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Trajectory generation for serial manipulators with workspace using MATLAB

Hi, welcome back to Mechanics and Control of Robotic Manipulator. 1 am really thinking that
you might have enjoyed the last lecture where it was showing something like very close to the
real system where you would have seen some kind of animated where the manipulator is moving.
Although | made it restricted to only 2R serial manipulator. Which is easy to show in you can

say on a screen that is why we have made it.

However, it is not restricted only with the 2R serial or planar manipulator. It can be extended to
even spatial so, you can do it that extension by your own, this particular lecture we are trying to
show the workspace computation. How to make the workspace in MATLAB. So, why | have
taken MATLAB because you can generate a point and the point you can make it as a cloud in a
2D plot or 3D plot. So, which will give the workspace environment then we can see how th;e you

can say end effector trajectory is going one to another. So, in order to get that idea.
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Note

The presentation for this lecture haye been prepared from a wide range of wurces
including books, websites/ pages, research articles, etc. These slides and this
peesentation are intended for purely educational purposes only




n Workspace computation

B Trajectory generated using task-space scheme

n Trajectory generated using joint-space & heme

Comparative plot

So, we will take this particular lecture. So, this lecture is going to talk about workspace
computation, then the trajectory generated using task space scheme for same 2R serial
manipulator including workspace. Then we can see like the trajectory generated using joint space
scheme. Then we will compare one to another how it is happening. So, we will take the same

case and compare it how it is happening one to another.
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Example: A planar RR serial manipulator

If that is the case. So, we will move to the generalize 2R serial manipulator situation where the
initial position of the end effector and you can say final position of the end effector is given. In

the other way if you have inverse kinematics solution. So, you know initial joint positions and



final joint positions are known provided | 1 and | 2 are known. So, in that case, what one can see

first we will try to see.

So, what is the workspace so for that the theta 1 minimum to maximum, you should know the
joint limit. Similarly, the theta 2 minimum and maximum you should know the joint limits of the
theta 1 and theta 2. So, once you know, we can a plot based on the forward kinematics, and we
can generate the workspace.

So, provided you should know the forward kinematics solution. Since it is a 2R serial
manipulator the forward kinematics solution is straightforward. The x can be written as | 1 cos
theta 1 plus | 2 cos theta 2 or you can cross theta 1 plus theta 2. So, the y is | 1 sin theta 1 plus | 2

sin theta 1 plus theta 2. So, this is we know.
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Case 1: Synchronous trajectory

% Start

clear all; cloge all; clc;
Wi Geometrical Paraneters
L1 = 0.5; L2 = 0.4;

W Joint limits

thl_min = 0; thi_max = 210;
th2_nin = 0; th2 _max = 210;
thi_s = thi_min:2:thl_nax;

th2_s = th2 ain :?+: th2_max;

)

So, that is what we are trying to do. So, for that we are taking it you can say the synchronous
trajectory all the time. So, it needs not to be explicitly given. So, that is given here. So, now
coming to the general case so, here the theta 1 minimum and maximum. So, theta 2 minimum
and maximum is given. So, in the sense the theta 1 you can say simulation which is | want to

show where is the workspace.

So, which start from theta 1 minimum to maximum with the interval of 2 degree because | just

want to show only 2-degree interval of the points it need not to be. Further you please remember



if a here | have written as in degrees, so theta 1 and theta 2 all in degrees. So, whenever you

write the equations, so you make sure that the unit as, units are matching.
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W Workspace computation
1=1;
for i1=1:length{thl_s)

for j=1:length(th2_s)
xs(1) = Liscosd(thl_s(1))+L2+cosd(thl_s(i)+th2_s(j));
y&(l) = Litsind(thi_s(i)}+L2¢sind(thi_s(i)+th2_s (M
1 =141

So, in that sense so, you can see the workspace | am trying to compute based on the forward
kinematics solution. But what | am trying to do? So, | am trying to generate the x and y for the
given range or the given range the theta 1 vary from 0 to or you can say minimum to maximum
theta 2 also vary from minimum to maximum. So, that minimum to maximum | have already
defined theta 1 s theta 2 s.

So, | am trying to run the loop where the theta 1 is running the first loop from minimum to
maximum the second loop theta 2 which is running minimum to maximum. In the sense first |
will keep the theta 1. So, you can look at it here. So, the theta 1 is coming here and the second is
rotating from minimum to maximum once then you move another and again rotate from

minimum to maximum like that you can do it in sequence. So, once this is done.
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W Trjectory points

%1 = 0.2; yt = 0.5; } Initial point

x2 = -0.5; y2 = 0.5; } Final peint

% Initial and final velocities are zero

xldot = 0.1; x2dot = 0.1; yidot = 0.1; y2dot = 0.1;
% Tine for reaching initial to final points

te = 10;

% tine span

t = 0:0.1:ts;

So, what do you want to you want to plot. So, for plotting, we will come back in the later but
right now | am trying to generate the trajectory. So, for generating trajectory what I know. So, |
know already that trajectory points which are given to us. So, | am taking the same but here | 1

and | 2 I have taken a slightly different value.
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Case 1: Synchronous trajectory

W Start

clear all; close all; clc;
W% Geometrical Paraneters
L1 = 0.5; L2 =0.4;

¥ Joint limits

thi_min = 0; thi_max = 210;
th2_nin = 0; th2 max = 210;
thi_s = thi_min:2:thl_nax;
thl.s = th2_min:2:th2 max,

)



A Workspace computation
1=1;
for i=1:length(thl_s)
for j=1:length(th2_s)
xs(1) = Liscosd(thl_s(1))+L2vcosd(thl_s(i)+th2_s(j));
ye(l) = Litsind(thi_s(i))}+L2¢sind(thi_s(i}+th2_s(j));
1= 1+1;

So, you can see it is 0.5 and 0.4. So, | did not take it is equal so that I can see the workspace even
if it rotates O to 360 it would be donut. So, that donut meaning you can say internal diameter is
0.1 meter and the external diameter is 0.9 meter. So, | just want to show but here it is not going
to be a donut it would be a small patch. So, we can see that so before going to see that we can

take the trajectory variable.
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figure
for i=1:length(t)
i Task-space trajectory
x(1) = [1,6(1),0(4)"2,0(4) 3] ax;
y(1) = [1,e{i),t{31)"2,0(1) 3] *ay;
4 Inverse kinematic model (for calculating joint-space variables)
c2 = (x(1)"2+y{1)"2-L172-12°2) /(2*L13L2) ; &2 = sqrt.(1-c2°2);
thi(i) = atan2(y(1),x(1))-atan2(12+22, L1+L2¢c2};
th2(1) = atan2{s2,c2);

i workspace

’ plot(xs,ye,'.','Color’,[0,9 0.9 0.9])
Y bold on, axis([-1 1 -1 1]); grid on, axis square;

So, we will just take the trajectory generated in the task space. So, we will take the a as the same
and bx and by as given an a x and a y can be calculated. So here we are doing it independent
trajectory generation. So, in that sense, the trajectory is generated x of i and y of i like this and



the inverse kinematic model we have taken so then we will go to the workspace. So here you can
see the workspace | have plotted as a simple point across | hold on so that when 1 plot this all

plot it is not that particular point.
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J manipulator motion animation
plot([0,Liscoa(thi(1)),x(1}], [0,L1*sin(thi (1)) ,y(1)],
‘r-0’,'linewidth',2);

hold on 3

plov(x,y,'b', 'linevidth' 1) % trajectory
plot(xi,yl,'rs’, 'narkersize’,10) % starting point
plot(x2,y2, 'gp', 'narkersize’,10) } final point
set(gca, 'fontsize’, 12, fontname', 'Tines’),

xlabel('x, [units]');

ylabel('y, [units]')

axis square; pause(0.01); hold off

So, then | am ending the manipulator motion animation. So, | brought this you can say 0 x 1 x 2
0 y1 y2 and that I am making it as a line so that it would look like animation. So here it is 10
milliseconds as the delay and again the same thing. So, starting and ending point we, plotted and
final trajectory also like we can generate. So, just to show that. So, we will first finish the entire
thing then we will go to the MATLAB.
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% saving the data for conparison
Xt = X; yt = y; thit = thl; th2t = th2]
clear x y;

% Initial and final joint-space coordinates

th10 = thi(1); thif = thi(i); th20 = th2(1); th2f = th2(i);

J1 = [-L1*sin(th10)-L2*sin(th10+th20) , ~L2#sin (th10+th20);
+L1xcos (th10) HL2%cos(th10+th20) ,+L2#sin(th10+th20);]

J2 = [-Lissin(thif)-L2ssin(th1f+th2f) ~L2+sin(thif+th2f);
sLivcos(thif)+L2vcos(thif+th2f) ,+L2ssin(th1f+th2f);]

thOdot = inv(J1)e[x1dot;yidot]; theddht = inv(J2)[x2dot;y2dot];

' -

() ’
So, the second case, so, we are trying to save this data the second case is we are taking the
inverse kinematics. So then inverse differential kinematics where the theta O dot and theta final
dot of individual cases are found.
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figure
for i=1:length(t)
% Joint-space trajectory
thi(d) = [1,e(1)te(1)°2,2(4)"3]sathl;
th2(i) = [1,£{1),t(3)72,%(1) 3] *ath2;
J Forvard kinepatic model (for calculating the task-space variables)
x(3) = Liscos(th1(i)) + L2 scoa({thl(i)+th2(1));
y(1) = Lieain(thi(1)) + L2 esin(th1(i)+th2(1));



% saving the data for comparison
*t = x; yt = y; thit = thl; th2t = thl;
clear x y,;

% Initial and final joint-space coordinates

thi0 = thi(1); thif = thi(k); th20 = th2(1); th2f = th2(i);

J1 = [-Li*sin(th10)-L2=ain(th10+th20) ,-L2*sin(th104th20);
+L1xcos(th10)+L2*cos(th10+th20) ,+L2*sin (th10+th20);];

J2 = [~Lissin(thlf)-L2*sin(th1f+th2f) ,~L2=sin(thif+th2f);
sLiscos(thif)+L2ecos(th1f+th2f) ,+L2sgin(thif+thaf);];

thodot = inv(J1)e[xidot;yidot]; thidot = inv(J2)*[x2dot;y2dot];

v,
OI LR
L e
figure

for i=1:length{t)
4 Joint-space trajectory
thi(4) = [1,6(1),6(1)°2,8(1) 3] savhi;
th2(i) = [1,£{1) ,t(3)°2,%(1) 3] *ath2;
% Forvard kinepatic model (for calculating the task-space variables)
x(1) = Liscos(th1(i)) + L2 scon(thl(i)+th2(1));
y(1) = Lieein(th1(1)) + L2 egin(thl(i)+th2(1));

% workspace
plot(xs¥s,'.', Color’,[0.9 0.9 0.9])
bold on, axis([-11 -1 1]},
grid on, axis square

So, once these found we can generate the trajectory based on so and so thing. So, once these all
found so you can see like here. So, once those things are found so we can calculate these all. So
once these all calculated, so we can calculate the forward kinematic model just for comparison.

So, then we can again plot the workspace.
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% saving the data for comparison
%) = X; ¥} =y thlj = thi; th2j = th2;

figure

subplot(2,2,1)

plot(xs,ys,’. !, 'Color’,[0.9 0.5 0.9))

hold on, axis([-1 1 -1 11);, grid on, axis square

plot(xt,yt, 'b-', 'linewidth’ 1)

plot(xt(1),ye(1), 're’ 'markersize’, 10)

plot(xt(1),yt(1),'gp’, 'narkersize’',10)

set(gea, 'fonteize' 12, 'fontname', 'Tines'),
(:;labelt’x.[units]'); ylabel('y, [units]}’');

And the plot the individual animation we can try to show finally we will end with a comparative
plot where you can say both trajectories how it looked like one is joint space, the other one is
task space. How it looked like that we are trying to compare.
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subplot(2,2,2)
£111([thi_nin thi_max thi_max thl_min thi_min]epi/180,...
[th2_min th2 min th2_nax th2_max th2_min]wpi/180,[0.9 0.9 0.9])
hold om, grid on

axis([thl ninepi/180-pi/3 thi_maxepi/1804pi/3
th2_nin*pi/180-pi/3 th2_maxepi/180+pi/3]);

axis square; plot(thlt,th2t)
plot(thiv(1),th2t{1), 'rs’, 'narkersize’,10)
plat(th1t(i).th2t(f§.’gp'.’nnrkersize'.lo)
setigea,’fonteize’ 12, 'fontnane’, 'Times’);
xlabel(’\theta 1, [rad]’); ylabel({'\theta_2,[rad]')

v,




aubplot(2,2,4)
£111({thi_nin thi_max thi_max thi_min thi_min]epi/180,...
[th2_min th2 min th2_nax th2_max th2_min}+pi/1€0,[0.9 0.9 0.9])
hold on, grid on
axis([thl ninepi/180-pi/3 thi maxepi/1804pi/3 ...
th2_ninepi/180-pi/3 th2_maxepi/180+pi/3));
axis square, plot(thlf,th2j)
plot(thij(1),th23(1), 'rs’, 'markersize’,10)
plot(thij(i),th2j{1), gp’, "markersize',10)
setigca,’fonteize’ 12, 'fontnane’, 'Times’);
xlabel(’\theta_1, [rad]l’); ylabel{'\theta_2,[rad]');

©

So, for that we are trying to plot individual cases. So, and then we are ending it. So, for getting
more clarity as it is a short video.

(Refer Slide Time: 7:52)
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clear all; close all; clc;
44 Geometrical Parameters

[
L1 =0.5 L2 =0.4;
%% Joint limits
thi_min = 0; thl max = 210;
th2 min = 0; th? max = 2107
thi s » thl min:2:thl max;

th2 s = thZ min:Z:th2 max;

%% Workspace computation

- - — PP —— 10—

% Geometrical Parameters
L1 = 0.5 L2=0.4; 1

4% Joint limits

thi min = 0; thl max = 210;
th2 min = 0; thZ max = 210;
thl s = thl min:2:thl max;
th2 s = th2 min:2:th2 max;

4% Workspace computation

1=1;

—

poe. T
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%% Joint limits

thl min = 0; thi max = Z10;
th2 min = 0; th2 max = 2107
thi s = thl min:Z:thl max:
chi% = th? min:2:th2 max;

%% Workspace computation
L= 1;

£or

i=1:length(thl s}
for j=l:length({th2 s)
xs{l) = Ll*cosd(thl 5{i))+L2*¢

4% Workspace computation
l=1;

for i=l:length(thl s}
for j=l:length(th2 s)

x8{1l) = Ll*cosd{thl s(i))+L2*cosd(thl g

ys{l) = Ll*sind{thl s{i))+L2*sind(th
4o

= 1+1;

@
o

end

4% Trjectory points

i)+th2 s



43 1,ts, ts"2,t8%3; X
44 0,1,0,0¢
45 0,1,2*ts,3*ts"2];

46 %4 Case 1: Trajectory generated based on task-space schem '
1 bx = [x1;x2:xldot;x2dot];

48 by = [yl;yZ2:yldot;y2dot];
15 ax = 1nv(3)*bx;

50 ay = inv(d)*by;

51
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B4 thl(i) = atan2(y(i),x(i))-atan2(LZ*s2,L14L2%c2);

65 th2(i) = atan2(s2,c2);

66

61 Workspace

68 plot (xs,ys,"'.','Color', (0.9 0.9 0.9)

63 hold on

0 axis([-1 1 -1 1]}

7 qrid on

12 axis square

13 manipulator motion animatior

1 plot ([0,L1*cos{thi(i)),x(i)],|0,L1*sin(t
75 'r-o','linewidth’',2)

(; y hold on
»
.é. plot(x,y,'b-", "linewidth",1)



So, for getting more clarity we will go to MATLAB. If anything will explain, then there. So, you
can see like here, this is the starting point. So, we are as general we are clearing the; you can say
a workspace closing all the figure windows and clearing the command history. And the geometry
parameter here link 1 is the length of 0.5 meter and link 2 is 0.4 meter. And the joint limits 0 to 2
and 210 degrees.

And this is the simulation, and 1 am computing the MATLAB using for MATLAB for finding
the workspace the workspace | have computed then the trajectory point details are given. So, |
have calculated all those things. So, then I calculated. So, you can see this. And again, | have
calculated the; what you call the bth and this one. Then I calculated the individual joint trajectory

coefficients and the joint space trajectory I have generated it is synchronous.
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thl(i) = [1,B{1),E8(1)"2,E(i)"3]*athl;
th2 (1) = [1,841),8(1)*2,0(1)73]*ath2;

INGTIQ Ki1nems &

tinng
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task-space varlable
|
X{i} = Ll*cosithl(i)) + L2 *cos(thl(i)+th2(1)):

y{i) = L1*sin{th1(i)) + L2 *san(thl(i)+th2(3));

Workspace

plot (xs,ys,'.','Color', 0,9 0,9 0,9])
hold an

axis([=1 1 =1 1]);
grid on
axis square

manit r motion animatl

manipylator motion animatiof
plot ([0,L1*cos{thi(l)),x(L)],{0,L1*sin{thl (L)), y(4)],
'r-0','linewidth',2)

hold on!
plot(x,y,'b~','linewidth’,1) trajectory

plot (x1,y1, 'rs', ‘markersize',10) starting point
plot (x2,y2,'ap', 'markersize',10) \ final poigt

set (gea, 'fontsize', 12, "fontname', 'Times')
xlabel ('x, lunits]');
ylabel{'y, [units]')
axis square

pause (0.01)

hold off
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axis Sq-u..dai ] "8

manip
plot ((0 ::
hold on _:»
plot (x, % '
plot(xl *
plot (x2 :
set (gca “

xlabel { e
ylabel (“yprenever
axis square

pause (0.01}

hold off
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130
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135
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141

axis Sq»;'.).‘da‘.! o] + 50

. asi v@eu P ——

manip| '
plotl{ﬁj x
R (0
hold onf _.
plot (x,]| % J
plotlxl! &
plot (x2| :
set (gcal "
xlabel |

8 1 L1-0 L ——

e

e

-

o\ pmmy|

o geems Pl W @

in{thl(i)),.v(L) ],

axis square
pause (0,01}
hold off




130 axis sq ELIEE

131 ‘

132 plot((0] ¥ 7 F In(thl(4)),y(4)1,
133 r~Y

134 hold on

135 plot (x, : o
136 plot (x1

37 plot ( v .

138 set (qeal

139 xlabel

140 ylabel (S

141 axis square

.(,-‘1;) pause (0:01})

e hold off

And the other one is independent this is a synchronous and then | have tried to plot it. First, I will
run this then we will go back wherever there is a clarification required. So first I run this. So, you
can see like this is the workspace and based on the given condition, you can see like the task
space trajectory and joint space trajectory is giving some kind of peculiar patch. So that is what

we are trying to see. So, you can look at it this.
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97 thi0 = thi{l); thlf = thl(i):

98 th20 = th2{l); th2f = thi(i);

99

f’:} J1 = [-Li*sin(thl0)-L2*sin(th1(4th20),-]
AL +L1*cos (thl0) +L2%cos (th10+th20)
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Initial and final velocities are

xldot = 0.1; x2dot = 0.1; yldot = 0; y2dot = pi

me f each nitia i f
ts = 10;
time spar

t = 0:0.1:ts;
%% Trajectory generation using cubic polynomia
&=1(1,0,0,0;

l,ts,ts"2,t5%3;

0,1,0,0;
0,1,2'ts,3%ts"2];

%4 Case 1: Trajectory generated based or ..

bx = [x1:x2:xldot;x2dot];

—" v o o

- T B - TR — - =2 — p———t ) P .
-
plot(xl,yl,'rs', 'markersize ting 1
plot (x2,¥2, 'gp’', 'markersize final | f

set (gea, 'fontsize’, 12, 'fontname', 'Times' ) :
xlabel('%, lunits]’);

ylabel{'y, [units]')

axis square

pause (0.1)

hold off

end

saving the data for compariso

X} = % yj = y7 thlj = thl; thZj = th2;



136 plot (x19=44 3 08 43
137 plot (x2 .
138 set (gea mes'):

139 xlabell]
149 ylabel 2y )
141 axis sq i '
142 pause(0  °
143 hold of U

144 end o
145

) o "
146 1AVING Lhlecssereer s wuminn d o

147 X) = % yj = y; thlj = thl; th2] = thZ;

m Jomparigon plot

.
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136 plot (x1PEXA A 83T tarting point
137 plot (x2 ¢t inal point

138 set (gca
139 xlabel { & N
149 ylabel { . \
141 axis sq

142 pauge (0

143 hold of 4

144 end a

145 ; 7
146 5aVINGg thissscw—swr—
147 X} =% yj =y thl) =

?;j omparison plot




So first | will try to show this is the joint space trajectory. This is the task space trajectory. So,
tasks space trajectory is there are based on this, the initial velocity and final velocity is making it
a little unrealizable. So, | will just make it both 0. And in order to make it stand by just to give
idea. So, I am making it 100 milliseconds for the step for one image to another image. So, now, |

am trying to show here.

So, you can see this is the workspace the patch part which is the workspace. So, the first joint is
rotate 0 to 210 degree second joint also rotate maximum 210 degree starting from 0. So, if | plot
then this is a workspace will come within the workspace this is the initial point and this is the
final point. So, now, it is from nonzero initial velocity to you can see finite velocity. So, you can

see how it is so, complex.

Because, we have taken the inverse Jacobian, which is one such complex so, that is what it is
trying to do it based on so-on-so case. So, here there is a peculiar thing we need to see it.
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97~  thi0 = thi{l); thlf = thl(i); %
98 th20 = thZ2{l); thZf = th2{i);
99
100 J1 = [=L1*sin(thl0)~L2*sin(thl10+th20),~L2*sin(th10+th20);
101 tL1*cos(thl0)+L2%cos (thl10+th20) ,+L2*sin(th10+th20); *
102 J2 = [~Li*sin(thlf)~L2*sin(th1f+th2f),~L2*sin{thl1f+th2f);
103 +L1*cos(thlf)+L2*cos (thl1f+th2f) ,4L2*sin(thlf+th2f);
104 thOdot = inv(J1) *[x1dot;yldot];

!
108 thfdot = inv(J2)*[x2dot;y2dot];"
108
107 Trajectory (polynomial) coefficients

[thl0:thif;th0dot (1) :thidot (1) ]?
|£h20; th2f; thidot (2) ;thidot (2) | ¢

108 bthl

Yaa
.q:j bth2

L}

[ 00 o [t T g 4 6 B0t N’ Ay g [t W8 3
i [
88  th "
B9 Xt = X; yt = y; thlt = thl; thit = th2;

90

91 clear x y;

92 ‘

93 % Case 2: Trajectory generated based on joint-space sche
94

a5 Initia l t-31 rdina

9§

97 thi0 = thi{l); thif = thl(i):
93 th20 = th2{1); thZf = th2(i);

*Ej J1 = [=Ll*sin(thl0)-L2*sin(th1{4th20),-]
+L1*cos (thi0) +L2*c0s (th10+th20)
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39
40
i1
42
i3
44
45
16
1

44

~e ey
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t = 0:0.1:ts;
%% Trajectory generation using cubic polynomial
A= [1,0,0,0;

1,ts,t8%2,t8"3;

0,1,0,0;
0,1,2*ts,3%ts"2];

4% Case 1: Trajectory generataed based on tas

bx = [x1;x2;xldot;x2dot]|;
by = [yl;y2:yldot;y2dot|;
ax = 1inv(A) *bx;

ay = inv(&)*by;

e o LU L PRI R oF ¢ e — _ IS
37 Tin r DEdeQ 00 VT ht ’
38 ts = 5 \

39 time apan o

40 t = 0:0.1:¢t ::

11
42
43
14
45
46
47
48

4% Trajecto u ynomial

Fi

i=[1,0,0, i
1,ts, 8
0,1,0
0,1,2 “

% Case 1: |

bx = [217 22 pmauvernevoeyy
by = [yl;y2:yldet;y2dot];
ax:-= inv(A) *bx;

o "

\ (x|

ay = 1nv(d)*by;




ts = 5

40 t = 0:0.1:
41 ¥ Trajecto : Wamml
42 A= (1,0,0,]

43 8,

44 ph I

45 AN i

i€ t% Case |

17 bx [ %1} %2 pwawoerwamoeppii
44 by = [yl;y2:yldot;y2dot];
(4) ax = 1av(A) *bx;

Rt 1y = 1nv (&) *by;

_~
37 ‘ ds 3 ¥
38 ts = 5; |
4 ) t
41 Y Trajecto I z I ynomial
12 A= [1,0,0, '
43 LS, -
44 /1,0
45 )
{6 t% Case !

So, | like to like to try to show so, what happened here. So, here we are trying to calculate so and
so this x 1 dot and x 2 dot so since we are clearing it there so, we are clearing everything clear x
y. So, these initial conditions, which we have calculated, you can see like these are still exist, so |
make it initial and final velocity of both x and y are 0. And 1 just tried to show with a very simple

5 second. So, | just want to show it here. So, now | just you can see it.

So, it takes this point to this point it is taking 5 second and it is running. So, this make it if initial
and final velocities are 0 so you are getting much, much smoother profile. So now we can
realistic. So, for example, 1 am taking one point here, so another point is somewhere here. So,



what will happen in the task space trajectory it will come here.

in the x and probably 0 iny | just take it.

(Refer Slide Time: 12:14)

So, this point, I am taking it 0.15

37 I

38 ts = 5

39 I

10 t = 0:0.1:ts;

i1 4% Trajectory generation using cubic polyna
42 A=(1,0,0,0;

i
([~ — .. B
31~ x1 = 0.75; DedeaE 3 E
2= %2 = 0.2; y :

33 :

34 I 5

35 xldot = 0; _. ! U:

36 :‘ ;——/

37 Nt

38 ts = 5;

3% 1

40 t = 0:0.1:¢ -

i1 11 Trajectouy yenesavavi Goboy - wawmu-posyTION

42 A= (1,0,0,0;




So, I will take the initial point is the same. So, the final point is 0.2 this is 0. | just so | just try to
see the plot. So here I will be taking the initial point is something around probably, | will take it
here. So, which is 0.75 and 0.45 | just randomly take 0.75 and 0.45 just to show that. So, the
workspace since we have not restricted the joint here. So, the workspace will show, but the

manipulator will show the animation says that it is going out of the workspace.

So, you can see like so you can see like it is going to go outside the workspace in the task space
trajectory. This is what we have seen one of the constraint, which we were discussing one of the
lecture. So, you can see it here. So, this is one of the solution we have taken. That is why it is
coming this way. So now the solution, | am taking it the other solution.
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64 thl (i) = atan2(y(i),x(i))-atan2(LZ*s2,L1+L2%c2);
65 th2 (i) = atan2(s2,c2);

67 Workspace

68 plot (xs,ys,"'.', 'Color', [0.9 0.9 0.9))

63 hold on

70 axis({-1 1 <L 1]};
n qrid an

12 axis square

13

man J14Lor mot n anisstion
19 plot ({0,L1*cos{thi(i)),x(1)],|0,L1*sin{

5 r-0',

(g‘ hold on

plot(x,y,'b-"', 'linewidth",1)

linewidth',2)
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111 athl = inv{A)*bthl;

112 athZz = inv(3)*bthZ;

113

114 figure

115 for i=l:length(t)

116

117 joint-spa Lrajectol

118 thl(1) = [1,t{i),t(1)"2,t{i)*3]*athl;

119 th2 (i) [1,e44),t(1)*2,6(1)"*3)*ath2;

120 Forward xinematic model (for

k% tasx-space varliables)
123 x({1) = Ll*cos{thl(i)) + L2 *cosit}
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111 athl = inv{| °
112 ath? = inv{ ,
113 //‘
3
114 figure i
115~ for i=l:len} %
116
117 i py
118 thl (i) | e 5
118 th2 (1) Cpuyernyrermn i eremmp-aeme
120 Forward kinematic model {for calculatyg

1(2_ tagk-space varliables)
IA x{i) = Ll*cos{thl(i)) + L2 *cos|t}

e

e L [ R o

108~ bth2 = [thz{iedsa o8 d
110
111~  athl

112 athZ = invi(] &
113 //‘
114 figure i

115 for i=1:leni

inv

116
11-“ -

118 thl(i) | — = :

118 th? (1) -—Q?mtrvmvmvﬂy*m:'
120 Forward kinematic model {for calculat]

]{2 tasx-space varlables)
»
LA x{i) = Ll*cos{thl(i)) + L2 *cos(t}
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We can see that other solution. So, what is the other solution? So, | am taking it this is s2 is

minus sign. So, in that case so you can find. So, this would be still outside workspace. at least

one solution is possible. This is also like going out. So probably | have taken some point from

here to here. that would be clearly visible because both are outside the workspace even the input

is outside the workspace in this case. So that is why it is not doing it.

(Refer Slide Time: 14:18)

24 ysil)
25 1 = 141;
26

! nd
29 t% Trjectory peints
1 x1 =0.2; y1 =0,5
2 2 = -0.5; y2 = 0.5

34

Li*sind{thl s

|
\

L))+LZ*s1na|thl s(1)+thZ §¢




33
3

35 xldot = 0; x2dot = (; yldot = (

- o .‘t . el .
4 Ysiisuea ot glthl s(1)+thd s(T
5 | = \

29 t% Trjector]

So, I will take it back. So, I will just run this. And we will modify that. So, I will take one point
here and one point here. Then that would be within the workspace of both we can see at least. So
probably | take 0.75 and 0.45 and here somewhere around 0.25 or something. So, | will just see

that. So, in fact, | would have taken a grade as the point. So, this is the point 0.15 and 0.35 | take.
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32 *2
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gy e
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1 = 141;
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Trjectory points
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0.2; y1 =0,
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29 %% Trjectory peints
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i
=
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33
3 nitia fina
5 xldot = 0; x2dot = 0;
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25- ] =
26— end "
21 end "
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A4 VS {Haasa ol s d(thl s(1)+thZ 5(T
5
=2 o
26 '
21 end '
28 1
29 % Trjectors @ {
31 x1 =048y
32 x2 = 0,15
33
3 *
35 xldot 0; xZaot Ido
36
&)
R ’ = [
'J
4 Ysllysusaog va H|Chl s(1)+thZ s(¥
P
26 oy 3
7 end
29 t1 Trjector] . I
1 Q ] < e
31 x1=0.8; ¥
32 x2-= 0.15;
i
1 ‘ i
3% xldot = 0; xZdot i ylde
36
)
\-: t = ©

So, this is so this is 0.15 and so 0.35 and other point | am trying to take the input point
somewhere here. So, 0.8 and 0.3 so 0.37 and 0.8 and just to taking a random point. So, | am just
trying to demonstrate So, you can see it. So, it is going to make it outside but provided the joint
space scheme is still following that profile. This is what we have seen as one simple case. So

even | will take the other one.
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10- t =0:0.1:tf; | time span 3
11 Ll=1; 12 = 1;

12 A=11,0,00;

i3 0,1,0,0;

e 1 tf,ef%2,¢£%3;

15 0,1,2*tf,3'¢£%2];

16 bx = [x0;xdot0;xf;xdotf];

17 tox = inv(A) *bx;

i8 for I=l:length(t)

19 %% Task-space trajectory

20 xt(i) = [1,t(1),t(4)"2,t(i) 3] *tex;

21 yt (i) = (yf-y0)/(xf-x0)* (xt(1)=-xE)+yE;

%% Inverse kinematics
c2t = (xt{i)" 2+yt(i)*2-L1"2-L2"2)/ (2%

| L L RO G ——————

[PIT—— e — - e o o T v g P LS .

1 % Start
1

clear all; close all; cle;

N

%% Initial and final end-effector positions
Ll X0 =1z y0 = 1;
5 X = -1; yf = 1.5;
b ¥% Initial and final end-effector velocities
7 xdot0 = 0.5; ydot0 = 07

8 xdotf = 0; ydotf = 0.5;
I} f_f = 1':‘; trajectory qauratien
10 t = 0:0,1:€f; | timg spar

11 Ll =112 =1;
12 A= [1,0,0,0;

ﬁ) :'il:ﬂ;‘:’/'

L. tf,vfr2, efn3;
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¥t Start
clear all; close all; cle;
%% Initial and final end-effector positions
X0 =1 y0 = 1;
Xt = =1; yf » -1}
$% Initial and final end-effector velocities

~ O8N Un & wNO—-l

xdot0 = 0; ydot0 = 03

xdotf = 0; ydotf = O;

o
P
-~
"
—
<
-

jectory durat
t = 0:0,1:€£; 1 time

L1 =~1; 12 =1;

A= [1,0,0,0;

ﬁ‘) 0,1,0,0;

L,tf, vf72,0803;
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% Start Jede a0l G

clear all; ¢
%% Initial al

%0 =1z y0 = .
Xt = -1; yf | = I
£% Initial a v J

= W N -

w 0 ~ oy U»
’ -
v = 2
a8
v
n
(=]
~

L1 = 1" L2 =y ==y
A=[1,0,0,0;
0,1,0,0;

l,tf,ef72,LE%3:
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1 ¥% Start ue
clear
%% Initial a ns
i X0 = 1; y0 =

. xf -1; yf \\
f $% Initial a i \ ies

%% Initial a : 3 he

Xt = -1; vf |

r £% Initial al ny g ies

So, the task space trajectory itself. So, I will take it here. So, just the mirror image | will take. So,
this I will take it 0. So, just to show that where it failed so it mirror image in the sense it is minus
1 you can feel it in a single simulation itself. You can feel it how this is going to be very tough;

you can see it is going to fall in here single in the sense that it is going to fall on a singular point.

And you can see that it is giving the other solution. The task space which is giving the other
solution. So, you can follow it. So, this is what | was saying if the solution of the same point,
which is having multiple solution, the scheme can let go it in the end of this. So why it is it is just
a mirror image of this. So that is why it is giving the other solution.
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%% Initial and final end-effector positions
X =1; y0 =17

xf = =13 ¢f =13

%% Initial and final end-effector velocities
xdotd =

|
o
-

; ydot0 = 0;

xdotf = 0; ydotf = 0;
tf = 10; tra ity duratior
t = 0:0.1:tf; time sg

L1 = 1; 12 = 1;
1% Joint positions using inverse kinematicsg
c20 = (x0%24y0*2-L172-L272}/ (2*L1%*12);

thi0 = atan2(y0,x0)-atan2 {L2*s20,Li+04
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%% Start Dede Dl WG
clear all;

4% Initial | \ pns
x0 = 1; y0 \
xf-= ~17 yfi o
$% Initaal |
xdotl =

¥ i)

ties

L
o
-

3 | "
Ll = 1.' L2 & ar =y
1% Joint positions using inverse kinematics.
c20 = (x0%24y002-L172-122) / (2*L1°12); p

thi0 = atan2(y0, x0)-atan2 (L2*s20, Li+L3




T

So now the same situation if you do it in joint space, we will try to see whether that is matching
at least or not. So, with that, I like to like end it. So, this one and this one and we are trying to
see. This is minus 1 | have to take. So, this is minus 1. So, | will try to see whether that

consideration of near singular and other thing is restricted you can see it is overcome. So, this

t% Start s 3 0n

clear
4% Initial |

XU = ’ '_;.u

xf =13 i

$% Initaal
xdot0 = 0

xdotf

tf = 107

t )

L1 1; L2 Gy

t% Joint position
) = (x0%24y072-L1"2-L22) [ (2*L1*L2);

thil = atan? (y0, x0)-at anz (L2

ng inverse kinematics

pns

fies

way as long the workspace is available even that solution is exists.

So, that is what we wanted to see. So, you can see like this point to this point in the task space is

going with what you call overlap with a singular point. But the other case it is not happening it.

So, these all we wanted to check.

(Refer Slide Time: 17:54)
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116 athl = inv(&)*bthl;
117 ath2 = inv{A)*bthz;

n

118 figure
120 for i=l:length(t)

122 Joint-gpace trajectory
123 thl(i) = [1,64i),e(8)*2,0(1)?3,e{1)74, t{
124 th2 (1) = [1,t41),t(1)*2,e(i)3,t{i)74,¢
125 Forward kximematic model (for calculati
126 x{i) = Ll*cos{thl(i)) 4 L2 *cos{thl (i) +/d
ﬁ yii) = L1*sin{thl (1)) + 12 *sin{th1 4

122 JToint
23 thl (i) y &, t(i)75]*athl;

124 th2 (i) e §,t(1)°5]*ath2;
125 Forwa Sy lating the task
126 x{i) = i 1) +th2(3));

127 yii) = y 1) 4th2(3)):
128 i
128 NOT RS “

130 plot (x5 T
131 hold on el
132 axis(f{=1 1 -1 1]}

*ij grid on

axis square
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Joint

thl (i) | ot §,t(i)%5]*athl;

th2 (1) & ——I— B, t(1)°5]%ath2; |
Forwa T fating the task-s ¢

xii) =| § L14th2(4));

yli) = £)+th2(i));
works| :

plot (xs T

hold on

axis(f{=11 -1 1]};
qrid on
axis square

T Laasaneaa

foint
thl (1) Rl b, t(i)"5]*athl;
th2 (1) A b1 B, L(1)°5]*ath2;

Forwa 1 N0 ating the task-s !
x{i) = e el L) +th2 (1)) ;
yii) = | s ' ) +th2(1))

[ I |

NOI'RS ‘l
plot (x5 hivs Sl
hold on

axis(f=1 1 =L 1]};
grid on
axis square




So, the same thing we can even do for a fifth order. So, the fifth order you can see why only 1
change will come the A matrix and the coefficients would get changed. So, because of that, this
you can say task space trajectory or joint space trajectory so that you can say values will change
remaining all are same. So, for example, I just if you I run. So, the same thing we can realize it

and it is going to happen.

So, now, | hope you are clear to this what you call how to find the workspace and how to get the
task space trajectory and joint space trajectory and one if it is failing can we use the second one
or which is beneficial and what instant it is beneficial all those things you can look at it.
However, the task space trajectory is always better. However, like you can avoid certain

constraint points because that will give more realistic.

Because that is going to give in real time. Sometime workspace means we always see only in the
task space, but the workspace even we can realize it in the joint space. So here the workspace is
minimum to maximum of each joint. So here are only 2 joints it is in a plane, if it is a 3 joint it
would come as a volume. So similarly, if it is xyz that would come in a volume. So even we
include orientation that would come in the higher order dimensional which is not directly visible

to us.

So, with that I am closing this particular lecture. 1 hope this is giving some clarity on so what is
trajectory and how to generate a trajectory? How we can imply or how we can employ these

games in the you can say serial manipulator and serial manipulator what is the difference



between joint space and task space these all you realize it. So, with that, I am ending this

particular lecture.

And the next lecture we will be talking about control we will initially start with open loop, then
we will go to feedback which we call closed loop. Then we will go the nonlinear scheme, then

we can like close the subject with the advanced topic. With that see you then, thank you bye,

take care.



