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Hi, welcome back to mechanics and control of robotic manipulator. Last few classes what we
have seen is how to derive a dynamic model of a robotic manipulator in specific serial
manipulator. We have seen two methods. So, these even MATLAB, or you can say using

MATLAB how to derive the equation of motion also, we have seen.

This particular class or this particular lecture, we are going to talk about how to do a dynamic
simulation. So, whatever we derive that equation that equation how we can use for a dynamic

simulation model.
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So, in the sense we are trying to see basically like you can say the equation of motion we are
taking and trying to do the forward dynamics in this particular lecture. So, for that we need to
have some numerical integration method. So, here we are going to talk about Euler integration
method that would be very simple. It is a first order integration method that we can use if you are
necessary or you feel like it is necessary, even we can use second order or fourth order you can

say numerical integration methods.

But here we are going to use the simple first order which is what we call Euler integration
method. Then we will take one simple example and we will see how that example can be ported
in MATLAB and based on that how we can do the dynamic simulation along with what you call

motion animation.
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Equations of motion

7=M(q)q+V(q.9)+F(q.9) +g(q) (1)
a=M(q) " [r-(V(0.9)+F(a.9)+g@)] (2
+
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So, this is all what we are trying to cover in that sense the generalized you can say equation of
motion of robotic manipulator can be written in this form. So, this equation we can modify for a
forward dynamics, although we are doing in a forward dynamics in the sense what we know the
tau is known. And we are trying to find out what is the motion. In that sense, we will start with

the initial stage initially the; you call system variable called g q dot would be known.

Then tau is known, then how we can get g double dot this is what we are trying to do. So, for that
we are calling this is a dynamic simulation model. We are writing everything in acceleration
form. In the sense so, g double dot can be written in this simple equation. So, now, you can see
here the initial condition g q dot and the input tau are known and the frictional quantity gravity
vector and all other vectors can be found based on that.

If we even write this in you can say you call even if we draw in a block diagram base, it is very
clear. But now, we will do it in MATLAB. In the next lecture, we will see in a block diagram

approach. So, in the sense that the MATLAB case we need to write everything in a code form.
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So, for doing the numerical integration, we will try to use the Euler method. So, how we can get
the Euler method by you can say demonstrating in this particular plot. So, you can see like here
that x of t and the time we have achieved here in a plot. Where time is the independent variable,
and the x of t is the dependent variable. So, right now the x of t is given in this particular

polynomial.

So, this particular curve. So, now what | am trying to take I am trying to take as a random ti
point. So, in a sense first instant | am taking so, what is the corresponding value I call x of i. So, |
am taking another step which is we call t i plus 1. So, that would be correspond to you can say X
of or x i plus 1. Now, although the curve is somewhat curved in the sense, it is not straight line.
But | am trying to make a straight line.

You can see in a green line, so, where xi and xi plus one it is connecting. So, now if we see the
straight line. What would be the slope? The slope would be x dot of i that x dot of i how I can
write x of i plus 1 or xi plus 1 minus xi whole divided by ti plus 1 minus ti, So, this is the way we
can write. So, now based on the slope, one can easily find if | know x of i and | know x dot of i

and if I know what is the time step 1 am going to consider then | can find x i plus 1.

So, in the sense this equation what | have written I can rewrite, so, x dot of i multiply with this
we call time step. And then | can rewrite this equation in the sense | consider this as a delta t. So,

then you can see x dot of i into delta t plus x of i is equal to xi plus 1. So, this is what we are



going to call as a numerical integration that to like Euler’s method. So, in the sense this equation

is going to use hereafter in the dynamic simulation for our robotic manipulator.
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So, now if that is the case how | can write in a generalized form in robotic manipulator. Here
there are two things will come. Because the robotic system is the equation of motion written in
second order equation. In the sense so, q dot can be obtained by taking q double dot as the input.
Similarly, like q we can get it from q dot.

So, in that sense this is straightforward from the Euler integration. But this we can rewrite in that
way. So, we know equation of motion for a simple particle where we call you can say v; v equal
to u plus at and s is equal to s naught plus ut plus half at squared. The same way here this is equal
into what you call the velocity relation. So, in the sense q dot i plus 1 is the next one. So, that can

be obtained from the qi g dot i plus q double dot of i into delta t.

So, right now, we want to go with the position, then you can see like it depends on you can say
initial velocity initial position and initial acceleration at top. So, in that sense what we can
rewrite this equation. So, this is further we are differentiating. So, that is what we are trying to
do. So, now this is integrating it. So, if we integrate what we get this is going to be g i plus 1 and

this is going to be q i and this will get something addition. Why?



Because this is going to give two set of equation. So, that is what we have written. So, in the
sense you can see the g dot easily we can obtain. So, once we obtain the g dot we can go to g. So,

that is a way we can a proceed.
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Example: A planar 2R serial manipulator
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So, if that is the case, how we can take it to a MATLAB you can see simulation for that we will
take one of the simplest examples which all studied so, far in all the; you can say constraint for
example, you talk about velocity or you talk about equation of motion. We have taken planar 2R

serial manipulator. The same example we will take.
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Example
080

Inertia Matrix:

M(q) = m1Lf+m2Lf+mzL%+2mgL1L2C2 m2L5+m2L1L2C2]

mzL% + mlily G mng
()

Other effects:

v2 DI
-mliLr S0 — 2m2L1L2520102} (6)

V(q,q) = ;
@4) m2L1L252H12
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Friction effects:

b101 = qsign 01
byt + cosign ( 0 +

F(g.q) =

Gravity effects:

Ly +mly) G + mlyC
g(a)= gl(mli+ml) G mzzu]}

gmlyCyy
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So, what we have, so, M of g is known so, then other effort v g comma q dot is known. And g of
you can say f of g comma q dot also, known and the g of g is not the sense all you can say four
subcomponents are known. So, now if | know tau, how can | get this with the initial condition?
Because this is ordinary differential equation for solving ordinary differential equation, you need
one of the boundary condition, here we call initial condition. If you know initial condition and

input, then you can solve this particular equation.
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%% Dynamic simulation of a RR planar robot
clear all; close all; clc;

%h Simulation parameters

dt = 0.01; J stepsize

ts = 10; % total simulation time
t = 0:dt:ts; } time span
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So, that is what we are trying to do for that we are taking simulation code. So, we are again
taking it everything we are making it clear and sometimes we are making a plot. So, that is why



we are closing all the figure window and clearing the command history. So, that we can
understand what was the error command or what is the output. Then what we are going since it is

having a several steps, first, we need to define the integration parameter.

So, here we are doing Euler integration. Euler integration is a simple first order system. So, the
dt is what equal to delta t which is nothing but the step size. Here | have taken as a 10
millisecond it did not to be, but we have taken 10 millisecond. Further, we need to see what
simulation range you want to run this particular MATLAB code. So, that is what | call total

simulation time which is | have written as ts.

Then, this is going to actual like a propagate from 0 to ts with the integral of delta t. In the sense
I am defining the time span which is starting t starting from 0 to ts with the interval of you can
see our step size of dt here. So, this is the first case we have defined the simulation parameter.

Once we know the simulation parameter then we can go to the system.
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Matlab code

0000000

Wh System parameters

ml = 2; m2 = 1; % link massess

al = 0.5; a2 = 0.4; J link lengths

g = -9.81; J gravity

bl = 0.5; b2 = 0.5; c1 = 0%0.6; c2 = 0%0.5;

%h Initial conditions
q = [0;0]; % initial joint positions
q_dot = [0;0]; % initial joint velocities

HED
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Then we are talking about the system parameter. Since it is a 2R serial manipulator that to in a
plane. So, then we are assuming that it is a vertical planar. So, the g we defined as 9.81 then you
are link length al and a2 defined. And your masses of link 1 and link 2 we define. Further we are
taking in the non-rigid body effect. So, in that sense the frictional coefficients where the viscous

friction and the coulomb friction we are considering.



So, the ¢1 and c2 | assume to be 0. It can be considered any Coulomb friction factors. But,
usually we assume that it is a viscous friction. So, that is why b1 and b2 are nonzero value. So,
once you obtain the system parameter what we need to do? Because we are trying to do the
system integration, or you can say the state integration or in the other way around we can call

numerical integration.

For that one important step is your initial condition should be known. So, we are defining the
initial condition. So, here the system states are two, one is joint position, the other one is joint
velocity. So, the joint velocity | am calling g dot g underscore dot. And the joint position | am
calling g. So, g is equal to theta 1 and theta 2. So, g dot is equal to so, theta 1 dot and theta 2 dot.
So, right now we assume both are 0’s there is theta 1 and theta 2 are 0 and theta 1 dot and theta 2

dot also, 0. So, once we all done what is what else we need to do.

(Refer Slide Time: 10:45)

%h Numerical integration starts here
for i=1:length(t)
thl = q(1,1); th2 = q(2,1);
thidot = q_dot(1,i); th2dot = q_dot(2,i);

% Inertia Fatrix
mil = al"2*%ml + al"2*m2 + a2°2xm2 + 2*al*a2*m2*cos(th2);
m21 = a2*m2x(a2 + al*cos(th2));
mi2 = a2xm2*x(a2 + alxcos(th2));
m22 = a2"2*m2;

M=[m11,m12;m21,m22] ;
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We can start the numerical integration since it is iteration because it is starting from time step t
equal to O to ts as you can see stage by stage as a propagation. So, better we have to use one of
the loops. So, simplest loop which we can use in MATLAB is for. So, | am using a for loop
where it starts as the iteration or loop count as i which starts from 1 to you can say length of t.

So, here length of t is so, 0 to ts how much it comes in this case it is 1001.

So, then I am calling like theta 1 and theta 2 is your system state. So, here the system states the

joint position we have defined as q vector. So, the q vector first term equal to theta 1 and the



second term equal to theta 2 but this q vector is going to propagate. So, that is why the ith instant
equal to theta 1 and theta 2. The similar sense g underscore dot would give theta 1 dot and theta

2 dot. So, that is equal to so, theta 1 as g underscore dot of 1 comma i.

And 2 comma i is theta 2 dot. So, once you define what you can do you can start making what
you call your individual components. So, we can start with the inertia matrix. So, you can see the
inertia matters we can write as you can see four components. Because it is a 2 cross 2. So, all
component | can write here. So, which start from m11l to m22 so, there are four terms. So,

already al, a2 we define and theta 1 theta 2 also, be defined which is going to be propagate.

And ml1 and m2 are constant. So, in the sense we can find the inertia matrix. Once we know the

inertia matrix, what we can do? We can do the other vector.
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Matlab code

0000000

Jother effects
oe_vl = -alxa2xm2*th2dot*sin(th2)* (2xthidot + th2dot);
oe_v2 = al*a2xm2xthldot"2*sin(th2);
oe_v=[oe_vl;0e_v2];

hgravity effects
gl = a2*xm2*cos(thl + th2) + al*mi*cos(thl) + al*m2*cos(t
g2 = a2*m2*cos(thl + th2);
g-v=g*[g1;g2];

% friction effects
Fr = [bixthldot+cl*sign(thidot);
b2*th2dot+c2*sign(th2dot);];
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Which we call other effects here. So, which is equal to v of g comma g dot. So, this is also, like it
is nothing but centripetal and you call Coriolis effect that can be given it as this. So, then we can
go to the gravity effect. Finally, you can come with the frictional effect. So, although c1 and c2
are 0. But | have make it as a generalized one. So, in that sense c1 and c2 can be nonzero also.

So, then you can see what you have to do now you have to give input.
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% input vectors
taul = 0; tau2 = 0;
tau(:,i) = [taul;tau2];

% acceleration vector
q_double_dot(:,1i) = inv(M)*(tau(:,i)-(oe_v+Fr+g_v));

’ velocity propogation
q_dot(:,i+1) = q_dot(:,i) + q_double_dot(:,i)*dt;

% position update 15
q(:,i+1) = q(:,1) +q_dot(:,i)*dt + 1/2*q_double_dot/ =

~ end
f}% numerical integration ends here

SANTHAKUMAR MOHAN, [IT PALAKKAD
OF RoBoTic MANIPULATORS

MECHANICS AN

So, the input vector here | call tau 1 and tau 2 are 0. So, then you can ask what you want to
expect here even you assume that theta 1 and theta 2 are O it is this extended position. Because
our frame arrangement where theta 1 is parallel to x axis and theta 2 equal to 0 means that is
again parallel to x1 in the sense it is just extended position. So, now there is a gravity's there

even if | put tau 1 and tau 2 0.

And | introduced the friction what happened? This will come down and swing and it gets settled
that | want to simulate. Later on, | can use some tau 1 and tau 2 as the input and see. So, now
what we need to do? We have to find the g double dot term which is what we call acceleration
vector. That is inverse of m into tau minus v of g comma g dot plus a frictional component plus
gravitational component these are all we have used whatever the equation we have written in the

previous slide.

So, then once you know q double dot what we can do we can propagate the velocity. So, in the
sense g underscore dot of i plus 1 if we can do. So, that we can do it with a simple Euler
integration then we can go to the position propagation. So, with that this would be the end. So,
here this is q dot so, where you can say comma i that is what the case. So, whatever it is coming

that is what, but it is multiplied with the delta t squared.

So, that we can see in the MATLAB code, then the numerical integration is the end. So, what

exactly we expect we want to see what is the outcome once you run this program.
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%h Plotting functions
plot(t,q(1,1:1),’r-.?,t,q(2,1:1),’b-?, linewidth’,2)
legend(’\theta_1’,’\theta_2’)

grid on

11 = min(min(q)); ul = max(max(q));

axis([0 ts 11-0.1 ul+0.1])

set(gca, *fontsize’,20)

xlabel(’t, [s]’)
ylabel(’q, [units]?)
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So, | can plot the positional information along with the time in the sense that time trend or time
history of the you can say joint position | can see. So, which is converge to some position that |

can see. But in order to see more intuitive way so, then better we can do the animation.
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%h Animation

for i=1:10:1ength(t)

x1 = alxcos(q(1,1));
yl = alxsin(q(1,1));
x2 = x1+a2*cos(q(1,1)+q(2,1));

y2 = yl+a2+sin(q(1,1)+q(2,1));
plot([0,x1,x2],[0,y1,y2], r-0’,’linewidth’,2)

grid on, set(gca,’fontsize’,20)

axis([-(al+a2)-0.1, (a1+a2)+0.1,-(al+a2)-0.1, (a1+a2)+0.1
xlabel(’t, [s]’),ylabel(*y, [units] )
hold off, pause(0.1)

{oHAN, IIT PALAKKAD
0L OF RoBOTIC MANI

The animation part we can do. Here | assume that this is origin then 1 and 2 you can say the; you
can say body case. So, this is the way we will explain I will explain this into the MATLAB code.

Then that would be very clear to you.
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37 b2*th2dot+c2*sign (thdot) ; 1; Fis
38 % input vectors

39 taul = 0%0.1; tau2 = 0*0.2*sin(t(i));

40 tau(:,i) = [taul;tau2];

41 s acceleration vector

42 q_double dot(:,i) = inv(M)*(tau(:,i)-(oe_v+Fr+g v));
43

Ly % velocity propogation

45 q_dot(:,i+l) = g dot(:,i) + q_double dot (

46

47 % position updatF

48 q:,itl) = q(:,i) +q dot(:,i)*dt + 1/2%

gé end
¢ numerical integration ends here

Ut

2 tdinor - CAUsers\useronadrivel Deskdop\Lecture Handouts\Dyn sim RRm - [+]

Skt o aoimin ¥ onamite | HAsbARMumIEn X Webyn X 1AL | Ukistn X thon X st X1 $
h% Dynamic simulation of a RR planar robot

clear all; close all; clc; 1

%% Simulation parameters

dt = 0.01; % stepsize

ts = 12; % total simulation time

t = 0:dt:ts; % time span

%% System parameters

O @ ~J o U s W N

ml = 2; m2 =1; % link massess

10 al = 0.5; a2 = 0.4; % link lengths

it g = 9.81; % gravity

12 bl = 0.5; b2 = 0.5; c1 =0.5; c2 = 0.5;
%% Initial conditions

ié q = [0;0]; % initial joint positions




- 5«
CHEEEEOL]

simple d dhot +

ht g =9.81; % gravity
12- bl = 0.5; b2 £ 0.5; ¢l = 0.5; c2 = 0.5;

13 %% Initial conditions

14 q = [0;0]; % initial joint positions

15 q dot = [0;0]; % initial joint velocities

16

57 %% Numerical integration starts here

18 for i=l:length(t)

19 thl = q(1,1); th2 = q(2,1);

20 thldot = q dot(1,i); th2dot = q dot(2,1);
21 Inertia matrix Z
2 mll = al*2*ml + al”2*m2 + a2%2*m2 +

§§ m2l = a2*m2* (a2 + al*cos(th2));

So, this is the MATLAB code, which we were seen in the slide. So, you can see that the dynamic
simulation of RR planar robot we have done. So, this is what | mean. And these all we have
given. So, right now, we assume that all frictional coefficients are 0. And here | have assumed
the gravity is vertically down. That is why | modified as 9.81 instead of minus 9.81. Because
when | derived, | have derived opposite direction. So, that is the case | have modified this. Why |

did? I will show you once the simulation done.
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50 numerical integration ends here
51 %% Animation
52 for i=l:10:lePgth(t)

53 x1 = al*cos(q(l,1));

54 yl = al*sin(q(l,1));

55 x2 = xl+a2*cos(q(l,1i)+q(2,1));

56 y2 = yl+a2*sin(q(l,1i)+q(2,1));

57 plot([0,x1,x2],([0,y1,y2],"'r-0', " 'linewidth

58 grid on, set(gca,'fontsize',20)

59 axis([-(al+a2)-0.1, (al+a2)+0.1,-(al+a2)-0.\= a2)+0.
60 axis square, xlabel('t,[s]'),ylabel('g

?é hold off, pause(0.1)

(3 end
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52 for i=1:10:1ength(t)

53 mf al*cos(q(l,1));

54 yl = al*sin(q(1,1));

55 x2 = x1+a2*cos(q(l,1i)+q(2,1));

56 y2 = yl+a2*sin(q(l,1)+q(2,1));

57 plot([0,x1,x2],([0,y1,y2],'r-0", 'linewidth’',2)

58 grid on, set(gca,'fontsize',20)

59 axis([-(al+a2)-0.1, (al+a2)+0.1,-(al+a2)-0. +a2)+0.

60 axis square, xlabel('t,[s]'),ylabel('q, [u

61 hold off, pause(0.1)

62 end

63 %% Plotting functions
plotit,q(l, 11y, re=at, t,q(2,1 ), b=, "

g§ legend('\theta 1','\theta 2')

So, you can see these all. So, this is the simulation animation part. So, you can see like here 1 am
calculating the first you can see link end which | call x 1 and x 2 you can recall in the slide also,
the j of x 1 comma x 2 sorry X 1 comma y 1. And j of x 2 comma y 2 that is what we have
written it here. So, now if | start from origin then 1 and 2. So, if | make as a line diagram with a

marker that looked like a manipulator. So, better | will run this simulation I will explain later on.

So, now, what we have given the 0 initial condition. So, you can see that this is 0 initial

condition in the sense. So, g vector and g dot vector are 0’s.
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36 Fr = [bl*thldot+cl*sign(thldot);

37 b2*th2dot+c2*sign (th2dot) ;]

38 input vectors

39 taul = OO} tau2 = 0%0.2*sin(t(i));

40 tau(:,1i) = [taul;tau2];

41 acceleration vector

42 q_double dot(:,i) = inv(M)*(tau(:,1i)-(oe_ V)i
43

44 velocity propogation

45 q dot(:,i+l) = g dot(:,i) + g double

0k s ;
ii position update
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3; % position update
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y o
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43 -1 0 1
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45 q dot(:,i+l) = q dot(:,i) + q double dg&
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delin yobot 2dof R normatm X[ Oyn.sm RRm X [0 fie fdn yew frsmt Jools Deskiop Wdow Help ch simple.d dhot X + =
34 g_v=g*[g[icdsa 08 v .
39 frictif =—
36 Fr = [bl Oﬁ\/\f\"‘”"—"""r [
37 b2 051" —%

Veons 7 b A
38 input 1= 1'| :“ A
39 taul = 013_4_15.'; i ‘i ," ! I'\ 72 S B

VIl H {1 A/

40 tau(z, if° ot /Y V
41 accele o ‘I: v
42 q double, v (oe V) ;
43 0 5 10
44 velociy yLUyU\juuLuut‘[s]
45 q dot(:,i+l) = q dot(:,i) + q double d
47 position update

Ul

And further the tau 1 and tau 2 also, 0 although I have put it some value but the equal is 0. So,
now if I run this so, you can see like so, due to the gravity is the manipulator will start oscillating
as a double pendulum. We can see that okay. So, now you can see. So, it is very clear now. So, it
is a red you can say line connected this is what you call as you can say to a serial manipulator.
So, this is the origin this is x1 y1 and this is x2 y2.

And now due to the gravity it is a swinging like as a double pendulum and it is ended.
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So, now if you see the plotting option also, you can see that initially it is start from 0. But due to

the gravity it is start oscillating. And it ends with what you call O for theta 2 because theta 1 and
theta 2 are collinear that is why theta 2 is 0. And theta 1 is minus 1.57 something which is equal

to pi by 2 which is nothing but in degrees it is 90 degrees. So, that is what we have seen.
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4 Figure 1 o

2 nomim X/ DmsmARm X [dl e fdn yew fnset Jools Deskiop Widow Help sfldhom | simple d dhot X 4 =
10- al = 0.5; a202ds208L5 -
11- g =-9.81; & 1l

12 bl = 0.5; b2
13 %% Initial c 0.5

- 100 )
14 q - [070]! « E 0
5 q dot = [0;0] 2
. “
0.5
L7/ %% Numerical
18 for i=1:leng| 4
19 thl = q( - 0 1
20 thldot = Y STC LT LE’A[ELVL — q_uuu\l_,i);
20 Inertia matrix
§§ mll = al*2*ml + al”2*m2 + a2”2*m2 + 223N
m2l = a2*m2* (a2 + al*cos(th2));

UIF
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11
12
13
14
15
16
17
18
11
20
Al

B

1<

(VIR TR=TOLC) ©
View | ¥ [ Wodow el »fdhom imple d dhot % | 4 >

g =-9.81; . o
t | Loy
bl = 0.5; b2 #[{i , "
o | IR J—
$% Initial ¢f 2/;1 [} A "
q = [0;0]; 8|18} {1\
= fOb Xt W
q dot = [0;03 4|} i} V
= o i Y
0511
%% Numerical Oi/\/\/\-'-——"_

for i=l:leng
thl = q( 0 5 10

th1dot =\ u-woeryerreihoe g woores 1) i

Inertia matrix

mll = al*2*ml + al*2*m2 + a2"2*m2 + % ,2
m21 = a2*m2* (a2 + al*cos(th2)); %
——— v

So, now there is one question will come. So, if | take this is minus 9.81 it will show that is the

opposite direction. Why? Because we assume that the gravity is vertically down, and you choose

the direction is minus. So, then it is swinging swing up and hold it. It is not going to happen

because the gravity is eventually pulled down.

So, I just to show you here you can see like this is going up this is not going to happen in real.

So, that is why we have changed the direction because this is what we have taken as a syntax

what direction we have taken accordingly it is coming up. So, in the gravity vector we have

assume it is vertically down. So, that is why it is opposite direction. I hope now you are clear

why g is considered that way.
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deinsobot 20t L ormalm %/ DymsmARm X | o e (e yiew neart Tooks Deskiop Window Help afldhom X simple d dhot X | 4 =
10 al = 0.5; a2Qcde @ 08RG f
& AEOR
11 g=1=9.81% % 1

12= bl = 0.5; b2 (

13 %% Initial c| 05 // |
— 10:01: )
14 q = [0;0]; % £ o
15 q dot = [0;0] &
- o
. 05
157 %% Numerical
18 for i=1:leng| 4
19 thl = q( -1 0 1
20 thldot = AR T e LE'I[ELUl, —yaveney l);
20 % Inertia matrix
z; mll = al”*2*ml + al”2*m2 + a2”2*m2 +
m2l = a2*m2* (a2 + al*cos(th2));
1< it l TR R
#
dekin jobot 2dof R pormalm X1 DynsmRRM X | ol fie g iew st Tools Desktop Window Help afldhom X[ simpled dhot | 4 -
10 al = 0.5; a2Qcde@ 08RG f
11- g =-9.81; % 1 -
12- bl = 0.5; b2 {
13 %% Initial ¢ 09 '
— 10:01: )
14 q = [0;0]; % 4
15 q dot = [0;0] &
- o
. 051
17 %% Numerical
18 for i=1:leng| R
19 thl = q( - 0 1
20 thldot = C R AT LE'I[ELV\— —yaveyay l),'
20 % Inertia matrix
z§ mll = al”*2*ml + al”2*m2 + a2”2*m2 +

m2l = a2*m2* (a2 + al*cos(th2));

Ik
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b ’ Dyn sim RRm B fle fdn Yew Inset Tools Deskiop Window Lelp »fldhom simple d dhot =
10 al = 0.5; a20cds @08 G
il g=-9.81; % . —

12 bl = 0.5; b2| 25 ;i
13 %% Initial c¢f 2
14 q=[0;0]; ¢ 5
15 g dot = [0;0/= 4

S
17 %% Numerical O(/\\/\k/w\/.\________
18 [

for i=1:leng

[units]

q

19 thl = q( 0 S 10

20 th1dot = yuwerarerr oo woeres 1)
21 Inertia matrix

§§ mll = al*2*ml + al”"2*m2 + a2”2*m2 +

m2l = a2*m2* (a2 + al*cos(th2));

So, now in order to understand more and more clear you can change the frictional component for
example, there is no Coulomb friction of the first joint. So, you can see like that what you call
oscillation is completely different. So, you can see it right it is something like it is not getting
settle. Because the viscous friction only there it is taking a long time to settle that you can feel it.
But if the Coulomb friction is there it is one kind of static it is making further because it is a
constant force acting opposite direction.
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- RSN < S
12 bl = 0.5; b2 = 0.5; cl = 0*¥0.5; c2 = 0*0.5;
IL) %% Initial conditions

14 q = [0;0]; % initial joint positions
115 q_dot = [0;0]; initial joint velocities

16

iy %% Numerical integration starts here

18 for i=l:length(t)

19 thl = q(1,i); th2 = q(2,1);

20 thldot = q dot(1,1i); th2dot = q dot(2,1i);
21 Inertia matrix

2 mll = al*2*ml + al”2*m2 + a2°2*m2 +

§§ m2l = a2*m2* (a2 + al*cos(th2));
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‘dirkin obot 2dof fR nommakm %/ Dyn sim RRm d;?::EL,W It Tooks Deckiop Window Help ? ‘, dhom X | simpled dhot X 4 i
10 al = 0.5; a2DEdeanE G
11- g =29.81; % | 1—
!
12 bl = 0.5; b2 ﬁi
13 %% Initial ¢ 05
14 q = [0;0]; g
15 q dot = [0;0] & 4 —
- o
5 05!
L7/ %% Numerical
18 for i=1:leng| 4
19 thl = q( ! 0 1
20 thldot = e LE;[ELV\— e ] l),
21 > Inertia matrix /
ii mll = al*2*ml + al”2*m2 + a2"2*m2 + A
m2l = a2*m2* (a2 + al*cos(th2));
|( 6 { { fitit {
#
drkin sobot 240t FR pormam X Om.smARM %\ 8l Gl (dn iew [t Tooks Deskop Window Help g it it 2 —
10 al = 0.5; a2{08ds/anE L0 7 v o
11 g = 9.81; % | 1 £ AE0QAGH
| |
12 bl = 0.5; b2 p;
13 %% Initial ¢f _ 05|
- 10:01n o &
14 q = [0/0]11 0 E 0 I
15— qdot = [0;0] 2 K\\\\\o
- o
. 05 1
ikl %% Numerical
18 for i=1:leng| R
19 thl = q( -1 0 1
20 thldot = R e s LE‘I[EL\IL B R T l),'
21 s Inertia matrix

mll = al*2*ml + al”"2*m2 + a2”2*m2 +
m2l = a2*m2* (a2 + al*cos(th2));




; OmsmBRm % [ e fdn Vew [t Jooks Deskiop Woddow Help
al = 0.5; a2Rcde@DELE
g=9.81; |

bl =0.5: b4 , ) B
%% Initial ¢ | =4

i A

Vo

- 10:01) o|&
q_ [OIO]I C E
e

q_dot = [0;0

%% Numerical
for i=1:leng
thl = q( 0 5 10
th1dot = u-woerererr o iloe— g woeres 1) ;

Inertia matrix
mll = al”*2*ml + al”2*m2 + a2*2*m2 +
m2l = a2*m2* (a2 + al*cos(th2));

(]

So, that is what you can see it. So, now | assume that. So, there is you can say both Coulomb
frictions are 0. So, | am checking it with gravity is pulling down. So, now you can see that it is
further it is taking time even the 20 second or whatever | given that duration it is not sufficient to

get settle you can see. So, now if | eliminate the friction, you will feel a completely different

phenomena. What different phenomena? It will get some kind of startup energy.
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bl = 0%0.5; b2 = 0%0.5; cl = 0%0.5; c2 = 0%0.5;
%% Initial conditions

q = [0;0]; % initial joint positions

q dot = [0;0]; initial joint velocities

%% Numerical integration starts here
for i=1:length(t)
thl = q(1,1); th2 = q(2,1);
thldot = q dot(1,1i); th2dot = g dot(2,1);
Inertia matrix
mll = al”*2*ml + al”*2*m2 + a2"2*m2 +
m21 = a2*m2* (a2 + al*cos(th2));
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o X
afdhom X singled dwot X| 4

10 al = 0.5; a2R@ds @08 LE 7
1- g=09.81; 3| 1 —
12- bl = 0%0.5; | 0%0.5;
13 %% Initial ¢ 05
14 q = [0;0]; % g
15- g dot = [0;0] 2 ’ SNe—o
o
- 05/
157 %% Numerical
18 for i=1:leng| 4
19 thl = q( E 0 1
20 thldot = Yoave Ly LE'A[ELVL e ] l),
21 % Inertia matrix -
§§ mll = al”*2*ml + al”"2*m2 + a2”2*m2 + 2
m2l = a2*m2* (a2 + al*cos(th2));
| L R R R o R L R LR e e R R SR S A ARG R
g
ek robot 2dof R nomulm | Om.sm RRm % B iy (dn yiew (et Tools Destop Midow Help o o L L 2 -
10 al = 0.5; a2[0cde@08E : al
1 g = 9.81,‘ o | 1 £ AE0RA%
12- bl = 0%0.5; | 0%0.5;
13 %% Initial ¢f 05|
= 10:01: o &
14 q=[0;0]; % E o
15~ qdot = [0;0 2 //"
o
o 0.5
17 %% Numerical
18 for i=1:leng R
19 thl = q( - 0 1
20 thldot = YowvLyrp Ly LE'I[ELVL e ] l),'
2l % Inertia matrix

mll = al*2*ml + al”2*m2 + a2”2*m2 +
m2l = a2*m2* (a2 + al*cos(th2));

uIFg
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10 al = 0.5; a2Rcde QD@ LE
11 g=29.81; %1
12 bl = 0%0.5; | Oy
13 %% Initial c( .49
14 q = [0;0];

[units]

-20
15 q_dot = [0;0/=
16 o-30
i %% Numerical| 40
18 for i=1l:leng| -50
19 thl = q( O 5 10
20 th1dot = yuwersrerr oo — g woeres 1)
21 Inertia matrix
% mll = al*2*ml + al”"2*m2 + a2”2*m2 +
2§ m21 = a2*m2* (a2 + al*cos(th2));

I

You can see it is supposed to be marginally stable. Whether that marginally stable system in the

sense it would be a continuous oscillation with the equal interval that is happening or not you can
see it. So, you can see you. Now, you would have seen it is getting oscillation, it is completely
not acceptable in real time. So, if you leave it the system will not propagate. So, now one can see
why this is happening it is very simple. Because we have done with a simple numerical

integration.

So, this particular phenomenon is not able to observe with a simple Euler integration. Further
there is no friction. So, because of that what happened it is the second bar which is making a
swing up or you can say it is producing kind of energy. So, theoretically it is not justified
because so, as per the energy conservation principle it cannot be done this way. So, that is why

we are introduced this friction.

And that way we can get it more. You can say realistic result. So, now, even the Coulomb

friction you want to add or not it is up to you.
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Sill gravity effects o
32 gl = a2*m2*cos (thl + th2) + al*ml*cos(thl) + al*m2*cos
33 g2 = a2*m2*cos (thl + th2);

34 g_v=g; lglig2];

35 % friction effects

36 Fr = [bl*thldot+cl*sign(thldot);

37 b2*th2dot+c2*sign (th2dot);];

38 % input vectors

39 taul = 0%0.1; tau2 = 0*0.2*sin(t(i));

40 tau(:,1i) = [taul;tau2];

41 % acceleration vector

42 q_double dot(:,i) = inv(M)*(tau(:,1i)-

3§ % velocity propogation

W tdinor - CAUsers\user OewOrive\Desktoplecture_ Handouts\Dyn sim RRm* - o
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7
8 %% Syﬁtem parameters
9 ml =2; m2 =1; % link massess
10 al = 0.5; a2 = 0.4; % link lengths
ik g = 0%9.81; % gravity
1 bl = 0.5; b2 = 0.5; cl = 0.5; c2 = 0.5;
13 %% Initial conditions
14 q = [0;0]; % initial joint positions

15 g dot = [0;0]; % initial joint velocities

16

15 %% Numerical integration starts here
18 for i=l:length(t)

33 thl = q(1,1i); th2 = q(2,1);
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7 Dode Q08RG

8 %% System pal 1

9 ml =2; m2 =

10- al = 0.5; a2 05

11 g=0%9.81; | 2

=S| o—o—0

12 bl = 0.5; b2 S

13 % Initial ¢ = |

14- q = [0;0]; ¢ '

15 q_dot = [0;0 A

16 4 0

z t,[s]

17 %% Numerical'znceyravavn olatvoncre
18 for i=1:length(t)

1,; thl = q(1,i); th2 = q(2,4);
2 thldot = q dot(1,i); th2dot =
|G

a

¥ Figure 1

dkin sobot 2dof R nosmalm Dyn s RRm B file fdn Yew fnset Jools Deskiop Wdow Lielp

7 DEde @ 0B E

8 %% System pa, 0.1 -
9 ml =2, m=
10~ al = 0.5; a2 005 2|
11~ g =09.81; &

12- bl = 0.5; b2|2

13 %% Initial ¢~

14 q = [0;0]; ¢

15 g dot = [0;0] 4

il 0 5 10
q5 %% Numerical LTICTYE QLU ot_i;’:[fluc nere
18 for i=1:length(t)
ﬁ thl = q(1,1); th2 = q(2,1);

thldot = q dot(1,1); th2dot = q do

I<

But now, if | take the gravity vector O in the sense, | said that there is no gravity at all in the
sense | put g equal to 0. Then what one can expect it would be remaining the same place. That is
supposed to be. Yes that is matching. Because you have tau 1 and tau 2 are 0 and you do not
have any input, or any external impact, or any external effort. So, obviously the system will
remind as same. So, now, if you provide input what do you call tau 1 and tau 2.
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34 g_v=g*[gl;qg2]; i
35 % friction effects

36 Fr = [bl*thldot+cl*sign(thldot);

37 b2*th2dot+c2*sign (th2dot);];

38 % input vectors

39 taul = 0.1; tau2 = 0%0.2*sin(t(i));

40 tau(:,1i) = [taul;tau2];

41 % acceleration vector

42 q_double dot(:,i) = inv(M)*(tau(:,1)-(oe_

43

44 % velocity propogation

45 q dot(:,i+l) = g dot(:,i) + q_double d

3§ % position update
T o G R
2

ek obot 2dof R noemulm % Dmsm AR (ol fae tn yiew [neant Tools Dvsktop Window Help afldhom | simpled ot X| 4 -
34 g v=g*[g"_]~_:l¢‘3D@h'Z
35 % frictif 1—
36 Fr = [bl
37 b2 05
38 % input | E

€ 0 b0

39 taul = 0] 2
40 Eaulls, 1) U_&s_
41 % accele
42 q_double| A . (oe_ ))i
43 -1 0 1
44 % velociley yLuyuguL;uuthl
45 g dot(:,i+l) = q dot(:,i) + q double doisZ

g; % position update
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delin obot 2dof AR nomakm % DynsmRRm X |l gty for Yiew fosert Tooks Desktop Wondow Help yidhom ¥ simpleddwt X 4 -
34 gv=g*[gj;diﬁmﬂh"{ %
35 frictij 0.2 :
36 Fr = [bl i
37 b2 )

I e

38 LPICER 0
39 taul = 02 |
40 tau(:,i) © 00
41 accele
42 q_double| 1t - |(oe_ V)i
43 0 H 10
44 velocily yxquVuLLUHtJﬂ
45 q_ dot(:,i+l) = g dot(:,i) + g _double_
B
4 position update

Just for demonstrating, | assume that the tau 1 is 0.1 Newton meter. So, what one can expect? So,
the second system will remain same? No, because there is an interactive effect that you can see.
So, I will you can it is very slow speed. You can like, not able to realize that explicitly. So, I will
give that unit is slightly different. Because we made it very slow. So, | will just stop once it is

done. You can see it is moving.
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al*2*ml + al*2*m2 + a2°2*m2 + 2*al*a2*m2*cos (th2"

22 mll

23 m21 = a2*m2* (a2 + al*cos(th2));

24 ml2 = a2*m2* (a2 + al*cos(th2));

25 m22 = a2"2*m2;

26 M=[mll,ml2;m21,m22];

27 other effects

28 oe vl = -al*a2*m2*diWlelit *sin (th2) * (2*thldot + th2dot);
29 oe v2 = al*a2*m2*thldbt*2+*sin (th2);

30 oe_v=[oe vl;oe v2];

3] gravity effects

32 gl = a2*m2*cos (thl + th2) + al*ml*cos(thl
33 g2 = a2*m2*cos (thl + th2);

§§ g_v=g*[gl;qg2];

3 friction effects

But here you can exceed this particular term, the theta 2 dot is not generating at all. So, theta 2
dot is not generating that is why you are not getting it. But theta 1 dot is generating. So, that may
influence some effect. So, that effect | want to see



(Refer Slide Time: 22:48)

fr FETEEERL
oo 26 O Bon | denobol 2ol R samalEm % | Roekctym | KEARLm X | L e | sirpk ddbom sigedbot X | +

34 g_v=g*[gl;qg2]; 7

35 friction effects

36 Fr = [bl*thldot+cl*sign(thldot);

31 b2*th2dot+c2*sign (th2dot);];

38 input vectors

39 taul = 0.1*0; tau2 = 0.5*sin(t(1));

40 tau(:,1i) = [taul;tau2];

41 acceleration vector

42 q_double dot(:,i) = inv(M)*(tau(:,1i)-(oe_ ))i

43

44 velocity propogation

45 q dot(:,i+l) = g dot(:,i) + q double deté

ii position update

1<

s view
ditin sobot 2dof R noamalm %/ Dynsm RRm % | dl e (da e

w lnsert Jools Desktop Window Felp
34 gvzg*[gJ;Ji‘.’.D[ﬂh"i
35 frictif 1 LanhRad
36 Fr = [bl
37 b2l 05 ‘
38 input | 2 &
=S| o——o—v0
39 taul = 0 2
. o
40 tau(:,1) 05
41 accele
42 q_double| 4 (oe_ )i
43 -1 0 1
44 velociby y;uyuyuLLunuﬂ
45 q dot(:,i+l) = q dot(:,i) + q_double d
4
b position update

So, far that what |1 am trying to see even if | put this equal to 0 but I am giving a continuous
signal which is varying in this manner. Because we have a very strong friction. So, that is why it
is doing it that way. So, now you can see the friction is there that to Coulomb friction is there. It
is oscillating but the friction is a avoiding because it is very strong. So, | will just make it you
can see it is oscillating it is not so, visible.
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555 X2 = xXl+aZ*cos(q(l,1)tq(Z,1)); Tf
56— y2 = ylta2*sin(q(l,i)+q(2,1));

S f= plot ([0,x1,x2],[0,y1,y2],'r-0', 'linewidth',2)

S8= grid on, set(gca,'fontsize',20)

5= axis([-(alt+a2)-0.1, (alta2)+0.1,-(al+a2)-0.1, (al+a2)+0.
60— axis square, xlabel('t,[s]'),ylabel('q, [units]')

61— hold off, pause(0.1)

62-* lend

63 %% Plotting functions
ede plot(t,q(l,l:1),'r-.",t,q(2,1:1), 'b-', 'linewig
65—  legend('\theta 1','\theta 2')

66— grid on

67— 11 = min(min(q)); ul = max(max(q));
€~  axis([0 ts 11-0.1 ul+0.1])

A0 — apnt (ara 'fantcize! 20)

I<

2 e - CAsarssr i\ Desktopecure Handouts\ Dy s R -0
tnj\'hmldz‘ﬂ?crim o.mmm ‘dirkin robot 2dof RR nomal LEm % | RRvelodtym X | KERRLm ¥ | LARtimem X | smpleddhom X | simpled dhot X | +
1 %% Dynamic simulation of a RR planar robot
2 clear all; close all; clc;
3 %% Simulation parameters
4 dt = 0.01; % stepsize
5 ts = 12; % total simulation time
6 t = 0:dt:ts; % time span
7
8
9

%% System parameters

ml =2; m2 =1; % link massess
10 al = 0.5; a2 = 0.4; % link lengths
11 g = 0%9.81; % gravity
12 bl = 0.5; b2 = 0.5; ¢l =0.5; c2 = 0.5;
%% Initial conditions
i% q = [0;0]; % initial joint positions
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10- al = 0.5; a2 = 0.4; % link lengths
11 g = 0%9.81; % gravity
12 bl = 0.5; b2 = 0.5; cl = 0%0.5; c2 = 0%0.5;
13 %% Initial conditions
14 q = [0;0]; % initial joint positions
15 g dot = [0;0]; % initial joint velocities
16
17 %% Numerical integration starts here
18 for i=1:length(t)
19 thl = q(1,i); th2 = q(2,1);
20 thldot = g dot(1,1i); th2dot = q_dot(2,1);
21 % Inertia matrix 7
mll = al*2*ml + al”2*m2 + a2”2*m2 +
Z? m2l = a2*m2* (a2 + al*cos(th2));
1< A U B (0 (L 8 P A B (HUS (4 et P
2
10~ al = 0.5; a2Peds@ 085 i
11- g = 0%9.81; 1 LALORGE
12- bl = 0.5; b2 b
13 %% Initial ¢ 09 ‘
14- q=[0;01; 5 &
= 0 o0———o—0
15 q_dot = [0;0 .3
- 0.5
17 %% Numerical
18 for i=1:leng| R
19 thl = qf -1 0 1
20 thidot = wwoerererroiloe— g wveres 1) ;
20 s Inertia matrix :

mll = al”2*ml + al”2*m2 + a2"2*m2 +
m2l = a2*m2* (a2 + al*cos(th2));
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10 al = 0.5; a20cde @ 0@ rE

OmsmBRm % iy (dn yiew
-

11- g = 0%9.81; P T
12 bl = 0.5; b2 b;

13 %% Initial ¢ 05
14 q = [0;0];
15 q_dot = [0;0

q,[units]

16 05

1L %% Numerical

18 for i=1:leng| 4

19 thl = q( : 0 1

20 th1dot = yuwersrerrisboe— g woeres i)
21 Inertia matrix ,
2 mll = al*2*ml + al”2*m2 + a2*2*m2 +

§§ m2l = a2*m2* (a2 + al*cos(th2));

1<

A

4 Figure 1 o v X
drkn sobot 2dof R nomalm X/ DmsmRRM X | 8 e (r view st Tooks Deskiop Wedow Help JHdhom | simpleddvwt X | +

10 al = 0.5; a2Rade @08 LE
1= g=0%9.81; | § E——

12 bl = 0.5; b2 b;
13 %% Initial ¢ 15|
- 10.01: 08
14 q - [070]! E 1
15 q dot = [0;02
16 G05|
17 %% Numerical 0
18 for i=1:leng|
19 thl = q( 0 0 10
20 thldot = Y UYL LIII,LSJIVL — q_uvu\l_,i) '
21 Inertia matrix :
;ﬁ mll = al*2*ml + al”2*m2 + a2"2*m2 +
2 m2l = a2*m2* (a2 + al*cos(th2));

I will make it what you call that Coulomb friction is 0. So, then I will make it. So, here the
coulomb friction is 0. Because the coulomb friction is constant force. Only the direction is
getting changed based on the rotation. So, now you can see. So, this is start oscillating with the
given input. And one not only this oscillating the second bar also getting oscillate because of the
coupling effect.

So, that is what | want to show here. So, now you can see the same way if you apply even input.
So, you can find a little more you can say, clarity, result. So, now you can see that this is
oscillating. And this is also like getting oscillate.
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34 g_v=g*[gl;qg2]; s
8% % friction effects

36 Fr = [bl*thldot+cl*sign(thldot);

37 b2*th2dot+c2*sign (th2dot);];

38 % input vectors

39 taul = 0.1§0; tau2 = 0.5*sin(t(i));

40 tau(:,1i) = [taul;tau2];

41 % acceleration vector

42 q_double dot(:,i) = inv(M)*(tau(:,1)-(oe v))i
43

44 velocity propogation

45 q dot(:,i+l) = g dot(:,i) + q double dad

Zg % position update

I ‘ S
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57 X(i) = x2;

58 y(i) = y2;

59 plot([0,x1,x2],[0,yl,y2],'r-0', 'linewidth',2)

60 grid on, set(gca,'fontsize',20)

61 hold on

62 plot (x(1:1),y(1,1), 'm=")

63 axis([-(al+a2)-0.1, (al+a2)+0.1,-(al+a2)-0 2)+0.
64 axis square, xlabel('t,[s]'),ylabel('q, [u

65 hold ofk, pause (0.1)

66 end

gé %% Plotting functions
plot (Ll 1) A=t tna(2:104) thet .




octym % | KERRLm X | LRRSmem | simple.d dhom ¥ simple d dhol X 4

40 tau(:,i) = [taul;tau2];

drkin obot 2dof R normalm % Dyn sm RRm* dikin 1obot, 2dot RR normal LE

41 acceleration vector

42 q_double dot(:,i) = inv(M)*(tau(:,i)-(oe_v+Fr+g v));
43

44 velocity propogation

45 g dot(:,i+l) = q dot(:,i) + q_double dot(:,1i)*dt;

46 I

47 position update

48 qiic i) = qilis,3) +gdot (s a)xdt + 1/2%q

49 end

50 numerical integration ends here

il %% Animation
5§ for i=1:10:length(t)
x1 = al*cos(q(l,1));

55 %2 = x]4+08d6a 08 AT ‘ B
56 y2 = yl4 1 e

57 x(1) = x|

58 y(l) =yl ’_‘0.5

59 plot ([0, g ; idth',2)
60 grid on, %

61 hold on 05

62 plot (x (1

63 axis ([-(f 4

64 axis squ A 0 1

65 hold Of fypuwosremmr—il)

66 end

61 %% Plotting functions

6» plOt(th(lll:i)l'r‘-’lth(zll:i)l'b“’l'
1<

| just want to show that in more clarity. So, I will just give this is also one input. And here | am
just adding one more. So, | am just to holding on then and just plotting you can say. So, | will
just say that this is x equal to I will just put it x of i equal to x2 and y of i equal to y2. So, this |

did not do it earlier. So, now you can see this. So, | just corrected this.

So, now I am plotting so, x of 1 to i. So, y of 1 to i in the sense that time history would be very
clear. So, we can see that. So, for that only, | am just doing it here. So, you can see the profile
also continuous. So, now | am holding you can say off itself. So, now | am just running this you

can see the time history of the total thing in 2D plot. So, | hope that is I will just check it.
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e sobot 2dof fnomalm X/ D smARm % | dh pie (i yiew st Tooks Deskiop Window Hep . slldhom | simpled dhot X 4 |
55 X2 = x1+0cde Q0B RE A
56 y2 = ylH 1
57 X (i) = x|
58 y(i) =y 09
59 plot ([0,i 2 idth',2)

; c 0 —e—0
60 grid on,| 2

o

61 hold on 05
62 plot (x (1
63 axis ([-(| R
64 axis squ 2! 0 L
65 hold Off, pauoc vy t,[S]
66 end

gé %% Plotting functions
plotilt all, 11y e=ttq(2,:1:4), tb="
| { Gt R T Kty e

#

dekin jobot 2dof RR nomikm %/ Dyn sm RRm X | B ke (dn Yiew fnsert Tooks Deskiop MWedow Help i R -
55 %2 = x]+[D8E@0ERT -
56 y2 = yl4 1 ARCRA

57 x(i) = x|

58 y(i) =y %

59 plot ([0, g . idth',2)
60 grid on,| &

o

61 hold on 05
62 plot (x (1
63 axis([-(| 4
64 axis squ e 0
65 hold Off, pPauoc vy t'[S]
66 end

zé %% Plotting functions




55 X2 = x14{00@8Q/08 &

56 y2 =yl — S

57 X(1i) = x|

58 y(i) =y

59 plot ([0, idth',2)

60 grid on,|=
61 hold on

62 plot (x (1
63 axis ([-(

64 axis squ 0 5 10
65 hold of £} pewes v
66 end

61 %% Plotting functions

65) plot(t,q(1,1;i),'r—.',t,q(2,1:i),'b-','la'__.s____./é

This is okay. So, once that is done. | will run it here I just wanted to show one addition. So, with

that we can end this. So, | want to show the time history you can see. So, this is what | just
wanted to show how the profile is varying. So, this gives how that link is getting into connected.

So, even you want to make it much more clear.

So, even you want to make it much more clear. So, you can start from O or you just wanted to
plot only those corresponding points you can still do it. So, that we can do it in the Simulink
based simulation. So, in the sense the block diagram base. So, right now you can see this part is

just a plotting option. So, where you can see that q of 1 and 2 we are plotted.

| hope now this is going to give a clarity how to do the dynamic simulation and how to change
the parameter. Now you can change your mass and you can change the link, link length, and you
can change the frictional coefficient, and then you can get to some kind of idea what your system
all about. How your system will behave all those things you can find it. So, with that | am ending

this particular lecture the next lecture we will see the same thing in a block diagram basis.

And followed with one important phenomenon called trajectory generation. Because we are
trying to do the inverse dynamics without even controller. So, after that we will go to the motion

controller. So, in that sense thank you and see you then bye. Take care.



