Mechanics and Control of Robotic Manipulators
Professor. Santhakumar Mohan
Department of Mechanical Engineering
Indian Institute of Technology, Palakkad
Lecture No. 26
Dynamic Model Derivation Using Newton-Euler Method in MATLAB

Welcome back to mechanics and control of robotic manipulator. Last few classes we have seen
how to derive the equation of motion. And in that two popular method we have seen one is
Lagrangian Euler. The other one is Newton Euler. So, the Newton Euler, | said it is better for the
computational perspective. So, in this particular lecture we are going to see how to derive the
equation of motion for given example using Newton Euler method with the help of MATLAB

codes. So, in the sense here we are going to see the MATLAB session.

(Refer Slide Time: 0:48)

DYNAMIC MODEL DERIVATION USING NE METHOD THROUGH MATLAB

Matlab code

So, in that sense we will move forward. So, we will be talking about dynamic model derivation
using Newton Euler method through the help of MATLAB. So, in this sense we would be
straightaway see the MATLAB code. And then | will move to the MATLAB environment.



(Refer Slide Time: 1:03)

Example: A planar 2R serial manipulator

SANTHAKUMAR MOHAN, IIT PALAKKAD
MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, in the sense so this is the example which we have derived in the you can say regular lecture.
The same example | am taking it for simplicity, but it is not going to restrict you can actually use
any you can say serial manipulator in this particular case only thing you have to change the DH
parameter and then equation of motion in series. So, that I will show you in the MATLAB

session.

But right now, you can take it that planar serial manipulator we have taken. So, in that case so,
what one can see like if | know this m1 m2 and if 1 know L1 and L2 and | assume that theta 1
and theta 2 are the joint variable, | can derive the equation of motion with the help of forward

propagation and backward propagation together.



(Refer Slide Time: 1:52)

%% Dynamic model

% location of centre of mass of links
syms lcl 1c2 real

Pcl = [a1;0;0];

Pc2 = [a2;0;0];

%k Inertial values and acceleration variables
syms ml m2 g thlddot th2ddot real

So, for that I am rewriting that equation. So, first what we need to know. So, till now in velocity
kinematics so, we have already shown how to derive you can say the DH parameter through the
help of frame once you derive the DH parameter or once you obtain the DH parameter, you can
substitute in one of the MATLAB code you can find the rotational matrix; rotational matrices
and position vectors of the individual joints these are all we have seen. Further what we have

seen?

We can see how to propagate the angular velocity and linear velocity if we know the base
angular velocity and linear velocity. So, we always assume that the base is fixed. So, these codes
all we have seen in you can say the kinematic model derivation and as well as differential
kinematic cases or you call velocity propagation model. So, in that sense what right now we

required? We required what would be the centroidal location.

So, in this case the mass is the link 1 mass is concentrated at the point J1 which is the mass is m1
and there is no inertia it is a point mass. Similarly, the second link mass is concentrated at m2, or
you can say J2 point as a m2. So, in that sense what one supposed to know. So, if you recall your
frame arrangement so along the L1 whatever that is assigned is x1 axis along L2 that would be

X2 axis.

So, now, if | see the link 1, the centroidal location, so, from frame 1 that would be you can see

along x there is a L1 distance y and z 0 0. Similarly, if I see the centroidal location of second link



with respect to second joint or second frame that again like along x2 only L2 all other axes 0. So,
that is what we have derived. So, here in our equation of motion we have written as link length

as al and a2.

So, in that sense the location of what do you call center of mass of link would be come with the
two symbols. So, which is Icl and Ic2. So, here Icl | consider as al and Ic2 | consider as a2. So,
in that sense so, the Pcl and Pc2 vector | have derived in this way. So, then what else you need?
You need actual like inertial and acceleration variable. So, what we have seen so far is only up to

velocity.

So, the inertial effect will come in this case one only two masses but the acceleration effort theta
1 double dot and theta 2 double dot. So that is what we have written in the MATLAB code. But
by default, these are all real variable not in complex. So, then you better define that as a real. So,
that the conjugate term will not come when you square or do some operation. So, once these are
all defined what we need to do you need to take the angular acceleration then linear acceleration

then get the inertial forces and moments.

(Refer Slide Time: 4:55)

e |
For a Rotary Joint:

o =R (ja+iwx [0 0 6] )+ 0 0 fia)” (1)

#h Angular acceleration vectors

alo = [0;0;0];

all = R01’*(al0 + cross(w0, [0;0;thidot])) + [0;0;thttidot];
al2 = R12’*(all + cross(wl,[0;0;th2dot])) + [0;0;th2ddot];
al3 = R23’%(al2 ) ;

So, that is what we are trying to do. So, now the angular acceleration can be written in this form
because this is having only rotary joint the rotary joint angular acceleration given in this relation.

So, we are writing the same thing in MATLAB the same form. Because the angular acceleration



at the zeroth frame we assume it is fixed. So, it would be getting 0 0 0. Then we are actually

propagating the angular acceleration we call al which is alpha equivalent.

So, alpha 0 we know then alpha 1 we can obtain with the help of this relation, the same relation
we have written it in MATLAB syntax. So, similarly alpha 2 we can get it, So, alpha 3 there is
no active variable so, you can see that the cross terms are vanished. So, this is what alpha 0 to

alpha 3. So, now coming to the linear acceleration.

(Refer Slide Time: 5:45)

For a Rotary Joint:

fia="R(ataxiyPHwox (wxiyP) ()

%h Linear acceleration vectors

a0 = [0;g;0];

al = RO1’*(a0+cross(al0,P01)+cross(w0,cross(w0,P01)));
a2 = R12’*(al+cross(all,P12)+cross(wl,cross(wi,P12)));
a3 = R23’x(a2+cross(al2,P23)+cross(w2,cross(w2,P23)));

SANTHAKUMAR MOHAN, IIT PALAKKAD

So, we know the rotary joint linear acceleration relation. So, we should be having you can say
tangential acceleration then the radial acceleration and the previous joint you can see linear
acceleration. So, in that case so, we can derive this equation in MATLAB, the same form. So,
a00 we know which is again start from 0. But if you assume that this is a vertical manipulator,

then the gravity direction you need to mention.

So, | assume that the g is the gravity that is acting in y axis. So, in that sense you can see so, a0 is
no longer 0 vector so, 0 g and 0. So, now based on this equation | can derive you can say the
joint one linear acceleration second and the third one so, all linear acceleration | derived. So,
now, what we need to know? We need to know al c in the sense the linear acceleration now,

center of mass of link 1 and center of mass linked 2. So, we call al ¢ and a2 c.



(Refer Slide Time: 6:47)

aq =l a+iax} P+ wx (wx;P) o)

(1S~
F,‘ = m; Cia

%h Linear acceleration of centre of mass of links
acl = al + cross(all,Pc1) + cross(wl,cross(wi,Pcl));
ac2 = a2 + cross(al2,Pc2) + cross(w2,cross(w2,Pc2));

%h Inertial forces of the links
F1 = ml*acl;
F2 = m2*xac2;t

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, this can be derived in this form. So, for inertial force you need the centroidal acceleration.
So, we have derived the acl and ac2. Which is based on this equation we have written in the
general syntax. So, now you can see that this omega 1 multiply with or you can say cross
multiply with Pc1 and Pc2. Similarly, alpha 1 cross multiply with Pc1 and Pc2 in the sense this is

going to give a tangential, this is going to give a radial and this is the joint linear acceleration.

So, in this sense it is very clear. So, now, once you obtain the linear acceleration of the center of
mass of links. So, then what you can do? You can multiply with the inertia. So, here only mass
so that would give the inertial force. So, that we have obtained. So, now till this what we have

done is the forward propagation. So, now, we will come back to the backward propagation.



(Refer Slide Time: 7:43)

% End-effector forces and moments
£3 = [0;0;0];
n3 = [0;0;0];

ff:LlRiH+jﬁ (4)

%h Joint forces

£2 = R23 * £3 + F2;
f1 = R12 * £2 + F1;
0 =1R01 * f1;

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

Where we assume the end effector forces and moments are 0’s just for simplicity. But later on,
you can consider some vector also. But right now, we consider these all 0. So, then you can see
this is the equation to back propagate once you know the end effector velocity and the inertial

forces then you can back propagate. So, now we have written this equation.

(Refer Slide Time: 8:08)

=y RN N 5 P xR+ Px 4RI (5)

=il Ny

% Joint moments

n2 = R23 * n3 + cross(Pc2,F2) + cross(P23,R23*£3);
nl = R12 * n2 + cross(Pc1,F1) + cross(P12,R12%f2);
n0 = RO1 * nl + cross(P01,R0O1*f1);

% Vector of inputs

taul = simplify(n1(3));
ytau2 = simplify£p2(3));
N7

SANTHAKUMAR MOHAN, [IT PALAKKAD

oF RooTic MANIPL

MECHANICS AN

So, the similar way we can do the back backward propagation for the moments. So, you can do it
again you can do n2 2 to nl to 1. So, that you can derive so, in a sense you can do n2 nl. And if

you want to have a what you call shaking force and moment. Then you can do it up to you can



say 0. This is equal to shaking forces and this is equal into shaking moments. So, once you all

obtained what you required. You required the joint torque relation.

So, for that we will use this. So, the tau 1 is since the first joint and second joint as a rotary joint.
So, the n of the third term would be equal into that joint torque. So, now, we are talking about tau
1. So, then nl of the third term would be the tau 1 you can make a simplification it will give an
equation. And similarly, tau 2 is n2 of third term. In the sense, z axis term would be equal to tau
2 this is very clear. So, now, we will move to MATLAB code original MATLAB code which we

have returned okay.

(Refer Slide Time: 9:17)

4 clc

5

6 %% Define symbolic variables
.

8 syms alta

9

10 variables

11 syms thl th2 al a2 real
12

13 number of joints of a planar RPR manipulat
14 N=3;

15

5,6 %% DH Parameters of the RRR (non-standar

27—  DHTABLE = [0,0,thl,0;

So, now, this is the MATLAB code which we have returned earlier. So, this is the direct
kinematic relation. So, we have taken as actual like symbols which is having a generalized
symbol. Then based on your DH parameter we have derived the symbol. And since it is a 2R
serial manipulator the end effector frame is the third frame. So, you have excluded 0. So, then

you have total number of frames is 3.



(Refer Slide Time: 9:43)

2 Ednor - CAUsers\user\ Onerivel DesktopL ecture Handouts\dirkin robot_2dof R normalm - 0

Dyn sim RRm dirkin robot 2dof RR normal LEm RR velodtym KERR Lm LR time.m simple d dhom +

16 %% DH Parameters of the RRR (non-standard) Manipulator

drkin jobot 2dof AR nomalm

i) DHTABLE = [0,0,thl,0;

18 x 0,al,th2,0;

19 0,a2,0,0;]

20

2 %% The general Denavit-Hartenberg trasformation matrix
22

23 TDH = [ cos(theta) -sin(theta)
24 sin(theta) *cos (alpha) cos (theta
25 sin(theta)*sin(alpha)

26 0

217

{ﬁﬁ %% Build transformation matrices for eac

w29 ¢ First, we create an empty cell array

And you can give your DH table as per the derivation earlier.

(Refer Slide Time: 9:47)

0 chtor - CAsars\user\ Orrivel Desktopecture s of RR pormelm =5 1)

drkin robot 2dof AR nomalm ¢ | Dyn sm RAm X | drkon robot 2dof AR nomal LEm X | RR vebodtym X KERRLm X' LRRtimem | smpleddhom * | 4

19 i
20

21 L Denavit-Hartenberg trasformation matrix

22

23 1eta) -sin(theta) 0

24 1eta) *cos (alpha) cos (theta) *cos (alpha) -sin(alpha)
25 1eta) *sin(alpha) cos (theta) *sin(alpha)  cos(alpha)
26 0 0

27

28 sformation matrices for each link/joint

29 ceate an empty cell array

30

{il
w32

I< Eeee———————————ra

UIE

Then you know the arm matrix, | hope that arm matrix is nonstandard form which we derived in

the beginning of the DH representation.



(Refer Slide Time: 9:55)

ik robot 2dof RR noamal LEm

T = T*A{i};

56 = simplify(T);

57 end

58

59 %% Transformation matrices

60~ 01 = A{l})
61- TI2 = A{2)
62- 123 = A(3)

63

64 %% Transformation matrix of the end frame wit
65

66 output TON matrix

7
Q
w68 TON =T

I<

Then as usually the cell and then you have derived, and you can get up to you call the

transformation matrix. Once you are obtain the transformation matrix. What we have done?

(Refer Slide Time: 10:06)

o - CAuser \Orerive\ Desktop\l ecture Handouts\dirkin_robot_2dof RR_normalm

i bot 2ot R ormm | Dy s im | dinobo 200 M porma (Em % | RRadym X KERRLm | LRRimem X | svled o %
76 %% Orientation vectors

11

18 output xN axis (normal vector)
79

80 n=T(1:3,1)

81

82 %utpuf yN axis (sliding vector)
83

84 s g T(1:3,2)

85

86 output zN axis (approach vector)

a & T(1:3,3)

C Saibo o
"o

Ui

We have tried to see the kinematic model this is what we have seen in the direct kinematic
method or direct kinematic code.



(Refer Slide Time: 10:13)

\ditkin sobot 2dof AR pormalm

drkin sobot 2dof AR normalm % | Dyn.sen RRm X | drkin sobot 2dof

88 a=T(1:3(3)

nomal lEm % RRwlodtym X KERRLm X LRRtimem X  smpleddhom ¥ | 4

90 %% end
91 %% Velocity kinematics

uIE

So, after that we have tried to do the velocity kinematics for that we need to know the; you can

say rotational matrices and as well as position vectors we have taken.

(Refer Slide Time: 10:23)

2 Ednor - CAUsers\user\ Onerivel Desktop\L ecture Handouts\dirkin sobot_2dof R sormalm - 0

drkin robot 2dof AR normalm Dyn sim RAm drkin robot 2dof RR normal LEm RR velodty.m KERR Lm LAR timem simple d dhom +

103 syms thldot th2dot real g

104

105 %% Angular velocity propagation
106

107 w0 = [0;0;0];

108 wl = RO1'*(w0) + [0;0;thldot];
109 w2 = R12'*(wl) + [0;0;th2dot];
110 w3 = R23'*(w2) ;

111

112 » end-effector angular velocities w.r.t. base
113 w04 = RO1*R12*R23* w3;

114

iis %% Linear velocity propagation
26

I<

And we have started understanding that for propagation, you need the velocity information. So,
here there are two variables theta 1 dot and theta 2 dot so that we have derived.



(Refer Slide Time: 10:35)

o tdnor -
§

Dyn,sim RRm

dirkin robot 2dof RR normal LE.m RR velocitym KERR Lm LR timem senple d dhom +

107 w0 = [0;0;0];

108 wl = RO1'*(w0) + [0;0;thldot];
109 w2 = RlZ}*(wl) + [0;0;th2dot];
110 w3 = R23'*(w2) ;

111

112 end-effector anqular velocities w.r.t. base frame
113 w04 = RO1*R12*R23* w3;

114

115 %% Linear velocity propagation

116

117 v0 = [0;0;0];

vl = RO1'*(v0+cross(w0,P01));
v2 = R12'*(vl+cross(wl,P12));

So, then we have propagated based on the; you can see the velocity propagation model. So,

initially we have done the angular velocity then end effector velocity we obtained.

(Refer Slide Time: 10:44)

omal [Em % | RRvelodtym % | KERRLm X | LAR timem X | smple d dhom

118 vl = RO1'* (vO+cross(w0,P01));

119 v2 = R12'*(vl+cross(wl,P12));

120 v3 = R23'*(v2+cross(w2,P23));

121

122 % end-effector linear velocities w.r.t. base frame
123 v04 = simplify (RO1*R12*R23* v3);

124

125 %% Dynamic model

126

127 location of centre of mass of links

128 syms 1lcl 1lc2 real
129 Pcl = [al;0;0];
Pc2 = [a2;0;0];

Then we have done the linear velocity propagation and the linear velocity of the end effector we
have derived.



(Refer Slide Time: 10:50)

Héeo w9000

127 location of centre of
128 syms lcl lc2 real

129 Pcl = [al;0;0];

130 Pc2 = [a2;0;0];

131

132 syms ml m2 g t real

133

134 %% Angular acceleration vectors

135 ald = [0;0;0];

136~ all = RO1'*(al0 + cross (w0, [0;0;thldot])) + ([N
137 al2 = R12'*(all + cross(wl, [0;0;th2dot])) +

138 al3 = R23'*(al2 ) ;

139

i%() %% Linear acceleration vectors

Then we are coming to the dynamic model. For the dynamic model what is the first step we did
we did the center of mass or you can say location of center of mass so, that we have already
derived. So, that equation or that vector we have substituted here. So, right now, this you can say
definition is not required. But if you want you can even write Ic1 x Ic1 y Ic1 z. Similarly, you can

write in that so, these are all you can write it in here.

If you know the exact you are what you call model solid model and you know the exact location
of the center of mass, you can do it right now we have taken a line diagram. So, based on that the
Pcl and Pc2 return in this form. Then we are going for a dynamic model. So, the gravity is one
additional acceleration. Then you have two joint acceleration and there are two masses. So, here
we consider only point mass that is why the inertial value is not coming or you can say second

moment of inertia and product of inertia are not coming here.



(Refer Slide Time: 11:53)

# tdvor -

derkin sobot 2dof AR nomalm X | Dynsim RRm ¥ | dis

133
134
135
136
137
138
139
140
141
142
143

RR velodtym KERR Lm LRR timem senple d dhom +

%% Angular acceleration vectors

B = (0;0;01;

all = R0O1'*(al0 + cross(w0,[0;0;thldot])) + [0;0;thlddot]
al2 = R12'*(all + cross(wl, [0;0;th2dot])) + [0;0;th2ddot]
al3 4 R23'*(al2 ) ;

%% Linear acceleration vectors
a0 = [0;q9;0];

al = RO1'*(a0+cross(al0,P01)+cross (w0, cross (w(
a2 = R12'*(al+cross(all,P12)+cross (wl,cross (w
a3 = R23'*(a2+cross (al2,P23) +cross (w2, cross (W

%% Linear acceleration of centre of masg

So, then we are doing the angular acceleration vector. So, where we can say alpha 0 to alpha 3,

we have used and derived.

(Refer Slide Time: 12:02)

AL

146
147
148
149
150
151
152
153
154
155
156

%;7
188

%% Linear acceleration of centre of mass of links

acl = al + cross(all,Pcl) + cross(wl,cross(wl,Pcl));
ac2 = a2 + cross(al2,Pc2) + cross(w2,cross(w2,Pc2));

%% Inertial forces of the links
F1 = ml*acl;
F2 = m2*ac2;
I
%% End-effector forces and moments
£3 = [0;0;0];
n3 = [0;0;0];

%% Joint forces

Then you can see the linear acceleration we assume that the gravity pulled vertically act down on

the y axis. So, that is what we have substituted. So, in that sense you can get the linear

acceleration vector in a propagated model. Then we have calculated the linear acceleration of the

center of mass.



(Refer Slide Time: 12:22)

(2 cor - CAlserstusen ere\Desktophlectue Handoutsdikin sobot 2dof AR ormal - n
vh woy 2dot. vvmi m sm RRm dirkin robot 2dof AR nosmal LEm RR velodity.m KERR Lm LRR timem simple d dhom +

148 ac2 = a2 + cross(al2,Pc2) + cross(w2,cross(w2,Pc2));

149

150 %% Inertial forces of the links
151~ F1 = ml*acl;!
152 F2 = m2*ac2;
153
154 %% End-effector forces and moments
155 £3 = [0;0;0];
156 n3 = [0;0;0];
157
158 %% Joint forces
159 f2 = R23 * £3 + F2;
0 fl = R12 * £2 + F1;
iﬁﬁ f0 = RO1 * f1;

Then we have calculated the inertial forces of the link.

(Refer Slide Time: 12:26)

drkin sobot 2dof AR nomalm ¢ | Dyn sim Rm ¥ | drkan robot 2dof R nommal LEm % | RRvelodtym X KERRLm X' LRARtimem X | smpleddhom X | 4

139 i
140 %% Linear acckleration vectors

141 a0 = [0;q9;0];

142 al = R0O1'*(a0+cross(al0,P01)+cross(w0,cross(w0,P01)));

143 a2 = R12'*(al+cross(all,P12)+cross(wl,cross(wl,P12)));

144 a3 = R23'*(a2+cross(al2,P23)+cross (w2,cross (w2,P23)));

145

146 %% Linear acceleration of centre of mass of links
147 acl = al + cross(all,Pcl) + cross(wl,cross(wl

148 ac2 = a2 + cross(al2,Pc2) + cross(w2,cross (w2

149

150 %% Inertial forces of the links

F1 = ml*acl;
F2 = m2*ac2;

So, far what we have calculated these all-linear acceleration vector of joints. And this is linear

acceleration of center of mass here link has come.



(Refer Slide Time: 12:34)

2 o - CAUsers\user\ Onerivel DesktopL ecture Handouts\dirkin robot_2dof R normalm - 0

drkn robot 2dof AR nomalm ¢ | Dyn sm RRm ¥ drkin robot 2dof AR nomal LEm X | RRvelodtym % KERALm X LARtimem X | smpleddhom ¥ | +

145

146 %% Linear acceleration of centre of mass of links
147 acl = al + cross(all,Pcl) + cross(wl,cross(wl,Pcl));
148 ac2 = a2 + cross(al2,Pc2) + cross(w2,cross(w2,Pc2));
149

150 %% Inertial forces of the links
151 F1 = ml*acl;

152 F2 = m2*ac2;1I

153

154 %% End-effector forces and moments
155 £3 = [0;0;0];

156 n3 = [0;0;0];

i
i§8 %% Joint forces
1<

So, now, link inertial forces we have calculated. Now, we are coming backward to the joint

forces and moment.

(Refer Slide Time: 12:41)

2 Edno - CAUsershuser

Orive\Desktop\lecture Handoutsdirkin sobot 2dol R parmalm - 0

drkin robot 2dof AR nomalm ¢ | Dyn sim RRm ¥ drkin robot 2dof AR nomal LEm % | RRvelodtym ¥ KERRLm X | LARtimem *  smpeddhom | 4

1 F1 = ml*acl;
152 F2 = m2*ac2;

1153

154 %% End-effector forces and moments
155 £3 = [0;0;0];

156 n3 = [0;0;0];

157

158 %% Joint forces

159 f2 = R23 * £3 + F2;
160 fl = R12 * £2 + F1;
161- £0 = RO1 * f1; !

i§3 %% Joint moments
64 n2 = R23 * n3 + cross(Pc2,F2) + cross(P

So, that is what we are starting with the end effector then the joint forces and moments we are
calculated.



(Refer Slide Time: 12:48)

ekin fobot 2dof RR nomal LEm

163 %% Joint moments
164 n2 = R23 * n3 + cross(Pc2,F2) + cross(P23,R23*£3);
165 nl = R12 * n2 + cross(Pcl,Fl) + cross(P12,R12*£2);

166 n0 = ROl * nl + cross(P01,R01*fl);

168 %% Vector of inputs

169 ftaul = simplify(nl(3));
170 tau2 = simplify(n2(3));

171
412 M=equationsToMatrix ([taul;tau2], [thlddot,th
173 g=equationsToMatrix ([taul;tau2], [g])
174
5
B
176

Then the third element of the joint moment or joint moments that would be equivalent to your
input. So, that is what we have derived. Further you want to write it in a matrix form, then you

can always bring this you can say.

(Refer Slide Time: 13:03)

L

dioe

dirkin robot 2dof RR normalm

166 n0 = RO * nl + cross{P01,R01*fl);
167

168 %% Vector of inputs

169 taul = simplify(nl(3));
170 tau2 = simplify(n2(3));
171

172 M=equationsToMatrix ([taul;tau2], [thlddot, th2ddot])
173 g=equationsToMatrix ([taul;tau2], [g])

174
175
176
177

X

I<

RRm % d lEm X Rveootym X KERRLm fRtmem % | senpled dhom X | 4

Further command called equation to matrix and then take the coefficient. So, these all can be
done. But right now, you can see the tau 1 and tau 2 we you can say derive. So, | will run this
code | hope there will not be any error. So, if we run, then it would be giving the output in the
MATLAB window.



(Refer Slide Time: 13:22)

o MATLAB R2020b - acadernic use

-sin(thl + th2)
cos(thl + th2)
0

g 0
O 0
| l
IC
Ofe>>

So, you can see this is the; your what you call you can say the kinematic model.

(Refer Slide Time: 13:33)

4 MATLAS R2020b - scaderic wse

New to MATLAB? See resources

>> taul

taul =

@l”2*ml*thlddot + al”2*m2*thlddot + a2”2*m2*thlddot +

@272*m2*th2ddot + a2*g*m2*cos(thl + th2) + al*g*ml*cos(thl) +
al*g*m2*cos (thl) - al*aZ*mZ*th%dotAZ*sin(th2) +
2*al*a2*m2*thlddot*cos (th2) + al*a2*m2*th2ddot*c
s  2*al*a2*m2*thldot*th2dot*sin(th2)

o | fe>>

»»»»»

And what right now we are interested is trying to find out what you call tau 1. So, tau 1 is you
can see you can write it in the same form. And similarly, you can see tau 2. So, | will just make
it.



(Refer Slide Time: 13:46)

>> tau2

tau2 =

@2*m2* (a2* (thlddot + th2ddot) + cos(th2)*(al*thlddot +
g*cos (thl)) + sin(th2)*(al*thldot”2 - g*sin(thl)) )l

| fx>>

So, tau 2 so, now you can even cross verify these equations what we have obtained right now.

The same thing what we have obtained here also.

(Refer Slide Time: 14:01)

4 MATLAB 2

New 1o MATLAB? See resources for Getting Started

>> tau2

tau2 =

I
@2*m2* (a2* (thlddot + th2ddot) + cos(th2)* (al*thlddot +
g*cos (thl)) + sin(th2)*(al*thldot”2 - g*sin(thl)))

ol fi >>

So, in the sense you if you go back to your equation. So, is whatever you have derived for this
particular system. So, the same equation what we are obtaining in the MATLAB output also. In
the sense of what the benefit you can use MATLAB for you can say deriving the equation of
motion. So, now we have derived this as very simple model. If you want to do it the same thing

for more complicated for example there is an inertia.



(Refer Slide Time: 14:38)

138
1»?9
@

140

location of centre of mass of links
syms lcl 1lc2 real
Pcl = [al;0;0];
Pc2 = [a2;0;0];

syms ml m2 g thlddot Ixxl Iyyl Izzl Ixyl Ixzl Iyzlth2ddot
I

%% Angular acceleration vectors
al0 = [0;0;0];

all = R0O1'*(al0 + cross(w0,[0;0;thldot])) + [
al2 = R12'*(all + cross(wl, [0;0;th2dot])) +
al3 = R23'*(al2 ) ;

%% Linear acceleration vectors

So, for example, | am saying that the first link is having inertia. So, in the sense | am saying that

there is only a second moment is there. | say only link so now what I got the second moment of

inertia is there. So, now | am saying that the product of inertia also there then lyz1. So, these all

the terms | have included these all real variables.

(Refer Slide Time: 15:14)

G

dekin sol

145
146
147
148
149
150
151
152
153
154
155
156

3

I<

%% Linear acceleration of centre of mass of links
acl = al + cross(all,Pcl) + cross(wl,cross(wl,Pcl));
ac2 = a2 + cross(al2,Pc2) + cross(w2,cross(w2,Pc2));

%% Inertial forces of the links

F1 = ml*acl;

F2 = m2*ac2;

11 = [Ixxl,Txyl,1xz1; 1
Ixyl,Iyyl,Iyzl;
Ixzl,Iy21,17221);

N

uIF-8

So, for what we have taken the only inertial force. But right now, | have inertial moment also.

So, in the sense inertial moment is what so, you can write i so, i here is the bigger matrix. So, |

can write I11is you can write Ixx Ixy and | you can write xz and since itis a 1. So, | will write it 1



in fact we will put a minus sign here that you can get it even in the unit itself. So, now, | am
writing this is tensor. So, what we can write | you can write xyl lyy and lyz1.So, then you have

you Ixz1 lyz1 and Izz1. This is the inertial value. So, now you are N1.

(Refer Slide Time: 16:26)

drkn robot 2do¢ AR nomalm* ¥ | Dyn sim RRm X | difin robot 2dof RR nommal LEm % | AR yekootym % | KERRLm X | LRRtmem X | simpled dhom ¥ +

154 Ixyl, Iyyl,Iyzl;

155 Ixzl,Tyzl, 17215

156

157 N1 = Il*all + cross(wl,l*wl);

158

159 %% End-effector forces and moments

160 £3 = [0;0;0];

161 n3 = [0;0;0];

162

163 %% Joint forces

164 f2 = R23 * £f3 + F2;
165 fl = R12 * £2 + F1;
166 RO1 * f1;

i§7

I<

Hh
(=3
n

So, your N1 would be 11 multiply with alpha 1. In fact, if you strictly go so, it would be come as
you can see omega 1 you can see cross. So, | will write it that itself so cross off omega 1 into
multiply with the 1 1 omega 1. But anyhow in this case, this will not give any term. But this will

be making sense.

(Refer Slide Time: 17:04)

dekin robot 2dof AR nomalm* | Dyn sim RRm * | dirkin sobot 2dof AR nommal LEm % | RRyeloatym % | KERRLm X | LRRtmem | simpled dhom ¥ +

166 f0 = R01 * f1;

167

168 %% Joint moments

169 n2 = R23 * n3 + cross(Pc2,F2) + cross(P23,R23*£3);

170 nl = R12 * n2 + cross(Pcl,Fl) + cross(P12,R12*£f2) + N1;
171 n0 = RO1 * nl + cross(P01,R01*f1);
172 !
173 %% Vector of inputs

174 taul = simplify(nl(3));

17 tau2 = simplify(n2(3));

176

177 M=equationsToMatrix([taul;tau2], [thlddot,t
118 g=equationsToMatrix ([taul;tau2], [g])
11;59
1<

-




So, now in that case so, what happened here? So, in this case, it would be just added as; so, N1.
So, if I add this so, what you can see that inertial term all would be coming. So, | just want to run

this | hope so, there is no error.

(Refer Slide Time: 17:22)

>> taul

taul =

Izzl*thlddot + al”2*ml*thlddot + al*2*m2*thlddot +
a2”2*m2*thlddot + a2”2*m2*th2ddot + a2*g*m2*cos(thl + th2) +
| al*g*ml*cos(thl) + al*g*m2*cos(thl) -

“ | al*a2*m2*th2dot*2*sin(th2) + 2*al*a2*m2*thlddot*
al*a2*m2*th2ddot*cos (th2) -
2*al*a2*m2*thldot*th2dot*sin (th2)

s>

So, | will assume that there is no error. So, now if | see tau 1 you can see that I is at terms all
coming appearing. So, the other product of inertias are not coming because it is in a plane. And
you are theta 1 dot theta 1 double dot all in only you can say z axis that is why you can see it is

having only Izz.

So, now if you assume that you have a link, that link is having even inertia which is mass not
concentrated at one point it is actually distributed mass. Then you have a second moment of
inertia that is also included. So, now the similar direction you can go further and further for

example, you want even further.



(Refer Slide Time: 18:02)

KERR Lm +

LAR timem

simple d dham

125 %% Dynamic model

127 location of centre of mass of links
128 syms 1lcl lg¢2 real

129 Pcl = [al;0;0];

130 Pc2 = [a2;0;0];

131

132 syms ml m2 g thlddot Ixx1 Iyyl Izzl Ixyl Ixzl th2ddo
133

134 %% Angular acceleration vectors

135 al0 = [0;0;0];

i§6 all = R0O1'*(al0 + cross (w0, [0;0;thldot])
37 al2 = R12'*(all + cross(wl, [0;0;th2dot

dirkin robot 2dof AR nomalm ¢ | Dyn sim RRm ¥ | drkin obot 2dof AR nommal LEm % | RR velodtym ¥ KERRLm X LRRtimem X smpleddhom ¥ | 4

127 s location of centre of mass of links
128 syms lcl 1lc2 real

129~ pcl = ([§0:0;

130 Pc2 = [a2;0;0];

131
132 syms ml m2 g thlddot Ixxl Iyyl Izzl Ixyl Ixzl Iyzl th2ddo
133
134 %% Angular acceleration vectors
135 al0o = [0;0;0];
136 all = R0O1'*(al0 + cross(w0,[0;0;thldot])) + [
137 al2 = R12'*(all + cross(wl, [0;0;th2dot])) +
138 al3 = R23'*(al2 ) ;
9
iio %% Linear acceleration vectors

I<

Uik

I~

So, in the sense | want to add even N2 | can add or here instead of; you can say the location. So,
this location | assume that this is not al the mass is concentrated some location in x axis. So,
now you can see this so, it will be changed. So, now I again | am running it. So, now earlier what

you can see it is a product.



(Refer Slide Time: 18:30)

>> taul

taul =

Izz1*thlddot + al”2*m2*thlddot + lcl”2*ml*thlddot +
M2+ thiddot + 1c242*m2*th2ddot + g*lc2*m2*cos (thl +
th2) + al*g*m2*cos(thl) + g*lcl*ml*cos(thl) -
al*lc2*m2*th2dot”2*sin(th2) + 2*al*1lc2*m2*thldd
al*lc2*m2*th2ddot*cos (th2) -
2*al*1c2*m2*thldot*th2dot*sin(th2)

B>

—

So, now that product is modified you can see. So that al c1 is coming and 11 or 12 is going out.
So here you can see it. So, this is the way we can derive the equation of motion in Newton Euler.
Newton Euler is easy because it is everything is in sequence even you can do the algorithm based
you can write it in recursive base. But recursive although it is simple number of codes is very

small. But | prefer to write it in a lengthy way.

In that way, even if any minor mistake happened that can be rectified. But if you write in a code
in algorithm base if a small mistake happened it is very difficult to find. And when you
compared to Lagrangian Euler. This is very simple because you no need to back and forth from
partial derivative to time derivative. So, anyhow in the next lecture we are going to see the; what
you call Lagrangian Euler formulation method using MATLAB.

The same example we will take but right now what you have seen is how to use Newton Euler
method in the MATLAB environment and derive the equation of motion. So, probably if time
permits in the example class, we will see the same code how we can extend for higher order
system. In the sense higher degree of systems so that we will see until then thank you and see

you, bye, take care.



