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Hi. Welcome back to Mechanics and Control of Robotic Manipulator. In the last lecture we 

have seen how the MATLAB can be used as an efficient tool for finding forward kinematics 

solution with the help of the arm matrix which we obtained through the general Denavit-

Hartenberg representation. 

The same lecture I was like given a small idea. So, with the help of solve command how to 

find the inverse kinematics solution, if you have forward kinematics solutions are available. 

In the sense if you mu vector, so how we can actually like, find the inverse kinematic solution 

using solve. But the solve is not the right option all the time.  

So, we use actually like a numerical method, which is faster. So, that would be beneficial 

when you do for online programming and other things. For example, you have a robot in real 

time. So, obviously the numerical method would be little more beneficial than the closed 

form solution, you can say computational perspective.  

So, in that sense this particular lecture is going to talk about how to use Newton-Raphson 

method for finding inverse kinematics solution of a serial manipulator. So, here again the 

same example which we have taken in the original lecture. The same example 2R planner 

serial manipulator we have taken. 
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And we are like trying to derive the code with the help of the algorithm which we have come 

across. So, only change what we made is instead of this delta i we are going to take the 

relative tolerance or arbitrary tolerance, we are going to take instead of delta i, we are going 

to take delta mu.  

That is the only thing because delta i would not be available to us. So, we would be seeing 

that what other error we can restrict. We can restrict the delta mu, that is the only restriction 

we are making it other than this, you can say algorithm which we have written. In addition to 

that, what we supposed to know, we should have the J of q i and q initial guess and mu. Mu is 

like function of q. These all need to be known.  

(Refer Slide Time: 02:15) 

 

So, in that sense, what we can see if we write the MATLAB code for this 2R serial 

manipulator, if the x and y are known, can we find theta 1 and theta 2? 
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So, for that, you know this equation so where x and y would be given as in the form of 

function of q, here theta 1 and theta 2. So, if this equation is known, then we can find the 

Jacobian matrix in the order of, or you can say in the way of partial derivative which I have 

written in the board.  
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So now, if we see that these partial derivatives are available, can we like cross check the 

closed form solution whatever is giving the result?  
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The same result can be obtained with the iterative method.  
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So, for that we have taken the code which we have already written. So, you can see that the 

initial command all are same. So, this is the inverse kinematics solution of a planner RR 

manipulator with the help of iterative thing. 

So, only issue is like I make the editor window closed. So, this window is like I closed it just 

for my benefit, so that the display would be very much visible for you. But whenever you 

run, so you can go to editor and you can like run and run and advance, but I am going to use 

the shortcut called F5. So, now this is like the standard.  
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So, now we are like seen in the lecture. So, where L 1 and L 2 are actually like 1 unit each. 

So, the same thing we are actually like taking it.  
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So again, I am seeing one given point, so in the sense this in actual we do not know, but for 

finding the mu value, I am like assuming that this is the actual angle, in the sense so I am like 

making theta 1 is 0 and theta 2 is 90 what will be the mu. That is, I am assuming as a given 

mu value. So, in the sense, this is not really there for us. So, for us, this is attainable in the 

sense so instead of this relation, the mu a would be straightaway given. So, in this case it is 1, 

1.  
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So, then what we are trying to do as per the algorithm, we have to start with a guess. So, I am 

taking a guess as, so pi by 3 each. So, after that I am putting the iterative count as it can go up 

to 100 counts, but it may not required, but I am saying that the maximum count can go to 

100.  

So, for your benefit, I am restricting to 10. It is nothing going to change. So, then what I am 

saying that whatever I am like taking an initial guess that would be equal to theta 1 of, you 

can say the first value would be theta 1, second value would be theta 2.  
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So, then I am like derived already a partial derivative as what you call a Jacobian matrix. So, 

this Jacobian matrix I have derived. So, after that I know the forward kinematic relation, so 

which will give the mu estimated. So, the mu underscored e is actually mu estimated. 
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So, the mu actual, mu underscored a. So now the mu underscored a minus mu underscored e 

is your delta mu.  
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So, that is what I have written as delta. So, the delta is actual minus estimated. So, now I am 

putting a tolerance check which is 10 power minus 5. So, the absolute value is less than or 

you can see, are equal to 10 power 5. So, 10 power minus 5. So, then you break the 



algorithm. So, break the code in the sense stop and give the final result, otherwise you still 

keep on going.  
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Again, we have restricted the total iterative count as 10, in the sense, if this is not matching, 

this will run up to 10 and say this is the final result, it is not matching. If this is the case, it 

will give the final match. 
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So now what we are doing it? So, the q i plus 1 is actually q of i plus inverse of J multiplied 

with the delta.  
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So, you can recheck this is the code. So, you have written it. So, this is the same thing. So, 

instead of i plus 1 and i, I have denoted as q itself, so maybe it may be a little confusing for 

you, but I do not want to keep the count as iterative. In the sense, x would be giving a 

multiple you can say array, so that I do not want. So, q keeps on getting changed.  
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So, once this is known I want to plot, so for that I am just drawing a 2R serial manipulator, so 

which is I take origin, then the first joint position in the sense that is the origin second joint 

position and the end-effector. This is x 0, x 1 and x 2, in your case, it is supposed to be x 0 

and x 1 as same, x 2 and x 3.  So, then I am showing this is the given value and this is origin, 

how my count keeps changing that it would be showing it.  
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So, what we have taken? We have taken a random guess, which is pi by 3 each. So, now if I 

run through this, so I will see that output you can see that, so this is the initial guess. It is keep 

going, this is the final outcome you can see it, it is coming. So, it gone something, and it 

reach.  
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So, I will keep the time little higher, so that I can show it. So, now I put three seconds for a 

delay, you can see. So, this is the first one, this is the second iteration. This is the third 

iteration and fourth iteration; it is closer, and fifth iteration is almost reached the relative 

tolerance which you have given. So, now this is 1, 1 and you have made it. So now if I take 

the non, you can say, for example, different initial guess. 

(Refer Slide Time: 08:06) 

 



 

I am taking pi by 3 minus pi by 3. So, we expect the final solution to be converge but which 

solution, we do not know. You can see now, it started minus pi by 3 in the second joint. This 

is the second iteration and third iteration itself; it is converged.  
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So now for example, I am taking a different initial guess in the sense I am taking this is 0, the 

theta 2 is 0. Can I get convergence? I can see, so it is something like that. If I start with 0, so 

you can see your Jacobian matrix is going to be non-invertible form, but still, it somehow 

managed and it is coming. You can see I keep getting it. So, the third iteration has come, and 

fourth iteration is not reached, we can see is there any reason? Yes, we have a reason. So, the 

matrix is much closer, because we started with what you call the non, this singular point.  
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So, now in order to make it that much more, I am assuming that this is something like 0.2. So, 

I am just running it. So, you can see there is a first, the second you can see it is going the 

exact opposite solution, so you can see that it is ending with something like somewhere, 

where the result is like inflection kind of thing.  

Your initial starting points are the guess is closer to the inflection point. So, that is why you 

can see even the 10 iteration is not sufficient. So, you can see this keep going. So, probably it 

may end if I increase the iteration count, but you can see, it is one iteration to another 

iteration it keeps going.  



(Refer Slide Time: 10:01) 

 

 

 



So, even I will increase this, and I will make this delay probably 2 seconds. I am just running 

this. So, you can see this is the starting point, this is the next iteration, this is the next 

iteration, and you can see this is the next and you can see that it keeps going again and again. 

So, you can see it may converge or not, we can see, because we increased the count.  

So, now it may be, but the initial guess is around the inflection point, it may take time. You 

can see it is converged, but it takes more iterations. But earlier case, you start the initial guess 

very closer, you got it immediately with 3 or 4 count, but in this case, it is taking a longer 

time, so it is taken longer duration to do this. I hope now you understand what this Newton-

Raphson method is doing it and you can change, even this target.  
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So, for example, this is we have given this way. So, now I take this as a point. So, now in the 

sense, the mu point has changed. So, earlier it was somewhere here and now it has changed to 

here.  So, probably it may be taking the iterative count is less, because it is closer. So, you 

can see it takes very less. So that is what, so where your mu and where you are starting, so 

this will increase the fastness, but still, you can see the solution is uptight in this case. So, that 

is what we are looking at here. 

So, now I hope you understood what is forward kinematics, what is inverse kinematics, how 

you can find the forward kinematics using one of the efficient tool called MATLAB, the 

same way you can see the Newton-Raphson method also can be you can say embedded in 

MATLAB and you can see the solution is very forward, in the sense it is very easy.  

I took the example 2R serial manipulator, because visualization is easy, but it is not restricted 

to only planner or you can say less number of degrees of freedom, the Newton-Raphson 

method, the Newton-Raphson method can be used for any such you can say serial 

manipulator. So, in that sense I hope you are a little bit clear, so now even you can see 

something like close to inflection point, I will give and see that it keeps going. I will just 

show that, so I will reduce the time. 
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So, I will reduce the time to 0.1. So, I choose some kind of non-trivial probably I assume this 

is actual like non-trivial, because I do not know, so you can see like it has reached, it is faster.  
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So now I will see this is also pi by 2. So, now I am giving you can see, it is getting the 

solutions.  
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So, now I will see if any inflection point, I can end up. It is much faster, because you have 

given the initial guess here and it is you have to move here.  
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So, now this I took at this, so I start the point is different, the solution. So, I just start this, so 

both are like minus pi by 2. So, in the sense I start from here. It is reached.  
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So, I will start with 0, I am trying to find is there any inflection which happened to this. Yes, 

this is the inflection. You can see even the 20 iteration is not sufficient.  
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Where we have started the initial guess exactly opposite solution of this, so in the sense even 

if I increase to 50, I do not think it will come, we will see. You can see like it is converged to 

something that, so it will keep getting one another solution opposite because this is the given 

point, but you have taken exactly opposite solution of that.  

So, it is never end. This is another solution which will come under as an inflection because of 

that you can see it is keep coming and it is ending with the same thing. So, this is the way we 

can see the Newton-Raphson method is very much beneficial for us and you can see that the 

code, what we have written is very straightforward.  
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So, if you want to use any other manipulator, this Jacobian will get changed and this mu 

vector will get changed and this would be changed. The remaining everything is same. 
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In fact, this mu actual would be given to you as a direct value. So, for example, so I do not 

want to put this, so I am just putting it, so the mu actual is something like 0.5 and 0.2. I am 

just giving this is the value.  

So, now I can see so I have given this value. You can see it has reached. This is the value. 

Earlier I said 1, 1, so now I have given just value. So, now this theta actual is not at all 

playing. This theta actual is just for our reference. This is the value we have taken as a 

forward solution this is giving and I am cross checking the inverse kinematic solution, that is 

all.  

Now you can find the way which is beneficial to us and with that I am closing this particular 

lecture. So, now the next lecture would be on differential kinematics, and I hope you have 

come across the basic description to forward kinematics and inverse kinematics and you have 

seen real robot some out close to this. So, next case we will differential kinematics. There we 

will see even real manipulator configuration and see how to arrange the frame and other 

things. So, with that I am closing this particular lecture. See you then. Bye, take care. 


