Mechanic and Control of Robotic Manipulators
Professor. Santhakumar Mohan
Department of Mechanical Engineering
Indian Institute of Technology, Palakkad
Lecture No. 21
Velocity Propagation model using MATLAB

Welcome back to Mechanics and Control of Robotic Manipulator. The last class we have
seen how to you can say generate Jacobian matrix and as well as how to obtain velocity for
different joints starting from O to the end effector we call base to E, which we simply call

velocity propagation model.

So, this is what we have seen and in the end of the lecture itself | said we will be seeing the
same thing can be used in MATLAB as an efficient tool with a simple symbolic math code

and we can see that in this particular lecture.
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VELOCITY PROPAGATION USING MATLAB

Example: A planar 2R serial manipulator
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So, in that sense what we are trying to do is we will take the same example, which we have
seen in the last lecture, the 2 R serial planar manipulator will take and then we will derive it
that in MATLAB and see whether the same equation which we obtained in the analytical

method we are getting into MATLAB or not.
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Example: A planar 2R serial manipulator
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So, for that first we will recall. So, the 2 R serial manipulator is having 2 rotary joints. So,

these are the; you can say rotation matrices and the position vectors.
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Base frame angular and linear velocity vectors,
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So, based on this if you take base velocities are 0, both you call angular velocity and as well

as you call linear velocity, both are 0.
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A planar 2R serial manipulator

Angular velocity propagation:

0
itly <41 Rigy 4 { 0 } (3)

Bi+1

0 0

bw=tRw+|0[=]0

0| |6

0 0

%w :f R}w +10( = 0
) 6y +6,

SANTHAKUMAR MOHAN, IIT PALAKKAD

Then you can propagate the model based on the angular velocity propagation system.
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Angular velocity propagation:

0
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So, in that you can start omega 1 omega 2.
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Linear velocity propagation:
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And then omega three. So, similar way we can start with a linear velocity propagation model

and where we start from the linear base velocity is 0 and then we can propagate v 1, v 2 and
v3.
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Linear velocity propagation:
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So, once we obtained we can see, we can get to the what you call end effector velocity with

respect to you can say base frame, in the sense of velocity of 3 with respect to what you call
zeroth frame.
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End-effector linear velocities with respect to base frame
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We can see it here. So, in that sense of what 1 can find, so this will give Jacobian matrix.
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End-effector linear velocities with respect to base frame
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If we consider, it is only a 2 DoF system (further it is a planar
system),
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That is also like we have seen in the last class. So, now the same thing, can we do it in
MATLAB in the same format yes, we can do it. So, for that if you are used the live script
even it would give in a symbolic manner, but we are not doing it live script, we would be

using a simple math script. So, we can see MATLAB script code.
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%h Velocity kinematics

% Individual rotation matrices and position vectors
RO1 = A{1}(1:3,1:3);

P01 = A{1}(1:3,4);

R12 = A{2}(1:3,1:3); g

P12 = A{2}(1:3,4);

R23 = A{3}(1:3,1:3);

P23 = A{3}(1:3,4);
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So, for that 1 am showing the code here. So, these are the velocity, you can say kinematics
which we are trying to do it. So, for that we are taking the rotational matrices and position
vectors, which we have obtained from the previous you can say simulation code, we can

obtain where A would be the cell that would be having 3 cells.

So, each cell would be having a rotation and position, rotation matrix and position vectors.
So, from there you can take, for example if you take a 1 which is the first cell, the first 3 cross
3 would be corresponding to the rotational matrix and the next you can say 3 of the fourth

column would be equivalent into position vector, this is we all know.

So, the same way we can do it for the second cell and the third cell. So, now what we have
done, so previous code we have taken and from that, we can find the rotation matrices and

position vectors, once we obtain this.
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Wh Angular velocity propagation
syms thldot th2dot real
w0 = [0;0;0];

wl = RO1’*(w0) + [0;0;thidot];

w2 = R12’*(w1) + [0;0;th2dot];
w3 = R237*(w2) ;
+
% end-effector angular velocities w.r.t. base frame

w03 = RO1*¥R12%R23 * w3;
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So, what we can do we can do the angular velocity propagation, where we can see there are 2
additional variable would becoming virtually these are theta 1 dot and theta 2 dot, so here we
cannot write theta 1 theta 2 dot | have returned th1l dot th2 dot, so both are | represented as
real and further what we have taken, we are taken that the base angular velocity would be
starting from 0 because it is fixed. So, in the sense of omega 0 which I have written as w 0

equal to 0 0 0 in the sense, you can say zeros of 3 comma 1.

So, now, once you obtain this what we can do, we can substitute the velocity propagation
model where omega i plus 1 to i plus 1 which we can write as R i plus 1 to i, omegaito i
plus, so the variable is addition in this case, so we have already know the rotation matrix that
transpose would be coming here because it is inverse and omega 0 is known and this is the
active joint. So, theta 1 dot is added which is third quadrant, not quadrant third element, in

the sense z axis. So, this will give omega 1 which I have written as w 1.

So, similarly we can calculate w 2 and we 3 once you obtain w 1, you can calculate w 3 and
you can calculate w you can say 2 and 3 through this sequence. Once you obtain what one
can do. So, this is equivalent to omega 3 with respect to third frame. So, in that sense, you
can calculate what you can say. So, the omega 3 with respect to 0. So, these are the things we
are trying to see it in MATLAB. So, let us go one step further.
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%h Linear velocity propagation
v0 = [0;0;0];

vl = RO1’*(v0+cross(w0,P01));

v2 = R12’*(vl+cross(w1,P12));
v3 = R23’x(v2+cross(w2,P23));

% end-effectof linear velocities w.r.t. base frame
v03 = simplify(RO1¥R12%R23% v3);
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So, what we can do we can try to understand the linear velocity propagation. So, for that
again the base we are starting the base it is fixed, so the linear velocity would be 0 0 O, if it is
put it on the mobile base then this would come with the mobile base velocities. So, once this
is all done, so we can go the velocity propagation model where the slip velocity and the

tangential velocity would be coming.

So, once you calculate this, so v1 then v2 and v3 we can calculate, once you calculate v3 you
can get the v03 in a sense, so velocity of third frame with respect to zeroth frame we can
calculate. So, here the simplify command is just to simplify the overall equations. So, now we

will see this further.
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2R serial manipulator

%k Jacobian matrix
’ Method 1 through velocity propagation
J = equationsToMatrix(v03, [thidot;th2dot])

’ Method 2 through partial derivatives
J1 = [diff(p(1),th1),diff(p(1),th2);
diff(p(2),th1),diff (p(2),th2);
aitt (p(5) , th) , diff (p(3),th2) ;]
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So, once you obtain this what one can do, we wanted Jacobian matrix which would be you
can say coefficient of your you can say theta 1 dot and theta 2 dot, so this coefficient we can
use a simple MATLAB command called equations to matrix or once you know the position
vector from the forward kinematic model, you can do the partial differentiation with respect
to Q vector. So, that is what we have done here. So, now we have all seen, so how the
MATLAB code look like in a slide format, we will go to the original MATLAB code.

(Refer Slide Time: 6:39)

 tduor

Fo At
1

8 syms alpha d a theta

9

10 variables ad per the DH table

11 syms thl th2 al a2 real

12

13 number of joints of a planar RR manipulaf
14 N=3;

15

16 %% DH Parameters of the RR (non-standard)
17 DHTABLE = [0,0,thl,0;

18 0,al,th2,0;
g,.kg 0,a2,0,0;]
G
w20

FOK R plaoaem ¢ | %

10 variables as per the DH table

11 syms thl th2 aliaZ real

12

13 number of joints of a planar RR manipulator
14 N=3;

15

16 %% DH Parameters of the RR (non-standard)
17 DHTABLE = [0,0,thl,0;

18 0,al,th2,0;
19 0,a2,0,0;]
20

21 %% The general Denavit-Hartenberg tr

2
{§3 TDH = [ cos(theta)

So, this is the direct kinematic you can say code which we have done in the previous
simulation class. So, this is the; you can say the generalized variable and a variable based on
the DH table we have actually given and here the number of joints are including you can say
end effector it is 3. But excluding the zeroth frame.



Then the DH parameter as per the table which you are derived that we can substitute and the
arm matrix we can actually get it here we are going to use the non standard one So, these all
we have seen. So, based on that what one can see, you can actually create A would consist of
3 cells. So, each cell would be having a transformation matrix. So, these all we have seen in

the previous simulation class. Right now, what we are taking.
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o Edinor - CAUsers\user\onedrive\Desktophlecture_Handouts\fOK RR_planar.m
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67

68 simplify(T(1:3,4))

69 .

10 %% Orientation vectors

11

72 output xN axis (normal vector)
1)

74 & Til:3,1)

15

16 output yN axis (sliding vector)
11

78 s =T(1:3,2)

;§9
G ; :
w80 output zN axis (approach vector)

So, we have taken the P for the Jacobian, but right now we are trying to see the; you can say

velocity propagation model.
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82 a:T(l:313)

83

84 %% end

85 %% Veloc;fy kinematics

86

87 Individual rotation matrices and position vectors

88 ROl = A{1}(1:3,1:3);
89 P01 = A{1}(1:3,4);

90
91- RI2 = A{2}(1:3,1:3);
92~ P12 = A{2)(1:3,4);
93

90~ R23 = A(3}(1:3,1:3);
§§5 P23 = A{3}(1:3,4);




91 R12 = A{2}(1:3,1:3);
92 P12 = A{2}(1:3,4);

93

94 R23 = A{3}(1:3,1:3);
95 P23 = A{3}(1:3,4);
96

97 syms thldot th2dot real
1
99 %% Angular velocity propagation

101 w0 = [0;0;0];

102 wl = RO1'"*(w0) + [0;0;thldot];
103 w2 = R12'*(wl) + [0;0;th2dot];
gi w3 = R23'*(w2) ;

So, for that we are actually coming to the velocity kinematics. So, till last simulation class we
have ended at this end. So, we are adding the code whatever | have shown in the slide here
from starting from here. So, this is the velocity kinematics. So, for starting the velocity

kinematics you need to know the individual rotation matrices and position vectors.

So, this you can get it from the you can say cell which you have created in the previous direct
kinematic model. So, these all we have obtained. So, in this case rotation matrix of 1 with
respect to 0 2 rotation matrix of 3 with respect to 2. Similarly, the position vector 0 1 with

respect to 0 2 position vector of 3 with respect to 2. So, these are all we obtained.

So, then we are going to the velocity propagation for that we need to create a variable. So,
here there are two active variables which is theta 1 dot and theta 2 dot which we have written

as theta like thl dot th2 dot which we consider as real.
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w0 = [0;0;0];
wl = RO1'*(w0) + [0;0;thldot];
w2 = R12'*(wl) + [0;0;th2dot];

w3 = R23'* (w2) ;

end-effector angular velocities w.r.t. be

w03 = RO1*R12*R23 * w3;

%% Linear velocity propagation

v0 = [0;0;0];
vl = RO1'*(vO+cross (w0,P01));
v2 = R12'*(vl+cross(wl,P12));

n

So, now this is the; you can say code which is taken from the velocity propagation. So, once
you have the angular velocity is zeroth frame is known, then you can calculate the further
proceeding frames 1, 2, 3 and all. So, this is the code, and we can find the end effector

angular velocity.

So, then we can go to the linear velocity propagation because the linear velocity propagation
required both or you can say previous frame linear velocity and angular velocity and position
vector. Position vector by the way we got it from the direct kinematic model, but the angular

velocity needs to be calculated that is why we have calculated already. So, now we can do the

linear velocity propagation.
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= RO1'* (v0+cross (w0, P01));
v2 = R12'*(vl+cross(wl,P12)); I
= R23'*(v2+cross (w2,P23));

<
w
|

end-eff

v03 = simplify(RO1*R12*R23* v3);

ector linear velocities w.r.t. base frame

%% Jacobian matrix

Method 1 through velocity propagation

J = equationsToMatrix (v03, [thldot;th2dot]

Method 2 through partial derivative
Jl = [diff(p(1),thl),diff(p(1),th2)
diff(p(2),thl),diff(p(2),th




116 end-effector linear velocities w.r.t. base frame

117-  v03 = simplify(RO1*R12*R23* v3);

118

119 %% Jacobian matrix

120 Method 1 through velocity propagation
121- J = equationsToMatrix(, [thldot;th2dot
122

123 Method 2 through partial derivatives
124— J1 = [diff(p(1),thl),diff(p(1),th2);
125 diff(p(2),thl),diff(p(2),th2);
126 diff(p(3),kthl),diff(p(3),th2);
By

128

So, these are the propagated model. Since in this particular example, there is no linear joint,
so everything is rotary, so there is no addition of D 1 dot or you can say D 1 i plus 1 that is
we have not added. So, finally you can calculate the 3. So, with respect to base also can
calculate. So, now this is what the end effector linear velocity with respect to base. In the
sense, the end effector velocity, which is here as a third frame that velocity with zeroth frame

you can calculate, which is as equal to Px dot Py dot Pz dot.

So, since it is in a planar the Pz dot will be 0. So, we can take from there | already said, so the
command called equations to matrix we can do it. So, where v03 is the final end effector
velocity, so | want to get it that partial derivative. So, | can take it a coefficient, this is one

way or the other way, you can do it method through partial derivative.

So, we will go one by one. So, as | already said, | have minimized this editor window. So,
you click the editor window, and you can run this code. So, this code is actually like, you can

say error free.
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o MATLAB R2020b - acadiemic use
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TON =

[cos(thl + th2), -sin(thl + th2), 0, a2*cos(thl + th2) + al*c
[sin(thl + th2), cos(thl + th2), 0, a2*sin(thl + th2) + al*s
[ 0 0

[ 0] 0 0

! ’

p:

@fxaz*cos(thl + th2) + al*cos(thl)
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So, now if you ran this code, you can see that the result would be obtained here. So, we can
start from this. So, these are all we have seen in your kinematic model. So, up to what you

call approach, we will start from what you call omega 0, omega 0, we have, | will put it.
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>> wl

sl fx >>

[ —

2usages of V03" found

New to MATLAB? See resources for Getting Started

>> wl

-| thldot

@ fx >>

9

[r——

2usnges of V03" found
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| 0
thldot
>> w2
‘v w2 = I

| thldot + th2dot

U

Of>>

I e -

2usages of V03" found




o\ MATLAB R2020b - academic use

DRI 00 7

thldot + th2dot

>> w3

w3 = 1

0
0
thldot + th2dot

')fx >> w03

thldot + th2dot

>> w03

w03 = I

0

0
thldot + th2dot

fi>> v

So, omega 0 we have considered as 0 0. So, we will see what is omega 1 omega 1 which we
got it from the analytical model list, so 0 O theta 1 dot whether we are getting it or not, yes,
we are getting it. So, similarly, omega 2 would be theta 1 dot plus theta 2 in z axis. So, that is

also we obtained.

The same as you can see omega 3, because it is the same link that is also, we obtain. So, now
we can see, what would be the end effector. So, end effector also straightforward, because it
is actually like, simple but you have a rotation matrix, if the theta 1 and theta 2 are nonzero,
then that also will play, but in this case, | do not think that would be having a play, because

your rotation matrix would be, so cos theta 1 plus theta 2. So, like that it comes.

So, this all you can say thetas would be in the x and y, but your omega 3 is having x and y is

0 0. So, that is what you can see. So, in the sense, so the third frame, you can say z axis and



zeroth frame z axis all are parallel. So, in the sense whatever you have the third frame
velocity that would be directly transformed to you can say with respect to zeroth frame. So,
this is correct, you got it. So, this is we are verified in the analytical, analytical also giving the

Same.
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thldot + th2dot
>> v0
v0 = I
e 0
I 0
0
[
'! fi>>

0
0
>> vl
vl = I
N 0
L 0
' 0

B>

I<

2 usages of V03" found




>> v2
V2 = I
al*thldot*sin(th2)

al*thldot*cos (th2)
0

G >>

So, we start from v 1, so v 0 we assumed as 0. So, v 1 would be what we expect because 0
and 1 on the same point, so there would be 0 linear velocity that is what we have seeing in the
analytical also. So, here also the same, but when you come to the second you can see, so there
would be L1 distance, and the tangential velocity would be coming. So, that would come

here.

So, if you put theta 2 is 0, so what you can see, if you put theta to 0, so it is velocity would be
only in y axis that is very clear, al theta 1 dot would be the magnitude that would be direct
parallel to Y axis. So, that is visible here also and the x axis O velocity that is also clear. So,

now, you put theta to is 90 degrees. So, you can see in that case.

So, al theta 1 dot would be having perpendicular which is approach side. So, that is also. So,
al theta 1 dot would be there. So, in that sense this direction, but if you take it from zeroth

frame that would be a negative direction, that you can a cross check it.
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o MATLAB R2020b - scaderic use
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al*thldot*cos (th2)
0
>> v3
v3 = I
b al*thldot*sin(th2)

I a2* (thldot + th2dot) + al*thldot*cos(th2)

>

o MATLAB R2020b - scadernic

» onedrive ¥ Desklop ¥ Lecture Handouts

@Dl E oy
New to MATLAB? See resourc

>> v03

Getting Started

v03 =

- al*thldot*sin(thl) - a2*thldot*sin(thl + th2) - a2*th2dot*s
al*thldot*cos(thl) + a2*thldot*cos(thl + *th2dot*c

inAjk>> I

o MATLAB R2020b - acadernic use
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New to MATLAB? See resources for Getting Started

;in(thl) - a2*thldot*sin(thl + th2) - a2*th2dot*sin(thl + th2)
;08 (thl) + a2*thldot*cos(thl + th2) + a2*th2do




So, let us go to the v3. So, v3 would be added. So, I will show it clear. So, these are the v3
components. So, you can see now, the v3 the x axis 1 velocity added but y axis you can see
something is addition. So, this is all with respect to something but what we wanted. So, v03.
So, so, v03 is what you wanted, so this is having a lengthy equation. So, but this lengthy
equation you can reduce it to a simple one.
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[ a2*cos(th11+ th2) + al*cos(thl),
[ 0,

a2*cos (t

il fr>>

Y,

So, for that what we are trying to do the Jacobian. So, you can see the Jacobian. So, Jacobian
you can get it. So, you can s2ee, this is a2 sine theta 1 plus theta 2 minus al sine theta 1, this
is what we also obtained in the earlier one and here also you can see this is a2 sine theta 1
plus theta 2. So, the minus sign is very clear. So, similar way you can see the x and y. So, in
that sense, | want to show like this is the first component.
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>> v03(1)

ans =

- al*thldot*sin(thl) - a2*thldot*sin(thl + th2) - a2*th2dot*s

‘I fe>>

TETEIEION] 4

sin(thl) - a2*thldot*sin(thl + th2) - a2*th2dot*sin(thl + th2)

So, I will just make it this is the first component, you can see first component is having, so
theta 1 dot is having you can say two places, theta 2 dot is having two places, theta 2 place is

having once place. So, that is what we can see it as Jacobian.
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o MATLAB 2

New to MATLAB? See resources for Getting Started

>> J1

[ a2*cos(thl + th2) + al*cos(thl),
( 0,

a2*cos (t

wa| e >>

The same thing you can expect in J 1 with the partial derivative also. So, that is what we have
obtained. So, you can see this is also the same case what we see. So, in the sense of what one
can clearly see. So, whatever you have done in analytical the same thing, you can put it as a
code in MATLAB and do it even this can be even further simplified as a simple generic code.
But that is a little complex to understand. So, that is why | have written this code as a lengthy

one.
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(2] Edor - CAUsers\user\onedkive\Desktop)Lecture Handouts\FOK_RR_planatm
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cmrg - e v em ] vy = -

100

101— w0 = [0;0;0];

102— wl = RO1'*(w0) + [0;0;thldot];
103— w2 = R12'"*(wl) + [0;0;th2dot];
104— w3 = R23'*(w2) ;

105

106 end-effector angular velocities w.r.t. bg
107— w03 = RO1*R12*R23 * w3;

108

109 %% Linear velocity propagation
110

111-  v0 = [0;0;0];

392— vl = RO1"*(vO0+cross (w0,P01));
IT3— v2 = R12'*(vl+cross(wl,P12));

I<

2usages of V01" found e

So, instead of this will omega 1 omega 2 omega 3, | can put a for loop, so where | can for
loop will start from i equal to you can say 1 to n and inside | would say that whether it is a

rotary joint or prismatic joint | can put a condition. So, based on that | can iterate and then I



can do it, but that would give a confusing end to you. So, | have returned in a propagated

way.

Some people will say that say it is a recursive one, why you have done in a sequence just to
give a clarity, the same thing can be realized in you can see other one, other one in the sense

we can go another example.
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4
5
6 %% Define symbolic variables
7
8 syms alpha d a theta

9

10 variables as per the DH table

11 syms thl th2 dl a2 a3 th3 real

12

13 number of joints of a planar RRR manipu
14 N=4;

15

{§6 %% DH Parameters of the RRR (non-sta
G

wii ] DHTABLE = [0,0,thl,dl;

18 3*ni/2.0.th?2.0:

variables as per the DH table
11 syms thl th2 dl a2 a3 th3 real

12

13 number of joints of alIspatial RRR manipulator
14 N=4;

15

16 %% DH Parameters of the RRR (non-standard)
17—  DHTABLE = [0,0,thl,dl;

18 3*pi/2,0,th2,0;

19 0,a2,th3,0;

20 0,a3,0,0;]

20

{gg %% The general Denavit-Hartenberg
23

You can see that is also like seen in the forward kinematic model or direct kinematic model
where the three R serial robot, we have seen, this is R R R. So, this serial robot we have seen
it is spatial. So, this robot we have seen this is a DH table and these all we have seen in your

previous simulation you can say lecture.
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%% end
%% Velocity kinematics

2 Individualhrotation matrices and position vectors
RO1 = A{1}(1:3,1:3);
P01 = A{1}(1:3,4);

R12 = A{2}(1:3,1:3);
P12 = A{2}(1:3,4);

R23 = A{3} (13, 1:3):7
P23 = A{3}(1:3,4);

FDK AR planac

100
101
102
103
104
105
106
107
108
109
110
111

R,

1<

= A{2} (1:3,4);

R23 = A{3}(1:3,1:3);
P23 = A{3}(1:3,4);

R34 = A{4}(1:3,1:3);
P34 = A{4}(1:3,4);

syms thldot th2dot th3dot real

%% Angular velocity propagation

w0 = [0;0;0];
wl = RO1'"*(w0) + [0;0;thldot];

So, now, we will start only from here you can see this is the same thing what only one thing
is added the rotation matrix of the fourth frame and the position vector added. So, similarly,

one additional active variable which is theta 3 dot that is added and here you can see that we

have actually extended up to omega 4.
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112 w0 = [0;0;0];

113 wl = RO1'*(w0) + [0;0;thldot];
114 w2 = R12'*(wl) + [0;0;th2dot];
115 w3 = R23'*(w2) + [0;0;th3dot];
116 14 = R34"* (w3) ;

117

118 end-effector angular velocities w.r.t. ba
119 w04 = RO1*R12*R23*R34 * w4;

120

121 %% Linear velocity propagation

122

123 v0 = [0;0;0];

izf vl = RO1'*(vO+cross (w0,P01));
25 v2 = R12'*(vl+cross(wl,P12));

—

K RAR el _. B
FTEREEEL -

FDK_RR planr FOK RRR +

118 s end-effector angular velocities w.r.t. base frame
120

121 %% Linear velocity propagation

122

123 v0 = [0;0;0];

124 vl = RO1'* (v0+cross(w0,P01));

(

125 v2 = R12'*(vl+cross(wl,P12));

126 v3 = R23'*(v2+cross (w2,P23));
(

127 vd = R34'* (v3+cross(w3,P34));

128

129 end-effector linear velocities w.r
iio v04 = simplify(RO1*R12*R23*R34 * v
31

So, since we have extended. So, this end effector velocity is omega 4 with respect to 0 that is
what with respect to base frame. Similarly, the linear velocity is extended up to this. So, this
also we can extend. Since we know this method also giving the same result. So, | did not like
what you call did the second method.
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129 end-effector linear velocities w.r.t. base frame
130— v04 = simplify(RO1*R12*R23*R34 * v4);

131

132 %% Jacobian matrix

133— J = equationsToMatrix (v04, [thldot;th2dot;th3dot])

134
135
136
137
138
139
140
@l
12 \

The J 1 | calculated in the earlier code that is | did not do it. So, now if | ran this obviously
this will you the right result you can also like verify, | will be sure | will be sharing these

codes in your lecture material. So, you can find it.
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o MATLAB R2020b - scadernic use

New to MATLABY See rescurces for Getting Started X

-sin(th2 + th3)*cos(thl)
-sin(th2 + th3)*sin(thl)
-cos (th2 + th3)

3 I
N:' a =
@ -sin(thl)
@ cos (thl)
Gk 0




o MATLAB R2020b - scadeic e

N to MATLAB? See resources for Getting Statted

cos (thl) * (a3*cos (th2 + th3) + a2*cos(th2))
sin(thl)* (a3*cos (th2 + th3) + a2*cos(th2))
dl - a3*sin(th2 + th3) - a2*sin(th2)

I
cos (th2 + th3)*cos(thl)

e cos(th2 + th3)*sin(thl)
[0 -sin(th2 + th3)

New to MATLAB? Soe rescurcesfor Geting Starte)

-sin(thl)
cos (thl)

So, now this was run, and you can see these are you can say you are a normal sliding and

approach vector and this is what the Jacobian.
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o MATLAB R2020b - scaderic use

P DD | »Co v nedive ¥ Desktop ¥ Lacture Handouts
: New to! M/-H ﬂll' See re s for Getting Started
[ cos(thl)*(a3*cos(th2 + th3) + a2*cos(th2)), a2*cos(th2 + tl
(| 0,
>> wl
wl = I
Ne ; 0
[ 0
I thldot
IC
G fr>>

o MATLAB R2020b - scademic e

@ @) F) | 2 C b Uses > user  onediive ¥ Desktop ¥ Lacture Handouts

0

thldot

>> w2

w2 = 1
~“| -thldot*sin(th2)
@d| -thldot*cos(th2)
[0 th2dot
G >>

| 4 MATLAS R2020b - academnic use
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New!to! W-HAI! ? See resouces for Getting Started
-thldot*cos (th2)
th2dot

>> w3

w3 =

- thldot*cos (th2) *sin(th3) —Ithldot*cos(th3)
[@c thldot*sin(th2)*sin(th3) - thldot*cos(th2)

:::::




And you can see this is what omega 1 and this is the omega 2. So, here it is the first joint is
vertical rotary and the second joint is planar in the y z plane, or you can say x z plane

whatever plane you consider.

So, in that sense you can see that there is the angular velocity, this is theta 1 dot here, but
when it comes to this axis, so it would be having a transformation that is what you can see it

from this result. So, similarly omega 3 it would be parallel. So, you can see that just added.
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New 1o MATLAB? See re

>> w3

walfe>> w

b,

I<

o MATLAB R2020b - acadernic use

- thldot*cos (th2) *sin(th3) - thldot*cos(th3)*sin(th2)
thldot*sin(th2) *sin(th3) - thldot*cos (th2)*cos (th3)
th2dot + th3dot

>> w3(3)

i ans =

th2dot + th3dot

G f>> w3




ans =

th2dot + th3dot

>> wi (3)

ans =

th2dot + th3dot

werel

) fi >>

And the; what you call the coordinate would be added. So, that is it. If you look at it the third
component of omega 3 you can see it is theta 2 dot plus theta 3 dot why it is, so because z
axis are parallel for 2 and 3. So, the same sense if you go for omega 4 you can say 3, so that
is also same because the third frame and fourth frame are the same link and the fourth frame

IS not having any active joint and we have assumed that both axis are parallel.
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th2dot + th3dot

>> v0

v0 =

o O

>




A MATLAB R2020b - academic use =

@ Dl 5 2 € Users ¥ user » onedrive ¥ Desktop ¥ Lecture Handouts

New to MATLAB? Soe resources for Getting Started

0
0

>> vl

G s >>

New 1o MATLAB? See rescurces for Getting Starte)

Ml o0

0

>> v2
‘ v2 =

) fe>>

New to MATLAB? Soe resources for Getling Started

| |

0

>> v3
‘, v3 =

[« | a2*th2dot*sin (th3)
71 a2*th2dot*cos (th3)
| a2*thldot*cos (th2)

>




In the same sense we can start we assume 0, we because both are same point and v2 you can
see 0, because in this case if you recall R R R, three R manipulator. So, the first axis comes
here, second axis goes inside the you can say picture or inside the screen, in the sense 01 2 3
all having in the same line, especially 1 and 2 are having the same point 0 and 1 are D1
distance but the D1 distance is constant. So, there is no linear velocity happening at you can 0

1 and 2 that is why you can see up to v2 it is having 0.

When you come to the third. So, v3 you can see like that tangential velocity is coming, here
only tangential component will come because we have considered all are rotary joint. So
probably one additional example | may put it somewhere in the middle. So, you can see if the
prismatic joint comes out it will come. Anyway, in Dynamics we will be seeing that in a

prismatic. So, we can try.
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oA MATLAB R2020b - acadeenic use

DD,

a2*th2dot*cos (th3)
a2*thldot*cos (th2)

>> vi

vd =

a3* (th2
a3* (thldot*cos (th2) *cos (th3) - thldot*sin(t

3dot) + a:

f;)fx, >> v 1




oA MATLAB R2020b - scadeenic use

Mew 1o MATLAB? See resources for Getting Started
Error: Invalid expression. When calling a function or
indexing a variable, use parentheses. Otherwise, check for

mismatched delimiters.

Did you mean:

>> vd (1)
M: ans =
I a2*th2dot*sin(th3)
()fx >

New to MATLAB? See rescucesfor Gettng Started

ans =

a2*th2dot*sin(th3)

>> vi(2)

So, similarly v4 you can see, So, v4 would be lengthy because it is having a connection, So,

v4 of 1, v4 of 1 you can see this is, so v4 of 2 you can see it that way. So, like that you can

see it would be expanded.
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New 1o MATLAB? See rescurces for Getting Started

a3* (th2dot + th3dot) + a2*th2dot*cos(th3)

> J
J:
[-sin(thl) * (a3*cos (th2 + th3) + a2*cos(th2)), h2 + t!

[ cos(thl)*(a3*cos(th2 + th3) + a2*cos(th2)),

A MATLAB R20200 - scadnic use

e

@) EY | » C ¥ Users b user b onediive ¥ Desktop » Loctre Hondouts

New 1o MATLAB? See rescurces for Geting Started

o MATLAB R2020b - scademic use =

e

i) B3 1 2 C » Uses » user » onedive P Desop P Lacure Handouts

New to MATLAR? See resources for Getting Started

13) *cos (thl) * (a3 + a2*cos(th3)), -a3*sin(th2
13) *sin(thl)* (a3 + a2*cos(th3)), -a3*sin(th2 +
13*cos (th2 + th3) - a2*cos(th2),

fx

¢




And now, you can find the J, so J would be small extension of the other one, this can be

obtained with the same thing.
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T Tem
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New to MATLAB? See fescuce
>> J(1,1)
ans =

-sin(thl)*(a3*cos(th2 + th3) + a2*cos(th2))

e >>

9 I

I<

‘
dogesc0e] ”ﬁ
fve ¥ Deskiop » Locture, Handouts

M|

¢ DIF v
New to MATLAB? See 1 i x|

ans =

-sin(thl)*(a3*cos(th2 + th3) + a2*cos(th2))

>> diff (p(1),thl)

ans =

-sin(thl)*(a3*cos(th2 + th3) + a2*cos(th

S>>

So, for example, J of 1 comma 1 | am just showing it. So, I will just make it this. So, J of 1
comma 1 and differentiation of, so P of 1, comma so theta 1 would be the same. So, what |
did not simplify, so that is why it is coming, slightly different, but you can see like, these two

are same. So, that is what we can see it. So, in that sense, | am ending this particular lecture.

So, where have seen like how to do the velocity propagation model of a serial manipulator
with the help of MATLAB. So, this code is very generic, you can just you can say put it as
long as you have a direct kinematic model which you have written in MATLAB, it is simple



extension, if not, you should have a rotation matrices and position vectors in your hand and

then you can it make the propagation model.

So, either way you can do it, but | already did the direct kinematic model in MATLAB | just
extended, otherwise you have to write the rotation matrix then there. So, that is the only thing
and please make sure, so when you are calculating omega i plus 1 with respect to i plus 1
frame, so the rotation matrix is that you can say inverse are transpose of the normal matrix in

the sense.

So, when you calculate omega 1, so the rotation matrix is 0 1 transpose, or you have to write
R 1 0. That is, we do not have, so we are taking a transpose of R 0 1. So, that make it clear.
So, with that, we are ending this particular lecture. The next lecture would be talking about
the statics, and you can say singularity of the serial manipulator. So, we can see until then,

thank you. Bye.



