Mechanics and Control of Robotic Manipulators
Professor. Santhakumar Mohan
Indian Institute of Technology Palakkad
Lecture 18
Inverse Kinematic Solution Based on Numerical Methods using MATLAB

Hi. Welcome back to Mechanics and Control of Robotic Manipulator. In the last lecture we
have seen how the MATLAB can be used as an efficient tool for finding forward kinematics
solution with the help of the arm matrix which we obtained through the general Denavit-

Hartenberg representation.

The same lecture | was like given a small idea. So, with the help of solve command how to
find the inverse kinematics solution, if you have forward kinematics solutions are available.
In the sense if you mu vector, so how we can actually like, find the inverse kinematic solution

using solve. But the solve is not the right option all the time.

So, we use actually like a numerical method, which is faster. So, that would be beneficial
when you do for online programming and other things. For example, you have a robot in real
time. So, obviously the numerical method would be little more beneficial than the closed

form solution, you can say computational perspective.

So, in that sense this particular lecture is going to talk about how to use Newton-Raphson
method for finding inverse kinematics solution of a serial manipulator. So, here again the
same example which we have taken in the original lecture. The same example 2R planner

serial manipulator we have taken.

(Refer Slide Time: 01:30)

Newton-Rapson method iteration algorithm

In manipulator theory, finding, q from p = fun(q).
B Set the initial counter i = 0.

B Evaluate an estimate solution q = g;.

Calculate the Jacobian matrix, J(q;).

Solve for d; from the set of linear equations
Afun(q;) = J(q;) 0;.

If |d;| < €, where ¢ is an arbitrary tolerance then, q; is the
solution. Otherwise calculate q;,1 = q; + 0.

[@ Set i =i+ 1 and return to step 3.

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

And we are like trying to derive the code with the help of the algorithm which we have come
across. So, only change what we made is instead of this delta i we are going to take the
relative tolerance or arbitrary tolerance, we are going to take instead of delta i, we are going

to take delta mu.

That is the only thing because delta i would not be available to us. So, we would be seeing
that what other error we can restrict. We can restrict the delta mu, that is the only restriction
we are making it other than this, you can say algorithm which we have written. In addition to
that, what we supposed to know, we should have the J of g i and q initial guess and mu. Mu is

like function of g. These all need to be known.

(Refer Slide Time: 02:15)

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, in that sense, what we can see if we write the MATLAB code for this 2R serial

manipulator, if the x and y are known, can we find theta 1 and theta 2?

(Refer Slide Time: 02:22)

Forward Kinematics

Forward kinematic model

x = Lycosfy + Lycos (0 + 07) \/

: : (10)
y = Lysinfy + Ly sm(Hl “ 92)

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, for that, you know this equation so where x and y would be given as in the form of
function of g, here theta 1 and theta 2. So, if this equation is known, then we can find the
Jacobian matrix in the order of, or you can say in the way of partial derivative which | have

written in the board.

(Refer Slide Time: 02:46)

Numerical example

Closed-form solutions

_2+y-d-4

G=——mm—==(

2 TR

52:1\/1~C§:i1

b=tan~t (2] = tant [EL) = & {9
) = tan G = tan) =7

inf S
()1:tan'1(z)—tan’1 ﬂ :—iz
X Ly + Lycosth 4 4

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So now, if we see that these partial derivatives are available, can we like cross check the

closed form solution whatever is giving the result?

(Refer Slide Time: 02:50)

Numerical solution based on an iterative method

0™ (0] [
M = [Hz H (18)

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

The same result can be obtained with the iterative method.

(Refer Slide Time: 02:54)

o Cditor - CAUsers\. pp\Lecture_Handouts\Plsnar 2R IK NRum o0
e e A0

B porwm % KAl %) P RN |

1 %% Inverse kinematic solution of a planar RR manipulator P
2 close all;

3

4 %% Geometric or physical paramters

3} al = 1; length of link 1

6 a2 = 1; length of link 1

1 %% actual values

8 thla = 0; % Joint angle 1

9 th2a = pi/2; % Joint angle 2
10
11 %% Forward kinematics
12 mu_a = [al*cos(thla)+a2*cos(thla+th2a);
13 al*sin(thla)+a2*sin(thla+th2a
i4) Task-space position

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, for that we have taken the code which we have already written. So, you can see that the
initial command all are same. So, this is the inverse kinematics solution of a planner RR

manipulator with the help of iterative thing.

So, only issue is like I make the editor window closed. So, this window is like I closed it just
for my benefit, so that the display would be very much visible for you. But whenever you
run, so you can go to editor and you can like run and run and advance, but | am going to use

the shortcut called F5. So, now this is like the standard.

(Refer Slide Time: 03:34)

KRR plaracm | KRR nomalm ¥ Pnar 2R ICNRm ¢ | o

%% Geometric or physical paramters

length of link 1

4

5

6

i %% actual values
8 thla = 0; % Joint angle 1
9

th2a = pi/2; % Joint angle 2
10
11 %% Forward kinematics
12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position
il

16 %% Initial guess
: q = [pi/3;pi/3] :

1T PALAKKAD

SANTHAKUMAR MOHAN

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, now we are like seen in the lecture. So, where L 1 and L 2 are actually like 1 unit each.

So, the same thing we are actually like taking it.

(Refer Slide Time: 03:41)

o i

+

7 %% actual values

: X

9 th2a = pi/2; % Joint angle 2

10

11,11 %% Forward kinematics

12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position

i)

16 %% Initial guess

il q = [pi/3;pi/3] :

18

}? %% Newton's method starts here
for i = 1:100

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So again, | am seeing one given point, so in the sense this in actual we do not know, but for
finding the mu value, 1 am like assuming that this is the actual angle, in the sense so | am like
making theta 1 is 0 and theta 2 is 90 what will be the mu. That is, I am assuming as a given
mu value. So, in the sense, this is not really there for us. So, for us, this is attainable in the
sense so instead of this relation, the mu a would be straightaway given. So, in this case it is 1,
1.

(Refer Slide Time: 04:14)

So, then what we are trying to do as per the algorithm, we have to start with a guess. So, I am
taking a guess as, so pi by 3 each. So, after that | am putting the iterative count as it can go up
to 100 counts, but it may not required, but I am saying that the maximum count can go to

100.

So, for your benefit, | am restricting to 10. It is nothing going to change. So, then what | am

saying that whatever |1 am like taking an initial guess that would be equal to theta 1 of, you

o Cditor - CAUses

FXRR planatm

SANTHAKUMAR MOHAN, 11T

MECHANICS

0 X
IR -

FKRRR nomalm Planar 2R IK NRm* +

%% Forward kinematics
mu_a = [al*cos(thla)+a2*cos(thlatth2a);
al*sin(thla)+a2*sin(thla+th2a);];

Task-space position

%% Initial guess
q = [pi/3:pi/3] :

%% Newton's method starts here
fiore] s=i i) N
thl = q(1); % Joint angle 1
th2 = q(2); % Joint angle 2
%% Jacobian matrix (partial deriva

PALAKKAD

AND CONTROL OF ROBOTIC MANIPULATORS

can say the first value would be theta 1, second value would be theta 2.

(Refer Slide Time: 04:48)

FICRR plaratm

22
23
24
25
26
21!
28
29
30
sl
32
33

SANTHAKUMAR MOHAN, TIT PALAKKAD

Desktop\Lecture_Handouts\lsnar 2R IK NR.m*

[udatw. UeR

FKRRR nomalm X Punar 2R IKNRm® ¢ | 4

th2 = q(2); % Joint angle 2
%% Jacobian matrix (partial derivaties)
J = [-a2*sin(thl+th2)-al*sin(thl),-a2*sin(thl+th2);

a2*cos (thl+th2)+al*cos (thl),, a2*cos(thl+th2);];
%% Estimated task-space position
mu_e = [al*cos(thl)+a2*cos(thl+th2);
al*sin(thl)+a2*sin(thl+th2);];
%% Error (task-space error)

delta = mu_a-mu_e;

%% Tolerance check
if abs(delta)<le-5
break;
end

AND CONTROL OF ROBOTIC MANIPULATORS

So, then | am like derived already a partial derivative as what you call a Jacobian matrix. So,
this Jacobian matrix | have derived. So, after that | know the forward kinematic relation, so

which will give the mu estimated. So, the mu underscored e is actually mu estimated.

(Refer Slide Time: 05:09)

o teltor - CAsersh.

RR planatm FKRRR pomalm Planar 2R I NRm* s

It %% actual values

8 thla = 0; % Joint angle 1

9 th2a = pi/2; % Joint angle 2

10

il %% Forward kinematics

12 mu & = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position

15

16 %% Initial guess
17 q = [pi/3:pi/3] ;
18

%% Newton's method starts here
for 1 = 1:10
IIT

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

SANTHAKUMAR MOHAN PALAKKAD

So, the mu actual, mu underscored a. So now the mu underscored a minus mu underscored e

is your delta mu.

(Refer Slide Time: 05:16)

2 tditor - CAUsers\user\onecive\ DesktopL ecture Handouts\

KRR planatm FKRRR pormalm Planar 2R K NRm* +

28 al*sin(thl)+a2*sin(thl+th2);];
29 %% Error (task-space error)

30 delta = mu_a-mu_e;

sl

32 %% Tolerance check

33 if abs(delta)<le-5

34 break; !

35 end

36 %% Revised joint-space postion (joint angle
37 q=q+ inv(J) * (delta);

38

39 %% Plotting the values
plot ([0 al*cos(thl) mu_e(1)], [0 al*sj
hold on

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, that is what | have written as delta. So, the delta is actual minus estimated. So, now | am
putting a tolerance check which is 10 power minus 5. So, the absolute value is less than or

you can see, are equal to 10 power 5. So, 10 power minus 5. So, then you break the

algorithm. So, break the code in the sense stop and give the final result, otherwise you still

keep on going.

(Refer Slide Time: 05:44)

1] %% Forward kinematics

12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position

15

16 %% Initial guess
17 q = [pi/3ipi/3] ;

19 %% Newton's méthod starts here
20 for i = 1:10

21 thl = q(1); % Joint angle 1
§§ th2 = q(2); % Joint angle 2
; %% Jacobian matrix (partial deriva

AR MOHAN, IIT PALAKKAD

AND CONTROL OF ROBOTIC MANIPULATORS

22 th2 = q(2); % Joint angle 2

23 %% Jacobian matrix (partial derivaties)
24 J = [-a2*sin(thl+th2)-al*sin(thl),-a2*sin(thl+th2);
25 a2*cos (thl+th2)+al*cos(thl), a2*cos(thl+th2);];

26 %% Estimated task-space position
27 mu_e = [al*cos(thl)+a2*cos(thl+th2);

28 al*sin(thl)+a2*sin(thl+th2);];
29 %% Error (task-space error)

30 delka = mu_a-mu_e;

31

32 %% Tolerance check

33 if abs (deltd)<le-5

break;

end
1T

ND CONTROL OF ROBOTIC MANIPULATORS

SANTHAKUMAR MOHAN PALAKKAD

Again, we have restricted the total iterative count as 10, in the sense, if this is not matching,
this will run up to 10 and say this is the final result, it is not matching. If this is the case, it

will give the final match.

(Refer Slide Time: 05:56)

(2 bt - CAsen dop\Lactre_Hondouts\Penar 20 IK MR ' 0
FCRR plaracm % | FCRRR normalm X Plnae 28 IKNRm® ¢ |

28 al*sin(thl)+a2*sin(thl+th2);]; fl

29 %% Error (task-space error)

30 delta = mu_a-mu_e;

31

32 %% Tolerance check

83 if abs(delta)<le-5

34 break;

35 end

36 %% Revised joint-space postion (joint angl

37 q=4q+ inv(J) * (celta);

38

39 %% Plotting the values
40 plot ([0 al*cos(thl) mu e(1)], [0 al*sj
hold on

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So now what we are doing it? So, the q i plus 1 is actually g of i plus inverse of J multiplied
with the delta.

(Refer Slide Time: 06:10)

Aalsas | [l=lal [o0 B LI L & &
Stos En

sl Wodkgroonds od s Pages Previous et Web Documents Desktcp Openbourd o

Numerical solution based on an iterative method

}M - [z;]ulm (18)

By
()

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, you can recheck this is the code. So, you have written it. So, this is the same thing. So,
instead of i plus 1 and i, | have denoted as q itself, so maybe it may be a little confusing for
you, but I do not want to keep the count as iterative. In the sense, x would be giving a

multiple you can say array, so that | do not want. So, g keeps on getting changed.

(Refer Slide Time: 06:34)

(2 Editor - CAUsers\user\onedrive\ DesktopLecture_Handouts\P

FKRR planacm | FKRRR pormalm % Planar 2R ICNRm | 4

34 break;

35 end

36 %% Revised joint-space postion (joint angles) vector
37 q=q+ inv(J) * (delta);

38

39 %% Plotting the values

40 plot([ﬂ‘al*cos(thl) mu_e(1)], [0 al*sin(thl) mu_e(2)],'b-o0'
41 hold on

42 plot (mu_a(l),mu_a(2),'r*', 'markersize',10)
43 plot (0,0, 'ks', 'markersize',10)

44 axis([-(al+a2) (al+a2) -(al+a2) (alta2)])
45 grid on
pause (1)
end

SANTHAKUMAR MOHAN, IIT

PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, once this is known | want to plot, so for that | am just drawing a 2R serial manipulator, so
which is | take origin, then the first joint position in the sense that is the origin second joint
position and the end-effector. This is x 0, x 1 and X 2, in your case, it is supposed to be x 0
and x 1 as same, x 2 and x 3. So, then I am showing this is the given value and this is origin,

how my count keeps changing that it would be showing it.

(Refer Slide Time: 07:11)

 tdnor - Clsers Harclouts\Plars 2 I N
FCRR gl | AR o % P 20K Mm% |
10 : i
Ll %% Forward kinematics
12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position
15

16 %% Initial guess
17 q = [pi/3ipi/3] :

18

19 %% Newton's method starts here
20 for i = 1:10

21 thl = q(1); Joint angle 1

th2 = q(2); % Joint angle 2
%% Jacobian matrix (partial deriva

CTEEIERE] -

100 {50 s vor o 100k Deskop w1

1 B P

12 : HEOEEE T th1atth2a) ;
13 s K | (thla+th2a);];
14 S ‘

1185 4

16 ¢

17 o

18 s

19 W | pre

20 ST

21 CIrr—=—q ;s vorncrangle 1

22 th2 = q(2); % Joint angle 2
? %% Jacobian matrix (partial deriva
T

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

SANTHAKUMAR MOHAN PALAKKAD

So, what we have taken? We have taken a random guess, which is pi by 3 each. So, now if |
run through this, so I will see that output you can see that, so this is the initial guess. It is keep
going, this is the final outcome you can see it, it is coming. So, it gone something, and it

reach.

(Refer Slide Time: 07:29)

So= end

36 %% Revised joi&t—space postion (joint angles) vector
37- q=q+ inv(J) * (delta);

38

39 %% Plotting the values
40— plot ([0 al*cos(thl) mu e(1)], [0 al*sin(thl) mu e(2)], 'b-o0'

41— hold on

42— plot(mu a(l),mu a(2),'r*', 'markersize',10)
43— plot(0,0,'ks', 'markersize',10)

44— axis([-(alta2) (al+a2) -(alt+a2) (alta2)])
45— grid on

pause (3)

flo [t Yiew Inset Tools Deskiop Window Help

351nausan@ G

36 —__4)E0Q stion (joint angles) vector
S ta);

38 ’

391

407 1)],[0 al*sin(thl) mu e(2)], 'b-o0'
411 s

421 ; 'markersize',10)
431 .l ',10)

441 L ‘ alt+a2) (alta2)])
gs¢ " '
46 pause (3)
43 end

8
SANTHAKUMAR MOHAN

IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, | will keep the time little higher, so that I can show it. So, now I put three seconds for a
delay, you can see. So, this is the first one, this is the second iteration. This is the third
iteration and fourth iteration; it is closer, and fifth iteration is almost reached the relative
tolerance which you have given. So, now this is 1, 1 and you have made it. So now if | take

the non, you can say, for example, different initial guess.

(Refer Slide Time: 08:06)

Qv BB | | e e (RE
U= mu a = [al*cos(thléf+a2*cos(thla+th2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position

15

16 %% Initial guess

17- q = [pi/3;-pi/3] ;

18

19 %% Newton's method starts here
20= [Hfor i = 1:10

2l thl = q(1); % Join
22— th2 = q(2); % Joint angle 2

%% Jacobian matrix (partial derivati

angle 1

a
T hgun il CERRTEERL -

o AR planacm 3] PRRRR nomalm KT Paowr 2RIKN fiy (g yiew fnsent Tools Desktop Window Help
N&We /@08 LG

il %% Forward k!

12 mu_a = [al*c|

13 al*s

14 Task-space '
15 05}

16 %% Initial g
17- q = [pi/3i-p
18

19 %% Newton's |
20— [Ifor i =1:10 "2 a5 4 o5 o o0 1 15 2
21 thl = q(I)7 % Joint angle 1

22 th2
?% %% Jacobian matrix (partial derivati

— *cin h h -al*cin h

SANTHAKUMAR MOHAN, IIT PALAKKAD

q(2); % Joint angle 2

MANIPULATORS

MECHANICS AND CONTROL OF ROBOTIC

| am taking pi by 3 minus pi by 3. So, we expect the final solution to be converge but which
solution, we do not know. You can see now, it started minus pi by 3 in the second joint. This

is the second iteration and third iteration itself; it is converged.

(Refer Slide Time: 08:23)

= Tnsent 5 fx Fil v 5 J
v . o | B Blresam &P
o v Hwow omoot %88 i | | R [g P
- v v Advance T

WUFnd v indent 3] o (9

I7= mu a = |al*cos(thla) +aZ*cos (thlatthZal;

13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position
115

16 %% Initial guess
17- q = [pi/3;-0%pi/3] ;

19 %% Newton's method starts here
205 [Hfor i =1:10

21— thl =:q (1) Joint angle 1
22 th2 = q(2); % Joint angle 2
25 %% Jacobian matrix (partial derivatj

=_[_a2%cip(th ho)_al*cin(th

- .

12— mu_a = [al*c|
13 al*s
14 Tas F’.':j}» i1Ce: '
15 05+

16 %% Initial g
17- q = [pi/3;-0

18

19 %% Newton's |

20— [for i =1:10 2 a5 « @5 o o 1 1

20= thl = q(I)7 % Joint angle 1

205 th2 = q(2); Joint angle 2

2% %% Jacobian matrix (partial derivati
71— = [-a2%cin(th h2)-al*cin(th
SANTHAKUMAR M(, IIT PALAKKAD

ND CONTROL OF ROBOTIC MANIPULATORS

MECHANICS A

n Planar 2R IK NR (

fe>>

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So now for example, | am taking a different initial guess in the sense | am taking this is 0, the
theta 2 is 0. Can | get convergence? | can see, so it is something like that. If I start with 0, so
you can see your Jacobian matrix is going to be non-invertible form, but still, it somehow
managed and it is coming. You can see | keep getting it. So, the third iteration has come, and
fourth iteration is not reached, we can see is there any reason? Yes, we have a reason. So, the

matrix is much closer, because we started with what you call the non, this singular point.

(Refer Slide Time: 09:13)

Iiphes
13
14
15
16
7=
18
19
20—
2=

v @i WFnd ¥ indent 3] of o

QfindFis @ Insert 1) fe g v !
Ll

Compure ¥ S{GoTow Comment % B 1y g

mu_a = [al*cos(thla)+aZz*cos (thlatthzZal;
al*sin(thla)+a2*sin(thla+th2a);];

Task-space position

%% Initial gquess
q = [pi/3:0.2]

%% Newton's method starts here

for i = 1:10
thl = q(1); Joint angle 1
th2 = q(Z); Joint angile 2

%% Jacobian matrix (partial derivati

=_[_a92%cip(t+h ho)_al*cin(th

%% Forward ki~ °

12 mu_a = [al*c|

13 alrs| "

14 Task-space ‘

15

16 %% Initial g

17- q= [pi/3;0f ©

18 ‘

19 %% Newton's |

20 for i = 1:10] % 45 4 as o o8 1 18 2

21 thl = q(I)77% Joint angle 1

22 th2 = q(2); % Joint angle 2

2% %% Jacobian matrix (partial derivati
il - —a2%cin h h —-al*cin h
SANTHAKUMAR MOHAN, IIT PALAKKAD

So, now in order to make it that much more, I am assuming that this is something like 0.2. So,
I am just running it. So, you can see there is a first, the second you can see it is going the

exact opposite solution, so you can see that it is ending with something like somewhere,

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

where the result is like inflection kind of thing.

Your initial starting points are the guess is closer to the inflection point. So, that is why you
can see even the 10 iteration is not sufficient. So, you can see this keep going. So, probably it

may end if | increase the iteration count, but you can see, it is one iteration to another

iteration it keeps going.

(Refer Slide Time: 10:01)

-8 X
[CUSC50RE

Planar 2R K NRm* ¢ | 4

11 %% Forward kinematics

12— mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position

15

16 %% Initial guess
17- q = [pi/3;0.2] ;

19 %% Newton's method starts here
20- for i =1:20 !

2l thl
22— th2
%% Jacobian matrix (partial derivatj

qdyi Joint angle 1

q(2); % Joint angle 2

E-VAS h ho)_a1*sin(th

-5
[Wi TTSEC0eE

35= end

36 %% Revised joint-space postion (joint angles) vector
S qg=qt iny(J) * (delta);
38

39 %% Plotting the values

40— plot ([0 al*cos(thl) mu e(1)], [0 al*sin(thl) mu e(2)], 'b-o0'
41— hold on

42— plot(mu_a(l),mu a(2),'r*', 'markersize',10
43— plot(0,0,'ks', 'markersize',10)

44— axis([-(alta2) (alta2) -(alt+a2) (alta2)])
45— grid on
pause (2)

CHEEREEEOL -

FCRR planatm | FKCRRR nomalm ¥ Plnae 2R IKN 4 (s

w nsent Tools Desktop Window Help

Ddde Q DE(NE

85= end Ty

36 $% Revised j(| | p | les) vector
37 q=q+, " '

38 '

39 %% Plotting

40— plot([0 al*ci | 1) mue(2)], b0
41— hold on = ‘

42— plot(mu a(l)| |)

43— plot(0,0,'ks| | ;

44— axis([-(al+al 2 45 4 45 o o8 1 15 2

45— grid on

46 pause (2)

{5' end

Noy
MOHAN

IIT PALAKKAD

S AND CONTROL OF ROBOTIC MANIPULATORS

So, even | will increase this, and | will make this delay probably 2 seconds. I am just running
this. So, you can see this is the starting point, this is the next iteration, this is the next
iteration, and you can see this is the next and you can see that it keeps going again and again.

So, you can see it may converge or not, we can see, because we increased the count.

So, now it may be, but the initial guess is around the inflection point, it may take time. You
can see it is converged, but it takes more iterations. But earlier case, you start the initial guess
very closer, you got it immediately with 3 or 4 count, but in this case, it is taking a longer
time, so it is taken longer duration to do this. | hope now you understand what this Newton-

Raphson method is doing it and you can change, even this target.

(Refer Slide Time: 11:09)

FEEREEEOL] ¢

8— thla = 0; % Joint angle 1

9— th2a = pi/4; % Joint angle 2

10

11 %% Forward kinematics

12— mu a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position

15

16 %% Initial guess

il q = [pi/3:0.2] 3

18

19 %% Newton's method starts here

2%* for i =1:20

hl = 0
IIT PALAKKAD

SANTHAKUMAR MOHAN.

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

8— thla = 0;

9— th2a = pi/4;

10

11 %% Forward k

12- mu_a = [al*c|

13 al*s :
14 Task-space ¢

15 ‘

16 %% Initial ¢

7= q=[pi/3;0.f "o w 4w v w W e

18

%% Newton's method starts here
for 1 = 1:20

So, for example, this is we have given this way. So, now | take this as a point. So, now in the
sense, the mu point has changed. So, earlier it was somewhere here and now it has changed to
here. So, probably it may be taking the iterative count is less, because it is closer. So, you
can see it takes very less. So that is what, so where your mu and where you are starting, so
this will increase the fastness, but still, you can see the solution is uptight in this case. So, that

is what we are looking at here.

So, now | hope you understood what is forward kinematics, what is inverse kinematics, how
you can find the forward kinematics using one of the efficient tool called MATLAB, the
same way you can see the Newton-Raphson method also can be you can say embedded in
MATLAB and you can see the solution is very forward, in the sense it is very easy.

| took the example 2R serial manipulator, because visualization is easy, but it is not restricted
to only planner or you can say less number of degrees of freedom, the Newton-Raphson
method, the Newton-Raphson method can be used for any such you can say serial
manipulator. So, in that sense | hope you are a little bit clear, so now even you can see
something like close to inflection point, I will give and see that it keeps going. I will just

show that, so | will reduce the time.

(Refer Slide Time: 12:41)

85= end

36 %% Revised joint-space postion (joint angles) vector
k= q=q+ inv(J) * (delta);

38

39 %% Plotting the values

40— plot ([0 al*cos(thl) mu e(1)], [0 al*sin(thl) mu e(2)],'b-o0'
41— hold on

42— plot(mu_a(l),mu a(2),'r*', 'markersize',10)
43— plot(0,0,'ks', 'markersize',10)

44— axis([-(alta2) (al+a2) -(al+a2) (al+a2)])
45— grid on
pausego.l)

Planar 2R IK NR.m'
- - -

8— thla = 0; % Joint angle 1
9— th2a = pi/4; % Joint angle 2

10

ilif %% Forward kinematics

12— mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2a);];
14 Task-space position

15

I
16 %% Initial guess
17— q = [pi/3;pi/2] ;

19 %% Newton's method starts here
for i = 1:20

B o (TR -

O ORI
8 thla = 0;
9- th2a = pi/4;

10

11 %% Forward k| |
12 mua = [al*c| °
13 al*s i
14 Task-space|
15 ‘

16 %% Initial g
1 q = [pi/2;pi 2 a5 4 08 0 05 1 15 2
18

19 %% Newton's method starts here
29 for i = 1:20

4l q
AN, IIT PALAKKAD

ONTROL OF ROBOTIC MANIPULATORS

So, I will reduce the time to 0.1. So, | choose some kind of non-trivial probably I assume this

is actual like non-trivial, because I do not know, so you can see like it has reached, it is faster.

(Refer Slide Time: 12:59)

Usesshuser\onedkivel Desktopl ecture Handdouts\Planar 28 1K NRtm* - 0

" Planar 2R IKNRm* % | 4

thla = 0; % Joint angle 1
th2a = pi/4; % Joint angle 2

%% Forward kinematics
mu_a = [al*cos(thla)+a2*cos(thlatth2a);
al*sin(thla)+a2*sin(thla+th2a);];

Task-space position

%% Initial guess
q = [pi/2}pi/2] ;

%% Newton's method starts here
for i = 1:20

0;
pi/4;

thla
th2a

1}

%% Forward k| | '
mia = [al*c| '
al*s :

Task-space

%% Initial g
q = [pl/z;—p Z’/ 15 1 n‘.’» 0 05 1 \‘5 2

%% Newton's method starts here
for 1 = 1:20

So now | will see this is also pi by 2. So, now | am giving you can see, it is getting the

solutions.

(Refer Slide Time: 13:12)

QfindF @ nsert & fi () v

y=" thza = pi/4; % JOINt angle 7 '
10

11 %% Forward kinematics

12— mu_a = [al*cos(thla)+a2*cos(thlatth2a);

13 al*sin(thla)+a2*sin(thla+th2a);];

14 Task-space position

15

16 %% Initial guess
17= q = [pi/2;-pi/2] ;

%% Newton's method starts here
for i = 1:20

é_”' i 0.. STCLT ” : -
9- th2a = pi/4; T
10 i
11 %% Forward k| | ;_ .
12- mua = [al*¢) ° T
13 al*s| °
14 Task-space *
15 ‘
15

16 %% Initial g
17— q= [pl/zr_p 2 45 4 05 0 05 1 15 2

19 %% Newton's method starts here
for 1 = 1:20

SANTHAKUMAR M(

) (

MECHANICS ANE

So, now | will see if any inflection point, I can end up. It is much faster, because you have

given the initial guess here and it is you have to move here.

(Refer Slide Time: 13:25)

 Handouts\Planar 20 IK NRm*

FKRR planarm % | FKRRR n{ymalm % Planar 2R IKNRm* ¢ | 4

1 %% Inverse kinematic solution of a planar RR manipulator z
2 close all;

3 clear all; clc

4 %% Geometric or physical paramters

5 al = 1; length of link 1

6 a2 = 1; % length of link 1

1 %% actual values

8 thla = 0; % Joint angle 1

9 th2a = pi/2; % Joint angle 2
10
it %% Forward kinematics
12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thla+th2

v Crrrw A il ke

9 th2a = pi/2; % Joint angle 2

10

11 %% Forward kinematics

12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thlatth2a);];
14 Task-space position

15

16 %% Initial guess
17 q= [-pi/2;-pi/2] ;

%% Newton's method starts here
for 1 = 1:20

Jy. ’ R Rl . IR EEL] -
1 %% actual vaQddead -
8 thla=0; | ¢ Y V' | 0]
9 th2a = pi/2;|
10 Al
11 %% Forward k| o
12 mu_a = [al*ci ¢
13 al*s| s
14 Task-space 1 o—b
15 15 |
16 B Initial ol e e e o
17= q = [-pi/2;-Eemommn
18
%% Newton's method starts here
ié for i = 1:20

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

So, now this | took at this, so | start the point is different, the solution. So, I just start this, so

both are like minus pi by 2. So, in the sense | start from here. It is reached.

(Refer Slide Time: 13:49)

m i FK RRR normalm Planar 2R IK NRm* +
%% actual values
thla = 0; Joint angle 1
th2a = pi/2; % Joint angle 2

10

il %% Forward kinematics

12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thlatth2a);];
14 Task-space position

15

16 %% Initial guess
17 q = [0;-pi/2] ;

%% Newton's method starts here

for i
SANTHAKUMAR AN

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

7 %% actual valuds 308G B
8 thla=0; 8| f———m—

9 th2a = pi/2;|

10 1

11 %% Forward k| o

12 mu_a = [al*c/ ¢

13 al*s|

14 Task-space| P,

15 15

16 %% Initial g 2
17 q = [0;-pi/24—

%% Newton's method starts here
for i = 1:20
T

AND CONTROL OF ROBOTIC MANIPULATORS

SANTHAKUMAR MOHAN PALAKKAD

So, I will start with 0, I am trying to find is there any inflection which happened to this. Yes,
this is the inflection. You can see even the 20 iteration is not sufficient.

(Refer Slide Time: 14:07)

WAd v indent 3] ok o

v Crraw B A L e

9 th2a = pi/2; % Joint angle 2

10

11 %% Forward kinematics

12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thlatth2a);];
14 Task-space position

15

16 %% Initial guess
17 q=[0;-pi/2] ;

19 %% Newton's method starts here
, for 1 =1:50

o X Wi S 200K

Ponat KN it iew ot Jools Deskiop Wedow tl

7 %% actual va|ldde Q08 LE

8 thla =0; | 480
9 th2a = pi/2;|

10 1

11 %% Forward k| o

12 mu_a = [al*c| ¢

13 al*s| s

14 Task-space 1

15 5

16 %% Initial g =2
17 q = [0;-pi/2y—

%% Newton's method starts here
for i = 1:50

Where we have started the initial guess exactly opposite solution of this, so in the sense even
if I increase to 50, I do not think it will come, we will see. You can see like it is converged to
something that, so it will keep getting one another solution opposite because this is the given

point, but you have taken exactly opposite solution of that.

So, it is never end. This is another solution which will come under as an inflection because of
that you can see it is keep coming and it is ending with the same thing. So, this is the way we
can see the Newton-Raphson method is very much beneficial for us and you can see that the

code, what we have written is very straightforward.

(Refer Slide Time: 14:47)

A i 5\PL R NRm - 0

Planar 2R IK NR.m +

19 %% Newton's method starts here

20 for i = 1:50

21 thl = q(1); % Joint angle 1

22 th2 = q(2); Joint anqlg E

23 %% Jacobian matrix (partial derivaties)

24 J = [-a2*sin(thl+th2)-al*sin(thl),-a2*sin(thl+th2);
25 a2*cos (thl+th2)+al*cos(thl), a2*cos(thl+th?);];

26 %% Estimated task-space position

27 mu_e = [al*cos(thl)+a2*cos(thl+th2);
28 al*sin(thl)+a2*sin(thl+th2);];
29 %% Error (task-space error)
30 delta = mu_a-mu_e;

%% Tolerance check

foHAN, IIT PALAKKAD

TROL OF ROBOTIC MANIPULATORS

So, if you want to use any other manipulator, this Jacobian will get changed and this mu

vector will get changed and this would be changed. The remaining everything is same.

(Refer Slide Time: 15:03)

2 edaor - Cus dhive\Deskiop\Lecture Hardouts\Plansr 2R IK NRm* - 0

e T

1 %% actual values

8 thla = 0; % Joint angle 1

9 th2a = pi/2; % Joint angle 2

10

11 %% Forward kinematics

12 mu_a = [al*cos(thla)+a2*cos(thlatth2a);
13 al*sin(thla)+a2*sin(thlatth2a);];
14 mu_a = [0.5;0.2];

15 Task-space position

16

157 %% Initial guess
18 q= [0;-pi/2] ;

%% Newton's method starts here

KRR plaratm % | FKRRRpomalm X Ponae 2R IKN e (61 yiew

%% actual va[ldueQB[L

7

8 thla = 0;

9 th2a = pi/2;|

10 '

11 %% Forward k

12 mu_a = [al*c

13 al*s

14 mu a = | !

il lask-spacel s

16 G e e T e e

17 %% Initial Queowe
18 q= [0;-pi/2] ;

%% Newton's method starts here

SANTHAKUMAR MOHAN, IIT PALAKKAD

MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

In fact, this mu actual would be given to you as a direct value. So, for example, so | do not
want to put this, so | am just putting it, so the mu actual is something like 0.5 and 0.2. I am

just giving this is the value.

So, now | can see so | have given this value. You can see it has reached. This is the value.
Earlier I said 1, 1, so now | have given just value. So, now this theta actual is not at all
playing. This theta actual is just for our reference. This is the value we have taken as a
forward solution this is giving and | am cross checking the inverse kinematic solution, that is

all.

Now you can find the way which is beneficial to us and with that | am closing this particular
lecture. So, now the next lecture would be on differential kinematics, and | hope you have
come across the basic description to forward kinematics and inverse kinematics and you have
seen real robot some out close to this. So, next case we will differential kinematics. There we
will see even real manipulator configuration and see how to arrange the frame and other

things. So, with that | am closing this particular lecture. See you then. Bye, take care.

