am like equating this, you can 

I am just bringing it and so, this I am bringing it so this I am like commenting in the inverse 

dynamics.  

So, you can see like this would not work as the desired manner that is what we are like trying 

to show. In fact it may be unstable also you can see it is starting somewhere here this is the 

starting point and the circle supposed to follow you can see it is not making a circle because 

the initial velocity at desired and the initial velocity actual are different an initial position 

desired are different. So, you can see it. So, that is why I said it cannot be directly used as a 

control it can be certain extent we can use the open loop control, but provided that initial 

conditions are supposed to match, and you can see other dimensions also make it.  

So, now I hope you are clear why the CTC has come. So now you want to even improve the 

system even you assume that the, you call the other effect is not compensated you imagine 

that. So, now I am like seeing that the gravity is there. So, now I include the gravity and you 

can see like the error maybe the same order. So, now you can see like we have not 

compensated that directly. So, that is what I want to like make it.  

So, we are not compensated that gravity here anywhere. So, because of that it is like a giving 

what you call this additional adverse effect. So, now you got idea why we need to like 

account this. So, these all like additional input which you need to know. So, now I am like 

why we are like making it all the time gravity compensated you would have like got it now 

clear.  
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So, now this is the additional you can say input which I want to give. So, now we will move 

to the motion-based control. So, in that sense, we are like going for PD and PID. So, first a 

PD with the gravity compensation we are trying to do so in that sense the complex terms are 

all gone and it is just a J transpose multiply with the PD and the gravity compensation. So, 

that is what you can see the F is added and the gravity compensation is added with this. So, 

now we will like go this.  
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So, I am just showing that PD control. So, now you can see like PD control even the gravity 

we can include later on. So, right now we can like see the PD control is like coming into our 

picture. So, now you can see this is PD and the gravity compensation in this case any way 

gravity is not there, and you can like see it is starting from nonzero and it is like trying to 

follow the circle and you can see initially there is an error after that it is like a much more 

improved. So, you can like see there is a small error.  

So, now if I include the gravity, you can like try to see. So, what will happen whether the 

gravity is trying to compensate here or not that we can like see it. So, you can like see it does. 

So, you can like find it. So, now the same way you can like see here, so the computed torque 

control so you have assumed this is the initial and this desired I am not making it equal. So, 

now I am just trying to show that the gravity is coming, but my computed torque control is 

like working or not.  



So, you can see like this is working but if I start from here itself that gravity is not properly 

compensated that is what the happened earlier. So, now you can like see, this is the error for 

this, but the PD control is like giving more-closer result. So, that is why I said if the gravity is 

compensated if you are moving in very slow speed even the PD control is sufficient. So, that 

is why most of the industrial manipulator the PD control is using but you can see like small 

hitch up here and there will come this is due to what you call the constraint on the Jacobian.  
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So, now people may think they error probably further improved if I use PID control it need 

not be all the cases. So, probably I will show an example. So, this is a PID control, and we 

are like trying to show this. So, now we can add the I term and we are like coming back here. 

So, in that sense we go to the controller directly. So, the PID control and the gravity we can 

like initially ignore then we can like show so, what you can see like the PID control we have 

like added Kp, Ki and so Kd is coming.  

So, this is a PID, and we have like compensated that with the gravity compensation. So, I am 

trying to show you can see it is not actual like PD control performance. So, that is why if you 

add the third order you can see integral error dynamics that may like end up with even 

destroyed the performance it may not be all the time the error would be converge to 0.  

The error converges to 0 however, you can see the dynamics is like modified. So, now in 

order to verify that, so, I am just reducing the; you can say integral value for example, I am 

putting it 0.5, I am just trying to show. So, earlier it was 5 and now it is 0.5 you can see, so, 

the performance is very close to PD and the integral error is like trying to make. So, you can 

see it is like more or less closer you can see. So, clearly you can see.  

So, earlier case it was like more converge now, the integral is like making some you can say 

pushing different region. So, now this is what I want to like emphasize the PID control is not 

preferred, most commonly in the robotic manipulator community rather than the PD because 

the item can end up with what you call wind up. So, that is why we can like avoid this 

particular PID control. So, now you are like clear. So, we can like see further cases if I 

increase the, you can see PD value or probably I can like add the gravity value you can like 

see something going to happen. 
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So, now you can see like I have not changed the Ki value but I have like included the gravity. 

So, you can like see the performance is as similar to the earlier it is not like a change because 

the gravity is compensated. So, now we assume that the gravity is compensated only 99 

percentage. So, now the model is like not accurate.  

So, now we assume that it is only 99 percentage, gravity is compensated. So, you can see 

like, it is more less working good, but you can see like there is an error steady state error is 

coming because the gravity is not completely compensated. So, that is what the whole idea 

you can see it. So, now in order to make this so if I increase i value will it like make it any 

you can say deteriorate performance or improved performance that we can like see it.  

So, now I am like seeing it. So, now it is like, you can see that i is really working good. So, 

that switching is like converge, so the error is like converge. So, now if I increase the value of 

you can say the frequency. So, what will happen for example, I am increasing, the frequency. 

So, one frequency I am like increasing probably this 0.4 times. So, in the sense it like going 

to make, you can say 8 profile, which is very complex. So, you can like see people usually 

won’t do that, so I hope so it is, so I am just trying to show so there is an error because some 

multiplications missing, it is like not able to do. Because the, you can say the inverse 

kinematics is not happening.  
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So, then what we have to see, so whether you are touching, like, probably improve your 

control gain values. So, probably I am just deteriorating this just for PD control. So, I am just 

giving it a PD control whether this particular performance is like a making it or not, it is not 

because it is very fast, it is like not able to do it. So, I am just bringing it back. So, I am just 

bringing it back. So, I am trying to reduce this, that hopefully work well. I am just trying to 

see.  

So, that make work. So, in this sense, I am trying to show a complex profile which is like 8 

kind of profile I just want to show it is still it is like not working because the gravity be 

compensated only 99 percent. So, I just want to show for that I am just assuming the gravity 

is negligible amount. So, I am trying to show this. So, still that particular point is like not 

converge or you can see the inverse kinematics is not happening because this is like very fast 

that 8 profile is like not making it so completely.  

So, that is what we can like visible, so I am just trying to show only one thing. So, in the 

sense I am just increasing this profile probably this is trying to show probably 0.4. So, I hope 

this will work. So, in the sense I am trying to make an ellipse, so this is also like not working 

for us. There is an error so, because 0.8 is not possible so, I just to make it the ellipse as a 

way around. So, that is you can see like I make it an ellipse, so that ellipse is actual like 

following it.  

So, now I am just trying to show you can see that PD control it is like converge. So, now we 

can like make it this kind of complex profile or complex entity and other things we can like 

try to do it. For example, now I assume that this is also like 0.5. So, you can see like the 

variation is, actual like a completely different. So, these all we can like experience and then 

try to do you can say different kinds of simulations and all. The cascaded design we will see 

in the next short video, and then we can like go across this. So, until then see you Thank you. 

Bye. 


