Mechanics and Control of Robotic Manipulators
Professor Santhakumar Mohan
Department of Mechanical Engineering
Indian Institute of Technology, Palakkad
Lecture: 42
Cascaded Control Design

Hi, welcome back to Mechanics and Control of Robotic Manipulator. In the last class we have
seen dynamic control. So, we started with inverse dynamics, and you can see dynamic control
based on motion based and model based the motion based which we have seen is PD and PID.
The model based which we have seen is like computer torque control. In this particular lecture,
we are going to see the MATLAB simulation on this dynamic control and the dynamic control
simulations we are going to see that too we are going to restrict to one only that joint space. So,
the task space we will see in upcoming lectures, but now, we are going to see the dynamic

control simulations in joint space.

(Refer Slide Time: 00:55)

W SIMULATIONS IS MATLAN

B Inverse Dynami
H Computed torque or model-based contro

Motior baw X1 contr |

0/ 1

So, in that sense we will start what is inverse dynamics. So, we know like inverse dynamics
aspect and inverse dynamics will work as an open loop or feed forward control if both the initial
and you can say initial position and as well as desired positions are same and you can see similar
way the initial and desired velocities are same and non zero acceleration are there then it will

work good.

So, that is what we have seen, then we have started talking about second order error dynamics is
stable then we derived what you call computer torque control which some people call PD with
feed forward and feedback linearization control some people simply call model-based control
then we have seen a motion based where the acceleration is desired acceleration is not known

and the model parameters are not known.

Then we can do provided we assume that if the spatial system, then the gravity needs to be
compensated otherwise the system performance may not be as what we expected. So, then we

can say PD plus gravity compensation our PID plus gravity compensation these all we have seen.

(Refer Slide Time: 02:43)

The inverse dynamic madel: v = M(q,)q, + n(qy.q,)

*% Inverse dynamic simulation of a AR planar robot
clear all; close all; ¢lc;
W% Simulation parameters
dt = 0.01; J stepsize
12; % total simulation time

t = 0:de:ts; ¥ time span

global al a2 ml n2 g

So, the same thing we are trying to see in MATLAB simulation. The first thing we are trying to
do the inverse dynamic model so, where you can say tau given in the desired values. So, M of q
desired into q desired double dot plus n of q desired comma q desired dot if these all known
because q desired q desired dot and q desired double dot are known. So, we can calculate M
desired and as well as n desired then we can apply what you call you can say inverse dynamic

model. So, this is what this is something like F equal to Ma so, that kind of thing.

So, for that we are writing you call MATLAB code so, which is nothing but inverse dynamic
simulation of RR serial planar robot. So, here we are assuming there are certain variables which
are global. So, last class or you can say it in the kinematic control class we have seen the L1 and

L2 are global. So, where that we can use in some of the sub function. Similarly, here m1 m2 g

and as well as al in a2 so, instead of L1 and L2 we use al and a2. So, these are global. Further
what we assume that the total simulation time here is a 12 second and the step size is 10
millisecond and duration of the total time span start from 0 to ts. So, these all we have

conventionally see.

(Refer Slide Time: 03:30)

A4 System parameters

ml = 2; o2 =1, % link nassess

al = 0.5; a2 = 0.4;) link lengths
g = 0%9 81; % gravity

A% Initial conditions
= [0;p1/3-pi/4); X initial joint positions
q.dot = [0.2¢p1/2

r
|

.!-plx'.?.lf"!; A initial joint velocities

) Y
.
So, now for demonstrating we have taken one of the same codes which we have done in the
dynamic simulation where mass of the first link is 2 kilogram and mass of second link is 1
kilogram and the length of the first link is 0.5 and the second link is 0.4. So, link length these all
we have taken and then we have gone further. So, for inverse dynamics, | already said if we
introduce gravity there would be a small you can say hiccup will come. So, in order to avoid that
| assume that there is no gravity acting in the sense that gravity is balanced. So, then we need to

identify what would be the initial condition.

So, here | assume that the initial joint position actual joint position is as equal to desired. So,
probably when we come to the, that part you can see why it is we have taken as this way. So, pi
by 3 minus pi by 4 as the, you can say theta 2 initial and why it is a take and so, on. So, 0.2 times
of pi by 2 as the joint velocity that we will see in the next you can say continuous slides.

(Refer Slide Time: 04:39)

%4 Numerical integration starts here
for i=1:length(t)
W4 Desired values

qg.desired(:,1) = [pi/2¢ain(0.2¢t(1));

pi/3-pi/decos(0.50t(8)}];

q.dot_desired(:, 1) = [0.2epi/2vcos(0.29¢(4
0.5=pi/4#sin(0.5+t(1))];

q_double_dot_desired(:,1) = [-0.2"2+p1/2¢sin(0.2¢t(1));

0.572¢p1/4vcoa(0

function M = inertiaZR(q)
global al a2 ml n2
thl = g{1); th2 = q(2);

% Inertia matrix

nil = al"2en] ¢ a1"2en2 + a2°2m2 + 2ealea2en2ecos(th?);

n2! = a2wm2¢(a2 + alscos({th2));
ni2 = a2ey2¢(a2 + alscos(th2));
n22 = a2"2e2;
H=(m11,m12;021 ,022];

end

.) Y

function oe_v = other_effects2R(q,qdot)

global al a2 ml n2

thl = g(1); th2 = q(2);

thidov = qdot(1); th2dot = qdot(2);
hother effects

oe_vl = -al*a2sm2¢th2dot+sin(thZ)e(2¢thidot + th2dot);
0e_v2 = al*a2sm2¢thldot"2#sin(th2);
oe_v=[oe_vl;0e_v2]:
end
A \i,"’\

function g v = gravity_ effects2R(q)
glodal al a2 ml n2 g
thl = q(1); th2 = q(2);
Kgravity effects
gl = a2=m2+¢cos(thl 4 th2) ¢ alsmlecos(thl) + alsm2ecos(thl);
g2 = a2sm2+cos(thl + th2);
gr=g+(g1;g2);
end

function J = Jaco2R(thl,th2)
global &l a2
J = [~aleain(thl)-a2+sin(thl+th2) ,~a2es

#alecos(thl)+a2¢coal(thl4th2) ,+a2+co

n{thi+th2),;

end

So, before going to talk about that so, you can see this is the q desired so, the q desired we have
taken as a two sinusoidal signal. So, the theta 1 is varying pi by 2 in the sense it is minus pi by 2
plus pi by 2 with a frequency of 0.2 times of t. So, similarly the theta 2 is varying. So, pi by 4
oscillations, but it is varying from pi by 3.

So, in that sense you can see like now why this initial condition has come pi by 3 minus pi by 4
because if you take theta like a time is 0 so, then theta one would be 0 and theta 2 would be pi by
3 minus pi by 4 the similar way you can see like a q dot desired. So, if you substitute the time
equal to O then you can see, so, 0.2 times pi by 2 would be the theta 1 dot and theta 2 dot at O that
is why we have taken this.

So, now, based on this the g double dot desired all those things we have used. So, further the
dynamic model instead of writing it everything inside the, you can say for loop so, we have made
some kind of sub function which is easy so, far that we are taking first the inertia matrix which is

we call inertia2R.

So, which is going to give inertia matrix based on the, you can say g the q1 is theta 1 and g2 is
theta 2. So, we can calculate the inertia matrix in this case it is the two or serial manipulator
which is 2 cross 2 the same way we can see other effects which we have written in our lecture
which was v of g comma g dot so that is what we have written as a sub-function which is we call

other effects vector.

So, now, this is also like depend. So, here you can see like both thetas and thetas dots are
independent. So, we have you can say call ¢ comma g dot. So, similar direction we can take the
gravity efforts. So, q would be the input then we can get the gravity vector g of g underscored v
we can find it. So, further in order to make a much more you can say beneficial. So, we are using

Jacobian you can say sub function which we derived in the kinematic control.

(Refer Slide Time: 06:51)

function [x,y] = FK2R(th1, th2)
global &l a2
x = alscos(thl)+a2¢cos(thl+th2),;

sin(thl+th2);

y = alssin{thl)+a2

end

function [thi,th2] = IK2R(x,y)
global al a2
€2 = (x"2+y"2-a1"2~a2"2)/(2#al%al);

2 = gqre(1-¢272);

(=)

thl = atan2(y,x)-atan2(a2¢s2, al+a2+c2);

th? = atan2{s2,¢2),

end

function tec = Cubic_TR(x0,xdot0,x{, xdotf tf)
A = (1,0,0,0;
0,1,0,0;
1,00,00°2,8073,
0,1,20tf 30t872];
b = [x0;xdot0;xf;xdotf];
tc = inv{A)*b;
end
‘)

Md = inertia2R(q_ desired(:,1));
oe_vd = other_effects2R(q. desired(:,1),q. dot desired(:,i)});

g.vd = gravity_effects2R{q_desired(:,i));
M = inertia2R(q(:,1));
oe_v = other_effects2R(q(:,1),q.dot(:,1));

g.v = gravity_effects2R{q(:,1));

07 £
Similarly, the forward kinematics and inverse kinematics of 2R serial manipulator we have taken
here for understanding or whenever required we can use it. So, in that sense we will come back

even if we derive the, you can say trajectory based on the cubic polynomial we can use this sub

function which we derived in the, what you call kinematic control.

So, these are all sub functions. So, now come back to the original function. So, we are deriving
the Md side in the sense the inertia matrix based on the desired value similarly, other vector
based on desired value and gravity vector based on the desired value we have calculated. So,

now the first three you can say values are desired similarly the actual inertia matrix other vector

and the gravity vectors we have like found based on the actual q g dot. So, now once these all

available so, where we can go, we can try to find out what is tau.

(Refer Slide Time: 07:48)

W% Inverse dynamics
iinput vector
vau(:,i) = Mde(q double dot_desired(: 1))

+oevd + g vd;

% accelaration vector
q.double_dot(:,1) = inv(M)e(tau(:, 1)-(oe_vég v));
 welocity propogation
q.dot(:,i+1) = q dot(:,i) + q.double_dot(:, 1)edt;
% pesition update
q(:,141) = q(:,4) +q_dot(: L)=dt ¢ 1/2¢q double dot(:, i)edt"2;
[x(1),y(1)] = FK2R(q(1,1),q(2,1));

end

) +

So, tau in this case it is simple what you call inverse dynamics. So, inverse dynamics what it says
the M desired into q double dot desired plus other vector desired plus gravity vector desired. So,
now, we have given that as the input vector here, so, then we are going the straightforward

numerical integration.

So, first we find the acceleration vector the tau minus of other vector you can say plus gravity
vector, and this is M inverse these all whereas, the tau would be having all the desired, so, then
the velocity would be propagated based on this and the; you can say position update or position

propagation is based on this.

Then | want to plot something like animated way. So, | want to find what would be the actual
values. So, | am just taking you can say forward kinematics for the just to show the animation of
the forward dynamic model simulation. So, now, based on this if we go to the MATLAB, you

can say simulation.

(Refer Slide Time: 08:50)

L

W -3 N

10
11

9

%% Inverse dynamic simulation of a RR planar robot

s WS e
|

A o A SPg—r—Y - .

clear all; clese all; clg;

%% Simulation parameters

dt = 0.01;

ts = 12; % total simulation tim
t = 0:dt:ts; tim par

qlobal

t% System parameters

= /2 =
Z: 1;
= 0.5; = 0.,4; 1th
1
= (0*9,81; jravit

%% Initial conditions
q = [0:pi/3-pi/d];: nitia int posi' o8

q_dot = [0,2%pi/2;0];

= e eSS N/
Doves s r 4. i'nm

et o, gt w1 S b st W €

18

global

&% System parameters

= 0.5; = 0.4; sink langth

= rn'f,HL; ravity
%% Initial conditions
q = [0;pi/3-pi/d]; init
q_dot = [0.2*pi/2;0]; il
§% Numerical integration starts here
for i=l:length(t)
%% Desired values
q desired(:,1) = [pi/2*sin(0.2*t(1));..
: pi/3-pi/d*cos(0.5° &

q dot_desired(:,i} = [0.2*pi/2*co;

0o OEOEEETew § |0

1900 | |t et s St st W

[rg—rTYT [P— Y~ [PE—— e——y S——)

16 for
17
18
19
20
Z1
22
23
24
25
26
27

D)
2
no..

{=1:1ength(t)

%% Desired values

q desired(:,1) = [pi/2*sin(0,2*t(1)):...

pi/3-pi/4*cos(0.5*t (1)));
q dot desired(:,i) = [0.2%pi/2*cos{0.2*t(i));...
I 0.5*pi/4*sin{b.5%c (1)) 7

q_double dot desired(:,i) = [-0.2"2*pi/2*sin(0.2*t (1)
0.5%2*pi/4*cos(0.5*t (1)

Md = inertiaZR(q desired(:,i});

oe_vd = other effects2R(q_desired(: i), esired|

g_vd = gravity effects2R(q desired{:,1)

M = inertia2R(q{: 1))+

oe v = other effects2R(q{:,i),q dot

g_v = gravity effects2R(q(:,1)):

TN ;. 2 @

LT — e —y .

w o -3

[

[U P R P I SC T S I
o

s

q double dot desired{: i) = i-C.2’2‘p;!2‘sin(O.2‘L(;)?:
0.5%2*pi/4*cos(0.5*t (1)

Md = inertialR(q desired(:,1});

oe vd = other effects2R(q desired(:,1),q dot_desired(

g vd = gravity effectsZR{q desired{:,i));

M = inertiaZR(q{:,1)):

oe v = other effectsZR(q{:,i),q dot(:;i));

q v = gravity effects2R(q{:,i));

%% Inverse dynamics
Lnput Il
tau(:,i) = Md* (q_double dot desired(:,i}
+ oe_vd + g vd; -

leracior

T . '@

] double dot(:,1i) inv(M)*(tau(:, 1)- (0w

o RNy s - |
So, we will go to MATLAB code. So, you can see this is the code which we have shown there.
So, you can see like this is inverse dynamics simulation of RR planar serial manipulator or robot.
So, these are the cases so, now, we are taking it these all. So, here we assume that gravity is 0
later on we will bring it and here we are not considering the frictional effect because the

frictional effect is not exactly model it.

So, that is why we know here the frictional effect then we are getting the g dot desired d desired
g dot desired g double dot desired. So, based on this so, then we are calculating the desired value.
Based on desired value what would be the dynamic model and actual value what would be the

dynamic model.

(Refer Slide Time: 09:33)

Wi A Db
31 %% Inverse dynamics -
32 ! ‘. ’ *»

33 tau(:,1) = Md* Iq_n.‘uuhle:. dot_ desired(:,1))...

e

+ oe vd + g vdi
iccelerat T [7
q_double dot(:,1) = inv(M)*(tau(:,i)~(oe_vtg v));

PURIEE PV RS DV Ra P
o

-y
W O -3 o

t

q dot(:,i4l) = q dot{:,i) + q_double do N fdt;

(o

O
—_ o

qii,i41) = gl:,1) #q dot{:,1)*dt + 1/2%
(bj [x(i),y(i)] = FK2R(q{l,1),q(2,1)); A
4 d

Oo-- NG ;. /'@
[o e W (aaea |

[Tey—rryT [P [rg——rers v .

o
»

le dot(:

ond

16 % Animation

17 for i=1:10:1length(t)
xl = altcos(qg(L,i));

yl = al*gin(q(l,i});

x2 = xl+al*cos{qll,1)+ql(2,1});

T O %
— FORE

—_ O WD

5 y2 = yltai*sin(q(l,1)+q(2,1}):

52 plot ([0, x1,x2],[0,y},y2]), 'r-0', '1inewidth',2)

53 qrid on, set(gca,'fontsize',20)

54 hold o1

55 plot(x{l:%),y(L:i), "'m-")

5 axis ([-(al+a)=0.1, (al402)40,1,~(al4a2) tal)+0

n

5 axis square, xlabel('t,{s]'},ylabel('q,]|
(-.35 hold off, pause{C.001)

@ .
y)
Qo R R -

1980 1 it ot s St . W "

58 hold off, pause{0.001)

59 end

60 §% Plotting functions

61 plot(t,q(},1:4),'c-.",t,q(2,1:1}, 'b~", 'Linewidth',2)
62 legend('\theta 1',"'\thata 2')

63 grid or

64 set (gca, 'Tontaize’,20)

65 xlabel('t,[s]");

66 ylabel('q, [units]’)

-

&8 function M = inertiaZR(q)
9 global
(70 thl = q(1); thz = q{2);

-
Mo
diow (n -

1d matrix

'_-_»—"'uﬂ o N:f:’:-' r —.:._IA";‘ | e --¢‘—V-- ‘.. < ; ?
14-= q dot = [0,2%pi/2:0]; initial joint velocitis
15 %% Numerical integration starts here

16 for i=1:length{t)

17 %% Desired values

18- q desired(:,i) = [pi/g2*sin(0.2*t(L));...

19 pi/3-pi/4*cos(0.5*t(1))];

20~ q dot desired(:,i) = [0.2*pi/2*ces({0.2*t(i)):,..
21 0.5*pi/4*sin{0.5%t (1))]
22~ q_double dot desired{:,i) = [-0.2"2*p1/ F.2*t (1)

23 0.5%2%pi/ }.5*t (1)

24 Md = inertialZR(q desired{:,i));
25- oe vd = other effects2R(q desired(:,1) ‘asired(

(gf g_vd = gravity effects2R{q desired’

27 M = inertiaZR(q{:,1)); ‘sx

II()»ﬂ_‘,. ’

t! System parameters

l 0+9.81;

1 ¥ Initial conditions

1 q = [0;pif3spi/d];

1 q dot = {0.2*'p1/2;0];

15 $% Numerical integration starts here

1 r i=lilengthit)

l %% Desired values

] 1 desired(:,1) = [pi/2*sin(0.2*t(i));..

19 pi/3-| i (0,° |

;9] dot desired(:,1) {U.2*pl 8 - \(‘~
<l 0.5*pi/4*si ‘
no s g .en s 1 \li u

So, then we found the input vector and all the things so, finally we want to plot animate. So, we
are taking the animated stuff here. So, then we are just plotting it, and these are the sub functions
which we are shown that. So, now if I run, so you can see like this is going to be the first theta 1

IS going to vary plus or minus, you can say pi by 2.

So, it starts from 0 and it goes pi by 2 then it comes back. So, we will see similarly the other one
is it is going to vary between you can say pi by 4, but with the addition of pi by 3 and the
velocity also going so right now we take everything is idealistic the sense the initial condition
and initial velocity and the initial position are as similar as the desired initial position and the

gravity we make it a 0.

(Refer Slide Time: 10:

28)

‘\‘- | ot g s § Gt rn st W € "
T TP L 2 o Ve,
< s O NP U Bh s - o s— o= w ¥ bt o -
2= <clear all; close all; clc;
3 ¥t Simulation parameters
4- dt = 0.01; stepgize
S— ts = 30; % total simulation time I
6— t = 0:dt:ts;) time span
7 global
8 %% System parameters
9 =2:m=1;
10~ = 0.5 a2 = 0.4; K nqth
11-] = 0+9.81; jravity
12 £t Initial conditions
13= q = [0;pi/3-pi/4]: ¥ Initial joint posit .
(lj q dot = [0,2*pif2:0]; inicial joint v)
5 £t Numerical integration starts here ’ 3
; a8 L
S A1) a = T
Trgwe!
to wwd Ui 'w.:_:_‘:;__ﬂi.. TR T 'H
Judeau Ly ol
2= <clear all; | " =3
3 % Simulatii !
4- dt = 0.01;
05
5- ts = 30; =]
B
- t = 0:dt:ts € 0 \/
=)
1 global & ‘
8 t% System p 05
9- =23 |
10~ = 0.5; -1
A 0 1
18 52) = 049,81;
12 £% Initial conditions”
13« q = |0;pi/3-pi/4]: | Initial joint posit
(1} g dot = [0,2%pi/2:0]; initial jolnt '
15 £t Numerical integration starts here J ‘ ,) -
I - ’
) r /%

d

T R % ook
% LT de0i8 L3 r <
2 clear all;

, : 2
3 't Simulatii
— N'/
2 = N:AY '
. ‘“ . ’ 1 —h_
5 te = 30; | | !
[
t = 0:dt:ts’E 47
7 lobal 2"
f JL0DA v A\ '
U \‘]
3 t% System p, 4
4 = Z; Ny
11 0.9; -2
= 0 10 ol 0
11 049.81;
, . Ls]
12 %% Initial conditions
13- q = [0;pi/3-pi/d]: ‘ t positio’
M » f R 1t /9. . ’
;{y q dot = [0,2¢*pi/2;0]; ! { ‘,'J”‘
"5 tt Numerical integration starts here ! y

if 1 run so, I can, supposed to be run this. So, if | run this you can see. So, this is what you can
see the theta 1 is rotating between plus pi by 2 minus pi by 2 you would have seen, and this is
rotating this is you can see like a plus pi by 2 and minus pi by 2. The other one is you can see the
mean is pi by 3 on top pi by 4 plus or minus. So, now this is the; you can see inverse dynamics.

(Refer Slide Time: 11:10)

j g
3
3

So, then we are trying to run so I will just make it this is probably at least, so 30 second. So, now

(VT -

te =

& t { O:dt:ts;

7 qlobal

8 £% System parameters

g = 2; = 1;

10 0.5; =0.4; I

11 = 9.81;

12 $t Initial conditions

13 q = [0;pi/3-pifd];

14 q dot = [0,2*pi/2;0];

15 £t Numerical inteqration starts here
16 for i=1:length(t)
(%y %% Desired values 4
18 1 desired(:,1) = [pi/2*sin(0.2%¢t(

5 ts =
¢ t = 0:dt:ts
7 global
8 §% System p| .
3 R
3 i | =
. e 2
10 = 0.5; e
11 = 9,81; .
12 %t Initial
13 q = [0ipi/3 1
4 e ‘_‘ A 0 1
R _)
15 ¥t Numerical integration starts hare
16 for i=1:length(t)
iy %% Desired values 4
"8 q desired(:,1) = [pi/2*sin(0,2*t (L /)

> i 4eB 8813 s
b t = 0:dt:ts 400
E ,’ >'"'~y
7 global 200) __,
8 % System p|— v
; % ayéten p 7 0
3 =43 c
10 = 0.5 2"200
(2
11 = 9,81; 400
12 %t Initial
13 q = [0;pi/3
; : 0 10 2 KV
14 q_dot = s
15 £t Numerical integration starts hare
16- for {=1:length(t)
(j %% Desired values 4
18 q desired(:,1) = [pi/2*sin(0,.2*t (L ¢ U
I 1 A

So, now if I introduce the gravity, it may not work what we expected. So, that what you can see,
S0 you can see right it is making it completely different. So, this is due to you can see there is a
non expected thing because the gravity the compensation is not exactly going to compensate
based on the actual because the propagation model is one step forward so, that we cannot be able
to predict. So, now you can understand why the gravity we consider as 0 or when we do the open

loop control with you can say you call inverse dynamics this is may not be working as good.

(Refer Slide Time: 11:49)

1 | |t St s St st W € "

[T

3=
12
13-
14-
15
16~
17
18-
13
20
21
22~

-

o

ETETET—

[T

11-
12
13
14-
15
16~
17
18-
13
20
21
22~

24

2 i AR L
] = 0%9,81; ¥ gravity
t% Initial conditions
q = [0;pi/3-pi/4+0}; \ initial ioint positions
q dot = {0.2*pi/230}; % initial joint velocities
¥% Numerical integration starts here
for i=1:length{t)
%% Desired values
q desired(:,1) = [pi/2*sin(0.2*t(1));...
pi/3-pi/d*cos (0.5t (i
q dot desired(:,i) = [0.2*pi/2*cos{0.2*

0.5*pi/4*sin{0.5* g
q double dot desired{:,i) = [-0.2"2*pi/® B.2%t (1)
0.5%2 : P*(g)
Md = inertia2R(q desired{:,i)); » { /}
)
¥ NI A

L e et Rl o "

04 e -y
i 0.9‘81:4..1 adeus
W% Initial | ! ‘
q= [D;pi/3‘ 0% ttlons
q_dot = {0.] 7 : locities
§% Numerica, ¢ B
=)
for i=l:ilen| G f
%% Desi 05
q desir) $oos
5| i
A 0 1 b
g_dot _di 22

L[s
U.S'p'i'/"ﬁih'w. 5
q double dot desired{:, i) = [-0.2%2*pi/
0.5%2

)
\(1)
Md = inertia2R(q desired(: i)); . ¢ y‘}, o

| ol L

: de 3
1 U*%.81;
; 2
1 %% Initial |
13 q= [0;pi/3
14 q dot = {0.{—
q_ o/
15 ¥% Numerica ¢t
3
fovr 1+ lonl ==,
1 for i=l1:ilenj 21
17 t% Desi
18 q des |
19 3
. 0 10
20] @ o
21
22] double d ired
&
24 d nertiaZR(q desired

(Refer slide Time: 12:44)

Tk |
0 |,
2'pi’

i

And similar way we assume that the initial conditions are not matching just | assume that the
initial position supposed to be pi by 3 minus pi by 4 as the theta 2 but now | assume both are 0.
So, you can see like that may not go as such what he expected. So, you can see so, this is like
going beyond because the actual scenario is completely different than the inverse dynamics. In
fact, if | extend this may end up with even unstable. So, that is why inverse dynamics as open
you can say simple you call feed forward control people are not really using. So, we started pi by

3 and then we are trying to see whether the system actually like is going it is not going.

AT 0 ¢
| 0*4.81;
12 '% Initial conditions
13 q = [0;pi/3-pi/d];
14 q dot = {0.2¢p1/2%0;0];
15 ¥% Numerical integration starts here
1 for i=1:length({t)
17 %% Desired values
18 q desired(:,1) = [pi/2*sin(0.2*t(1));
19 pi/3-pi/4*cos(0.5
1]] dot des (:,1) [0.2%pi/2
21 0.5*pi/4*sin|
22] double dot gired{:, i) = [- o t(i)
(%y (L)
24 Md = inertiaZR(q desired(:,1))
- — 2 . V.

Srgue! " ¥
;-,._.uu. w-—l!ﬂu.'- L L T o -

- g = 049,81 Hudea s ‘
12 W Initial | s
3= = [0;pi/3 05 jons
14~ q.dot = lﬂ.l = 4 velocities
15 ¥t Numerica E 0 |
16- for i=lilenj 7 \S\\\\
17 %% Desi. 05
18- q_desir $oos
s i
20~ q_dot_di sl L2
21 0. S*pI/I*sin(0.5
22- q double dot desired{:, i) = [-0.2%2*pi
(?? 0.5%7
24~ Md = xnerLLaZR(q_desiredq ,11). > \g:
Il‘ll.' RITITI BRI | HE g s phae Ty M e ey nr
S VS
'}
Fiom! 9 . FIIIIIIIIIIIIIIII
il W-"" LI 0 e e e e * -
- g = 009,81 Hodea i i
12 %% Initial | % ‘ =
13- q=[0;pi/y |4 fons
- qot = (0| . Y| pelocities
15 113 Rumenca.’% (-
Y anloe ™,
16= for i=lilen(g NG
17 % Desi .40 N
18- q_desir \\\n\ i
= * W m » H
20 q_dot di | . .
21 V.S PII¥SINT0. 5 i
22+ q double dot desired{(:,i) = [-0.2"2*pi D20t (1)
0.5%2 (L)

g

|« camt gt memnrEI s . ety $3 g PR D (5] Pty faniminn x'.r

o

Md = inertia2R(q desired(: ,1]).

'
- an

10 | ot et s S e ok W€ []

T st 48 i

b-d“"o nn-u‘-n- T AmemaME. 9

ol o R R S ot e -

14= q dot = [0.24pi/2:0]: \ initial joint velocities
15 $% Numerical integration starts here
16~ for i=1:length{t)

17
18-
19
20~
21
22
23
24~
25-
- -
I 1

o’

e) L

¥% Desired values
q desired(:, i} = [pi/2*sin(0.3*t(L));...
pi/3-pi/4*cos(0.5*t (1))]
q dot desired(:,i) = [0.3*pi/2*cos(0.3*t(1)):...
0.5*pi/4*sin(0.54%C (1))]7 ¢
q_double dot desired{:,i) = [-0.3%2*p1/

0.5%2*pi/ S*t(1)
Md = inertia2R(q desired{:,i));
oe vd = other effects2R(q desired(:,1)

g_vd = gravity effects2R{q desired!

H = xnertxalR(ql',.]): (4
- e \ik

. ;
. Ut 808 ¢ ﬁ-uv—-..-.»--—-m .

g -

Dudeqau g |

8 %t System p ‘

’ —

ml = 2; m2 | ‘
10~]l = 0.5; a !
- =009l oo > |
12 §% Initial | g 9 [
13~ = [0:pi/3 G fons
14~ qdot = (0] s P cities
15 %t Numerica \
16= for i=l:ilen 44 ” v
17 ¥% Desi!
18- q desired(¥,117= TpI/2L81n(U Eidd63) FIR
19 pl/3-pi/4*cos(0.5*¢ (4
@

q dot _desired(:,i) = [0.3*pi/2*cos! :
0. 5‘p1/4 sip. ¢ !]») .
‘ nuInsTTI A

q(uﬁnﬂ

de QI8 LT
,;7 & Y
AT X As
n+«*g 8l. / \ X \
Blig i/ A/
tial (£ of \
/

¥ Desi

L_ - . y i .iﬂ - ()

So, similarly, if we assume that the initial velocity is supposed to be same, but we assume that it
is not given that way. So, the theta one dot initially there is 0.2 times pi by 2, but we are
assuming that it is not the case. So, then also you can see like it is not following the exact profile
what we have indented.

So, these are all the like, you call subset, or you call limitations of the open loop control because
there is no feedback. So, | hope now you are understand, so even you can increase this probably,
I am just increasing this in a faster sense. So, in the sense | am making it this is increasing into
0.3 times. So, | am just making it everything is 0.3, so, then this initial velocity also like 0.3. So,
now if I run, you can see like that would be faster. So, if you look at it the theta 1 it is not

exceeding plus or minus pi by 2. So, that is what we expected and that is what happening.

(Refer Slide Time: 13:48)

W Inverse dynamics
iinput vector
tau(:,1) = Mde(q double dot_desired(:,1))
+ oe_vd + g vd;
% ncceleration vector

q.double_dot(:,1) = inv(M)s(taun(:, 4)-(ce_v+g_v))

 velocity propogation

q.dot(:,i+1) = q dot(:,i) + q. double dot(:, 1)edt;

% position update

q(: 141) = q{:,4) +q_dot(: i)=dt ¢ 1/2¢q double dot(: §)edt"2;
] = FE2R{q(1,1) ,q(2,1));

[x(1),y(1)
end

‘,) +

global al a2 m1 n2 g bl b2 cl ¢2
%% System parameters

ml = 2; 2 =1; % link nassess

al = 0,5; a2 = 0.4; } link lengths

g = 0+9,81; ¥ gravity

bl = 0.5; b2 = 0.5; c1 = 040.5; c2 = 0#0.5;
¥4 Initial conditions

g = [0;pi/3-pi/4]); ¥ initial joint positions
q.dot = [0;0]; % initial joint velocities

%% Control parameters
Kp = 4; ¥d = 4;

T=Mi(q)lg+K,(q.-q)+Kilg,-a)] +V(g.aq) +gla)

S I'X
So, this is what the forward dynamics, | hope you are like clear to this forward dynamics, let us
come to the, what you call the computer torque control. So, we will take the same scenario what

we have used in the computer torque control. So, for that | am considering few other things

where the control parameter Kp and Kd I have assumed as 4 for each.

So, although we are not using the frictional but I just to consider the frictional value. So, in the
simulation, 1 will show you if I consider friction what will happen. So, now, so, this is the
controller which we derived in the regular lecture. So, we are trying to incorporate this. So, for
that you need to have the; you can q tilde and g tilde dot in addition to that, you need to have the

actual vector need to be compensated.

(Refer Slide Time: 14:43)

r=M(q)la+K,lq.-q) + Kala, -~ a)] + V(q.9) +gla)

W& Errors

q.tildal:,1) = q.desired(:,i) - q(:,1);
q.det_tilda(: i) = q_dot_desired(:,i) - q.dot(:,1);
4% Conputed-torque comtrol

input vector

tau(:,i) = Me(q_double_dot_desired(: 1)

+ Kpeq tilda(:,i) + Kdeq dot_tilda(:,i))...
+oev+ gy,

@ | IR

10 ; 4 L
11 = 9,81;
17 ; ; *0,5; 0*0.5;
13 %%t Initial conditions
14 q = [0:pi/3-pi/4]:
15 q dot = [0;0];
14 %% Control parameters
1 Kp = 4;,Kd = 4;
18 %% Numerical integration starts here
19 for i=1:length(t)
20 #% Desired values
21 q desired(:,i) = [pi/2*sin(0.2*t(L));..

4] q dot desired(:,1}) = [0.2*pi/2*cos

1‘
f
e
B
>

23 o¢ v = other effects2R(q(:,1),q dot{:,1));
23] v = gravity effects2R(ql:,1));
30 Fr = O*frictional effects2R(q dot(:,1));

% Errors

] tilda(:,1) = q desired{:,1) - qf:,1);
33 q dot _tilda{l,:) = q dot_desired(:,1) - q dot(:,1)7
34 9% Computed-torque control
35
36 tau(:,1) = M*(q double dot desired{:,i
37 + Kp*q tilda(:,1) + Kd*q dot 1(:,1))..
39
A0] double dot(:,1) inv (M) * (tau(:, A *‘f’.. |
)
| ' 4
e SEETR A |
34 ¥% Computed-torque control :
tau(:,1) = M*(q double dot desired{:,1) ...
! + Kp*q tilda(:,1} + Kd*q dot tilda(:,1))..
3 "
i3
40] double dot(:,1) = inv(M)*(tau(:,1)~(oe viFrig v));
41
42
43 1 (2s) 1 dot{:,1) 1 doubli ;
44
45
(ﬁz ql:,1+1) = qgi:,1) +q dot{:,1)*dt
.4% x{i),y(1)] = FK2RI(q{l,1),q(2,1)):

"} P

So, in that sense you can see that, so, the Kp into q tilde and Kd into q tilde dot is coming and

then you can g double dot desired, and this is multiply with mass as and then the other vector
plus gravity vector is added. So, we are calculating g tilde as g desired minus q and q tilde dot or
g dot tilde is g dot desired minus g dot so. Now, we will go to the you can say MATLAB code.

So, this is computed torque control.

So, we can see like we assume now the gravity is included and we are taken there are two control
gains are coming Kp and Kd. So, that also we have used and intentionally | make it that initial
joint velocity is not same as the desired. So, then we have seen that we have calculated the q tilde

and g dot tilde and then the control love we have used this way and then based on that we are

writing it.

(Refer Slide Time: 15:45)

64 figure B
65 %% Plotting functions

66 plot(t,q(l, 1:-&, 'r-.',t,q(2,1:1), 'b-*, '1inewidth',2

67 legend('\theta 1','\thets 2')

68 qrid or

69 set (gca, 'fontalze', Z20)

70 xlabel('t, [s]")

n ylabel('q, [units]")

72

73 figure

14 plot(t,q tilda(l,1:1),"r-.",t,q tilda(2,1: , ' linewd
75 legend('\theta 1 ', '\thets 2 e')

16 grid or
‘/% A] 4 l . '
- set (gca, 'fontsize', Z0) v

0~ xlabel('t,[s]") -
A ylabel('q, [units]’)

12

13 figure

74 pln:-t|r,q‘:11d;111,1:1),':-.',r,qr': da{z,1:1),'b-","linewi
15 legend('\theta 1 e','\theta 2 e')

76 qrid or I

17 set (gea, 'fontsgive',20)

78 xlabel('t, [2]")

79 ylabel ('$\tilde(q)§, [units]', 'Iinterpreter’, %

80

81 function M = inertiaZR(q)

(ﬁi‘i global » \

... thl = q(1); thZ = q(2);

o

Srgue!

P nd B T U S (TR R TR R Tepe——

10
T

12

13-
-

75
76
1
18

79

80
81

&

|+ eminermrmiy T

xlabel('t, [[Feusam LT

ylﬂbel('q, (I 1 _Ad5daad
figure = 05 ‘
plotit,q ti| £ 1:4),'b-", " linewi |
legend('\th) 2 ¢
Sl o
grid on 05

set (gca, 'fol
xlabel('t, (| A

ylabel {'$\t 4 g L o
tfs]

function M = inertiaZR(q)

global al a2 ml m

thi

= q(l); thZ = q(2);

S Tl

IR N I LT

u
m::;-—-»h- —
70~ xlabel('t, [[S04e8 8843 -
M- ylabel('q, (| 006 *!23%25
12 i e
13~ figure a4l i —
M- plotit,q tif2 l‘ :1), 'b-", " linewi
75~ legend('\thiZ “
7%- qridon | 08} |
7 set (gca, ' fo i\
78~ xlabel('t,[] ol—x
79~ ylabel('s\tf 0 5 10 LN 18 ')
80 L{s]
81 function M = inertiaZR(q)

&

global al a2 ml md
= q(2);

thl = q(1); th2
LTI RIS e 4 { R ST I I I g S D I T

\
I\ gl ﬁ -
;r::r_."-r i /! A

0 abel('
71~ ylabel{('
=
3 figure
74 plot(t,q ti :f
i~ legend('\th3
> o
't Jjria of .
L tlgc :
4 label (' 0
19 ibel (! 0 5 10 5§
80 L8]
81 funct b nertiaZiial
s jloba
-); hl = 1{1} t = (2);
= SETREEN

t% Dynamic simulation of a RR planar robot

lear all; close ALl}
3 tt Simulation parameters
- it i
ba = 1Ca
¥
Usat H
7 qlot
3 t1 System parameters
g = 2 = 1
10 4
11 J
12 3 0.5¢ J*
A3 %t Initial conditions
.r&] lipif3-pifd];
l \
£ TR

So, now here we have just added one more, so, earlier we adjusted you can say plotted only time
versus g, but here we are plotting time versus g tilde in addition that is all. So, now, if we run
this, so, we can see that the g tilde will go somewhere so, we can see the initial velocity we as 00

however, the theta 1 dot desired is something.

So, in that sense the 1 the sense q tilde 1 would be going up short and then coming back that we
can see it. So, this is the actual and it is following it. So, now you can see this is what | am
quoting. So, the theta 1 dot is like supposed to be nonzero which, is 0.2 times a pi by 2 but we

have not considered.

So, because of that in order to compensate that velocity profile so, the theta 1 error is like going
and getting it. However, the theta 2 error as you can see almost 0. In fact it is superimposed here
it is like 0. So, now this is the profile which we are asking to follow, and it is doing it. So, here

we have given properly 45 degrees sorry you can say not 45 degree you can say 12, 15 second.

(Refer Slide Time: 16:59)

e

13 §% Initial conditions s
. q = [0:pi/3-pifd];
15 q_dot = [0;0]; initia
16 %% Control parameters
7 Fp = 4; Kd = &;
18 t% Numerical integration starts here
19 for i=1:length(t)
20 £t Desired values)
21 q desired(:, i) = [pi/2*sin(0.2*t(L1)):..
22 pi/3-pi/4*cos (0.5t (
23 q dot desired(:,1) = [0.2*pi/2*cos(0.2
24 - 0.54pi/8*5in(0.5
(:ﬂ q double dot desired{:,i) = [-0,2%2* (1)
b }.5 /};|

11 = 9,8 !

12 = 0,5 9

13 %% Initial | 'QDS

M A

15 q dot = [0, i%

16 %% Control | 05

7 Kp = 4; Kd

18 £%¥ Numerica A

19 for i=1:len| -1 0 1

20 (P08 T T ——.

21 q desired(:,1) = [pi/2*sin(0.2*t(L)):.,
(?) pi/3-pi/4*ce A :
4] q_dot desired(:,i} = [0.2*pi/2*cos]

[__ Jnnh___lA L :llfiu__

10), 5; de 208
11 =9 .
12 p
13 %% Initial |
14~ q = [0:pi/33
15 q _dot = :a‘.iéo
16 %% Control]>
7 Kp = 4; Kd |
18 %% Numerica| !
19 for i=1:len| 0 5 10 15
20 4 L\esl;_ Lis]
21 q desired(:,1) = [pi/2*sin(0.2*t(1));:..
P pi/3-pi/é*cos(0.5" .S \
s q dot_desired(:,i) = [0.2*pi/2*cos
ST | (TR |
: u | &
10 = 0.5; LA AL
8 = 9,81; 2
12 : q
13 %% Initial ._}5
14~ q-= ‘,‘p-;’t;g : b
15 q dot = [0,/ i
16 %% Control]c'
05
7 Kp = 4; Kd |
18 £% Numerical 0"‘
19 for i=1:len| 0 i 10 5|
20 1 Desivew Lis]
21 q desired(:,1) = [pi/2*sin(0.2*¢(1)):..,
(.‘
(.:I_! q_dot _desired(:,i} = [0.2*pi/2*coe
./,
'_ v L)| y, L

So, 15 second in the sense it is making it so, this is 30 degree, or you can say it is up to 30 times
and then this is going somewhere. So, if | you this so 0.2 times of you can say pi by 2 so now
you can see that error would be converged. So, | will plot one more thing just for our benefit. So,
you can see it is like so in the order of milli even further milli radians. So, this is what the error
you can see error almost 0 both the cases. So, now you can see like this is following it.

(Refer Slide Time: 17:45)

0 imrndiriiirians At i L7)
T I N\ v o7y’ 4 g sy~ b v
47~ [x(i},y(i)] = FR2R(q{1,1),q(2,1}));

8- [xd(i),yd(i)] = FK2R(q_desired(1.i),qLdesired(2,i)i:
43—~ end
50 numerical integration ends hers

51 ¥% Animation
52 for i=1:10:length(t)

53~ xl = sl*cos(q(l,i});

54- yl = al*sin{q(l,i)});

55~ x2 = xl+ai*cos(qil, 1) +q(2,1}):

56~ y2 = yl+a2*sin(qll,i)+q(2,1));

57— plot ([0,x1,%x2]),[0,y1,y2]),'r~0', 'linewic

58 grid on, set(gca,'fontsize',20)

(Ey' hold on

“B0 - plot(x{1:4),y(L:i), 'm-"*) s 1'A
o &) AN
[(bt ritbes ot S s 00)

i LTI TR i S, &

56~ y2 = yleaZesiniqll, i) 4q(2,1)); '

57~ plot (xd, yd), 'k-=")

58— hold an

58~ plot ({0,x1,x2], [0, yL,y2}, 'r=0', 'linewidth',2)

60~ grid on, set(gca,'féntsize’,20)

£1- hold on

62~ plot(x{1:4),y(1:i), 'm=")

63~ axis([={al4n2)=0,1,(al4a2)40.1,~(al4a2)=0.1, {ai+aZ) 40

64 axis square, xlabel('t,{s]|'},ylabel('q, 1')

63 hold off, pause(0,001)

66— end

figure

67
(Ef §% Plotting functions
89

9- plot(t,q(l,1:4), 'r-.", t,q(2,1:i), "b-", ' a !
I ‘\ ¥4

I ;
L T N

T -y
50 % Animatiof o000 Vd [
§1- for i=1:10: ! =
52~ x1 = al
05

53~ yl = al) I
54- x2=xll B g

2
55 2=yl %
56— plot ([0 205 width',2)
1 qrid on
58— h an -1

old ¢ 2 0 .

5% plot (x{ ts]
60 axis[I-(A’¥T7}302171f74f?)TUiI{JTZT‘h. 4u2)40
61— axis square, xlabel('t,is]'),ylabel('od ')
(E?- hold off, pause{0.001))
“#3

Bt — .Y

U1 | A bt it s S . et W (7. u

B i A e T U st W [S Rttt -
- e e - - -

14= q = [0;pi/3-pi/4]; V initial joint positions
15- 'q.dot = [0,2*pi/2;0]; % initial joint velocities
16 t% Control parameters

17- Kp = 16; Kd = B;
18 §% Numerical integration starts here
19= for i=l:length{t)

20 %% Desired values

21- q_desired(:,1) = [pi/2*sin(0,.2%t(1));...

22 pi/3-pi/d*cos (0.5t (i

23~ q dot desired(:,i) = [0.2*pi/2*cos (0.2} 3

24 0.5*pi/4*5in{0.5 H

25- q double dot desired{:,i) = [-0.2%2%pi* Ba2*t (1)

0.5%7

- M = inertia2R(q(:,i)); \" 4]ﬁ -
Ei— u - g L i

dealBiLl v
14 q = ipif3
~ . |
15 q dot =
16 t% Control |
- : ey 05 »
17 Kp = 16; Kd
: I R
18 % Numerica T 9 ,//
)
19 for i=lilen| &
20 % Desi 05
21 q desir
1
8 0 1
3 i
15 Lfs]
24 0. 5*pi/4*sin(0
q double dot desired({:, i) = [-
(2¥
27 { = inert Rlgl:,i));
|
- NS
B ‘- Pure wdeyoee -
6 ‘pr/4 (3.5%t (1)
7 nertiazR(q(:,1));
3 her effectsZR(q{:,1),q dot(:,1))
24 g v = gravity effects2R(q(:,1))¢
30 Fr = 0*Irictional effects2R(q dot({:,1)):
31 %% Errors
q tilda(:,i) = q desired{:,1) - q{:,1);
i3 q dot tilda(:,1) = q dot desired(:,1) - g dot(:,1)?
34 %% Computed-torque control
36 tau(:,i) = M*(q _double dot desired(:,i
37 + Kp*q tilda(:,1) + Kd*q do®

{ V ;
-3q

I_- .
= | L

So, now | will just want to plot it | hope so the forward kinematic model is available. So, I will
take it the forward kinematics here so | will just take it so | will just take x desired. So, I will just
say so x desired | hope x desired | have not used xd anywhere. So, yd so this is g underscored

desired.

And this is underscored desired, so | am just plotting it here, so | am just making it so here | am a
plotting x desired comma y desired that to like I am showing that there is the desired plot which
is | am showing it as k double dot in this dashed line so, now if I run this, so | hope this matrix

because, so here.

So, we can plot this x desired, and y desired | hope this x desired and y desired is derived here.
So, then we can. So, g underscore desired. So, g underscore desired 1 comma i and this 2 comma
I so this makes this and we are trying to plot this. So, now the x, desired and y desired is having
same thing. So, we can actually bracket this so, there is a so, we can actually like see it here x
desired not come because it is like inside that we will like to do it the x desired is like I just want
to show the plot. So, but that is like not as explicit here because the forward kinematic model

what we have used is slightly different.

So, now we will like go back to the one which we have like tried. So, now | will like increase the
Kp and Kd you can see that they error value further you can say decrease or increase based on
this. So, now | am saying that this is 8 and this is probably you can say 16 just | said. So, this is 2
omega this is omega squared. So, that they have like make it you can see like it is going to be
much much further reduce the error. So, now, you can like feel it. So, now if | like introduce the

friction, | hope the friction values are here.

(Refer Slide Time: 21:26)

> e e e [DTSR i
oy de Q08 L3 =
26 pi/4*cos(0.5%t (1)
i !

= 1ihe
28 ge v = | s, 1)):

’
=y O
-~
"
"
i —
s £
q.[units]
=
o o

)i
3 %% Erro
32 q tilda D05 1};
33 q dot t) - qdot(:,1);
34 %% Comp! 8
s A 0 1
25 ¢
- A Lfs]
36 tag(:, i) ="M*¥(q double dot desired(r, i)
37 + Kp*q tilda(:,1) + Kd*q do" o 1)) e
(,9‘ toev+qgyV; A

Poire= e - -

pi/4*cos(0.5%t (1)

So, now | introduce the viscous friction. So, you can like see so, this control still working
because friction we are not compensated based on that. So, you can see like it is going the error,
because that is what the, you can say difficulty, or you call constraint on the model based control.
So, now, the model is inaccurate. So, because of this inaccurateness. So, you can see that the

frictional effect we included that like not able to compensate here.

(Refer Slide Time: 22:04)

VT ——————————— ey o
SPRRRES BSOS o RPRBOTURITG v 1 v § navwr vy ey Vs %
25 g_v = gravity effects2R(q(:,1)): i
30 Fr = 0.1*frictional effects2R{(q dot(:,i)):

3 %t Errors
32~ q tilda(:,1) = q desired(:,i) - q{:,4);
33- q dot tilda(:,l) = q dot desired(:,i) - g dot(:,1);
34 %% Computed-torque control
35 input yector
36- tau(:,i) = M*(q_double dot desired{:,i) ...
7 + Kp*q tilda(:,i} + Kd*q do (303335
38 + oce_v + g_vi
39 acceleration vector
q double dot(:,1) = inv(M)*(tau(:,i}-(g 0 v));

10
@
52 i

.l
yelocity propogation N 4 ,) -
v b A

e
Srgue!
TP YT RSN 10 i (0 e o [et D o | ey "
g = juded Ly : -
23 gv =g
. o : B
3 %t Erro|
o g |
32- q tilda 5 1)
33~ q dot t E 0) - g dot (2,1
34 ¥t Comp T
2 lput | 08
s tau{zad b1) i
17 1 i
38 A 0 \ do (1))
3 .
L]s]
39 1ccalEFAYION VBrTaY []
5 q_double dot(:,1) = inv(M)*(tau(:,i)-Ia " v));

So, however if you add this here then that will come that is any feedback linearization. So, that is
the aspect here. So, even | add the point one times of the friction total effort assume that the
friction is like very low. So, now also you can see like there would be a small error which is like
propagating because it is not able to continuously follow it. So, now we can like go back to the,

what you call the slide.

(Refer Slide Time: 22:27)

T=Mlq)[q+K,(q:-q)+Ksla,-a)+Viga) +gla)

Wy

W Errors

q.tilda(:,1) = q.desired(:,i) - q(:,1);
q.dot_tilda(: i) = q_dot_desired(:,i) - q_dot(
4% Conputed-torque control

dinput vector

tau(:,1) = Me(q_double_dot_desired(: 1)

+ Kpeq. tilda(:,i) + Kdeq dot_tilda(:,f))...

toev gy

T =K;(q; - q) +Ky{q, - q) +glq)

4% Errors

q.tilda(:,{) = q_desired(: 1) - q(:,1);
q_dct,t:lia(:.:) = (.dot _desired(:,i) - q.dot({:,i);
% PD control

finput vector

tau(:,3) = (Kgeq_tildal(:,1) + Kdeq_dot_tilda(:,i))...

g,

T=K:(q-q) <K [(q; - q)dt + Ky(a,-q)+glq)

%A Errors

q.tilda(: 1) = q desired(:,4) - q(:,1);
q.dot_tilda(:,{) = q_dot_desired(:,i) - q_dot(:,
el = a1 + q vilda(:, 1)edt;

%% PID control

Jinput vector
tau(:,i) = (Kpsq.tilda{:,i) + Ki * i .
+ Kdvq_dot_tilda(:,1))¢ g_v;

) e Ll
P | AX
So, we will go to the motion based control so, where we have taken PD control with the gravity
compensation. So, the code only gets changed here already we defined Kp and Kd. So, only
thing is like the feedback linearization where the other vector removed and g double dot desired
is removed and M matrix also removed. So, now the Kp and Kd we need to tune accordingly. So,
this is what we call the PD control. Similarly, if we want actual like PID Control then the ki we
have to add and error tilde also like a q tilde integral error also we need to add. So, here we
assume that is ei. So, ei we have like a propagated based on simple integration Euler integration

then we have like got it.

(Refer Slide Time: 23:11)

¥ Erro
1 tilda(:,1) q desired{:, i) . { 645
J 1 11da(:, 1)] f] (2, - 0t(:,1
4 %% PD control
16) (s,1) i t ia)
30 (:,1 p*q @i, 1)] 1 r &)
37 g v
3%] double t(:, 1)
40

o

Srgue! J
T T L o 7|

14 %% PD gouden i g

35 input | ! =

36 tau(:, 1! bt tilda(:,4))...

17 | 05 ;

ki:} ancely 2 //
€ @

39 q_doublj “2 ~{oe_v+Frdg v));
- A £0

40 05

41 veloc

42~ q dot (¢ A) Hdt;

43 4 0 1

44 i posLt swr--ywuv——t'm- -

45- qi:,i41) = gt:, 1) +q dot(s,i)*dt + 1/24 1le dot (:

(%{i},y(1)] = FX2R(q{1,1),q(2,1)});

end i [
ERIIIEEERY ZI=8 IR I IRl T eIl “";‘I- L _/{5;

o

Brow! 3
T T T P = =2

34
35
36
37
38
39
40
41

42~

43
44

45~

@

%% PD gUode 0BT ‘

input | 04y —£4H0R0¢

tau(:,i & " | bt tilda(:,i))...
i\ —i =
IR 2

% 0055 \

accelis

q_douhlé: ={oe_viFrig v))i
I~
1 velad
q dot{: o8 d) tdt;
0 5 10 15
PO s} /

qi:,d41) = q(s, 1) +q dot(s,ij*dt + 1/24 \le dot (3
{x{1),yti)] = FK2R(q{l,1),q(2,1)};)

end J [
= ST 113 ey v 3 As
sz 1 r=1 11 ‘“n L "(?‘L

B | |t o e s St . sk W P u

[T T TP s L B e L8

34- el = ei + q tilda(s:,1)*dt; -
35 ¥% PID control

38 input vecto!

3N tau(:,i) = (Kp*q tilda(:, i) + Kd*q dot tilda(:,i) ...
18 4 Kiflei)s g vi

39 joceleration vector

40 q_double dot(:,i) = inv(M)*(tau(:,i)~(oe_v+Frig v));

41

12 relocity propogatior

43 q dot(:,i41) = q dot{:,i) + q double d fdt;

44

45 position update /

@ qi:,i41) = qli, 1) #q dot{:,i)*dt + ° ot (:

[x(i},y(1)] = FR2R(q{1,1),q(2,1}) 2 A

I ~ 3 | :
'l
EOEEECE -
vy g -] =
14- ol = o1 SUWR AR LT Ch|
15 ¥% PID | 1 445084

36 input

3 tau(:,if 08 bt tilda(:,i) ...
38 | 2, ,// |

39 iocel) ?—

49 q_doubli 0_05 rloe viFrig v));

41

12 yeloc 1

43 q dot(: 1 0 1 Ld ‘dt;

14 - tfs] §

45 position update 3

@ qi:,i+1) = q(i,1) +q dot(:,i)%dt ¢ pt(:

[x{i},yt1)] = FR2R(q{1,1),q(2,1)); ' (\/)

I ‘ A

it

l_ . v 1 t L8 |

So, now | will show it this here in the MATLAB code then you can like see. So, this is a PD
control. So, now we assume that the friction is O and gravity is included so, the gravity
compensation we have taken and Kp and Kd we have taken as four each we did not change.
Because your mass is like only two so, it would give reasonable result if your mass is very high
then we have to like a tune the Kp and Kd right now we need not to like do it. So, now remaining
everything is same. So, if I run this PD control you can see like it would be having a small steady

state error so that you can like see it.

So, you can see like earlier the computer torque control without friction. It was almost like 0
where it is in the order of 10 power minus 4 in the sense milli radians. But here you can see it is
like centi radians at least so that is what one you can say issue so now if | add the PID control, so
where the item we added as so Ki and ei initially we assume 0 0 so then we have like calculate
the integral error and then we have like added this term. So, now if I like run it, so you can see
like this would be following the same profile what we have given and you can see that the error
is like very close to O both our like, converse to 0. Now, if I increase Ki or increase Kp

accordingly this will actually get change.

(Refer Slide Time: 24:42)

Wi |

Do O

22
23
24
25
26
27
28
29
30
3
32

b ot o 00 @ . et W PN "

33-

@

[-]

pl/3-pil/4*cos (0.5t (£))];
q_dot_desired(:,i) = [0.2*pi/2*cos{0.24%¢(1)):...
0.5%pi/4*sin(0.5%t (1)));
q double dot desired{:,i) = [-0.2%2*pi/2*sin(0.2*t (1)
0.5%2*p1/4*cos (0.5t (1)
M = inertia2R(q{:,1));
oe v = other effectsZR(q{:,i),q dot(:,1i)):
g v = gravity effects2R(q{:,i));
Fr = fdictional effects2R{q dot(:,1));
%% Errors
q_tilda(:,i) = q desired(:,1) - q{:,1)
q dot_tilda(:,i) = q dot desired(:,i} 3 t(e, 10
el = el 4+ q tilda(:,1)*dt;
%% PID control , ')

¥ ‘4lliL=HQL;;_

u
TR -
[T Te—T P —. = vl
22 Jude B Lg E(i))); ?
23 q_dot_di ! : L24t(d))s...
24 LI (1)) 13
25 q_doubl 05 pi/2¢sin(0.24¢ (1)
26 2 pi/4*cos (0.5t ()"
27 M=ine = ¢
o ;
2 5 = - .
28 Oc_\' | 05 -:1)’:
29 gv=g
30 Fr=fd)i
3 %% Erro| 1 0 1
32 q_tlida\.-,u — q;wox&[ﬂarrrtl 'q‘:".l
i3 q dot_tilda(:,i) = q dot desired(:,i) - o1

el = el 4+ q tilda(:,1)*dt;

%% PID control [],>,
- / . \
e L e O

ETECTEE

i ot W HL

P sl M U o

22
23
24
25
26
27
28
29
30
3
32

S o
- ¢

e

Ced

T 1 o e s e oy

SUde R A8 E(L)));
q dot di O L2*e (i) 7.
. LS ())7
q»doubl!"‘ 005!

p;/2'sin(0.2‘t(x)

£ pi/d*cos(0.54¢ (1)
M= xne?i ‘
e v = ™ 2ei))
gv=yg
Fr = fr 005 {;
%% Errol 0 5 10 15 |
P DT S . —
q dot_tilda(:,i) = q dot_desired(:,i) - (3,103
el = el + q tilda(:,1)*de; \

d1 | bmirmtanitgt whs St o womd W P
L T T L L e ———)
23 oe v = other effects2R(q(:,i),q dot(:,1));
23 g_v = gravity effectsZR(q(:,1)):
30 Fr = frictional effects2R{q dot(:,1));
31 %t Errors
32 q_tilda(:,i) = q desired{(:,i) - q{:,1);
33 q dot tilda(:,i) = q dot_desired(:,i) - g dot(:,1):
34 %% PD control
35 input vector
36 tau(:,1) = (Kp*q tilda(:,1) + Kd*q_dot
37 tgw
38 scceleration vector
39 g _double dot(:,1) = inv(M)*(tau(:,i)-(

velocity propogation

%% PID control | ﬁ
z 1t 13 1 E g Ao
: : M v ik A

o’

B! r
B v MO 3 T W W 2 1 o mee b Sins s b F a

23 oe v = [J2UsQ0RLT B,i))e
23 gv =g | —

30 Fr = ft] ‘ i

3 W Brro, 08

32 q tilds £ 'J 1);

33 q_dot _t -3_. ¢ P - g dot(:,1);
34 % PD o 05 ‘

35 input |

36 tau(:,1i A

17 B 0

18 NErS| -

39 q double dot(:,{) = inv(u)'(tau(:,ia-(q

p)
o i D s [T S — . -

23
29
30~
3
32
33
34
35
36~
37
i8
39

velocity prepogation

ge v = (SUdeR A8 LT

gv=g 01 P
Fr = frl ,"'\
W Eoro ol \ |
q_tildajs \ 1)
q dot_t‘;) = g dot(z,i);
wma O ‘
input |
tau(:, i gps

U (bt

[SE===TTI

WO - o

10
11
12
13
14

(.‘j

ol

4
5
6
1
8
3
10
11
12
13

14
15

%

U ot 2 P —r—y - -
dt = 0,01; stepsire
ts = B0;) total simulation time
t = 0:dt:ts; | time span
global o ml n
%% System parameters

= J = Yo ;-
= & =0 ¥ i L
L =0.5; = 0.4; 1ink lengths

) = 9.81; Jravity

= 0.5; = 0,5; = (*0.5; = 040.5;
§% Initial conditions
q = [0;pi/3-pi/4): V initial joint pesitd
q_dot = [0;0]; ¥ initial joint velo
¥t Control parameters

Kp = 4; Kd = &; - {J;

B - R Tn

L e o

dt = 0,01; S9de03843
ts = 30; 1| 1 }

t = 0:dt:ts

global 4 03
%% Systiem p

= 0,5; A ‘.54'
%% Initial | 1 0 1

q = |0;pi/ 3 earwrr—s .u.LE@L A—— |

q.[units]

q_dot = [0;0]; ¥ initial joint velocities

¥t Control parameters

Kp = 4; Kd = 4&; A
ey X e

L D d 1
» ¢ {
— . 2 4 —_—

So, this is the benefit of ours. So, now even if | add some friction, so for example, | am adding a

friction. So, you can see some different phenomena here. So, it is trying to follow, so what you
can see like it is not, you can say propagating like what you have seen in the computer torque

control. So, but here you can see it is still under the control.

So, that is the advantage of motion-based control. So, that is why we are like trying to what you
call combined feed forward come feedback. So, that is what the whole idea. So, now you can see
like even the friction we included the | term is like trying to compensate whereas the PD control

if | include the friction.

So, it may like give a slightly a similar response what you have seen in the computer torque
control you can like see it is like trying to go somewhere after that it may get stable or not that
you can like see by increasing the time probably I said that just a 30 second if I ran so, you can
see like it is like going across and getting it you can see so it is like not able to follow because it
is like having a steady state error of so and so. So, that is what we can see the steady state error is

prolonged.

(Refer Slide Time: 26:06)

e L A il
R OIS I e T TIBOTCCI o' iy g vy o 1 -
25 g_v = gravity effects2R(q(:,1))?

30 Fr = frictional effects2Rig dot(:,i));
31 %t Errors

32~ q tilda(:,i) = q desired(:,i) - q{:,4);
33- q dot tilda(:,1) = q dot desired(:, i) - g dot(:,1);
34 #% Computed-torque control

35 Lapu
36- tau(:,i} = M*(q_double dot desired{:,i) ...
kY] + Kp*q tilda(:,1} + Kd*q do a(:,1))..

38 toev+gv
39 Acceleration ve X
10 q double dot(:,1) = inv(M)*(tau(:,i)-(s Vi)

10 bttt s S s y
WS TSI v svaem et N . === &
2= clear all; close all; clec;
3 #% Simulation parameters
4 dt = 0.01; | stepsize
5- tg= 3@; total simulation time
6= t =0:dt;ts; ¥ time span
7 global ¥
8 ¥t System parameters
9- = 23 =1; '
10 - = 0.5; = 0.4; ik I
11 = 9.81; | gravity
12~ = 0.5; = 0.5; = 0*0.5; = 0*0.
13 $% Initial conditions
b g \

q-= 1(';[:'1./3'[-‘1/‘”,‘ initia Int poes
q dot = [0.2*pi/2;0]; initial joint

&

3

:
4
'

100 | bt it gt s St s W (¥ "

Bl il 5 Bl B 5y sond 80T 0r 1 Tt % @
- .o veei “ 4w S .

13- g =9,81; | gravity i

12~ bl =0.5; = 0.5; cl = 0%0.5; = 0*0.5;

13 %% Initial conditions

14 q = |0;pi/3-pi/d]: | Initial joint positions

15— g.dot = [0.2*pi/2:0]; initial jolnt velocitie:

1% £t Control parameters

17- Kp=#& Kd = &;

18 %% Numerical integration starts here

18- for i=1:length{t)

20 ¥% Desired values

21- q desired(:,i) = [pi/2*sin(0.2*t());.

22 pl/3-pi/4*cos (0.5t (§

g q_dot_desired(:,i) = [0.2*pi/2*cos’)

24 0.5%pi/4*5i) A
e ‘-IuLL' t. '\}E;__
u

T ;
e LT (N i 3

-
JudeRdB LT .

4=] = 9.81;

12- bl = 0.5 ‘ : L5;
13 %% Initial | 08

14- q = [0;pi/3 5 n
15- qadot = |0, E loclties
16 t; Control ‘3 f \/ \
17- Kp=4; yd 05 ‘
18 %t Numerica

18~ for i=l:len| -1

20 ¥ Desi! ! Losl !

21- q_desi:edIT.TT‘='TpI/ZLSih(U;Z‘tTI))b..
22 pl/3-pi/4*cos (0.5t 1}

(2?ﬂ q_dot desired(:,i) = [0.2*pi/2*cos!
24 0.5%pi/4*siy h -
;__ : A44‘-L:L, i_, 11[__

0 10 2 30

| Lls
rBgT 1T = 11 '."'."l:ilf".' (UoZeerLyy..

pl/3-pi/4*cos(0,.5*t 14

2y 1 dot desired(:,i) 2*pif2%cos! 4NN

24 0.5%*pi/4*s1y
ke —— A

Whereas the computer torque control we include the friction and we have run for more time and

we have like taken everything is same. So, | will just take it this is 4 comma 4, so that the
consistency will come. So, because the 16 may like end up with you can end stableness. So, now

you can see like it is much much closer.

So, now you can like see it. So, now the error is like when see propagated. So, you can see the
PD control with the simple motion-based compensation it is like somewhere within this. So,
within plus or minus 0.05 radian but it is like going across. So, in the sense the second state is
not able to follow because the other effect vector is like a propagating which is we are trying to

compensate.

So, now | hope so, this is like very clear to you. So, with that we are ending this particular
lecture. But the next lecture we are going to see what you call the computer torque control in task
space and the cascaded control loop which we call dual loop where the kinematic control at task
space and the, you can see inner or dynamic control in joint space, that combination we have

seen. So, this MATLAB simulation, we will see. Until then, see you bye. Take care.

