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So, here boundary conditions for this. So, the boundary condition for the first order equation 

in YO are at the flame, from the outer region from the flame to infinity. So, at r = rf, Y = YO = 

0; at as r → ∞, YO is the YO,∞ which is now taken as 1.  

Now, again the property 1/4πρD, which is already defined as ZF, I am keeping that same here 

because the ρD is constant here. So, ρD for fuel or ρD, for the oxidizer are the same. So, it is 

only ZF. So, that is already defined. So, that variable is used here.  

So, same type of solution I get, some small change here. You can see this. Now, apply the 

boundary condition YO = 0 at r = rf. So, when I substitute here r = rf, I will get YO = 0, constant 

can be evaluated. 

𝑌𝑂(𝑟) = −𝑠 + 𝐶1 exp (−
𝑍𝐹�̇�𝐹

𝑟
) 
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Now, other quantities are known to me. So, the constant is evaluated and put back here I get 

the profile for oxidizer. So, that is YO at any r equal to s times exp(-ZF�̇�𝐹/r)/exp(-ZF�̇�𝐹/rf) -  

1.  

𝑌𝑂(𝑟) = 𝑠(
exp (−

𝑍𝐹�̇�𝐹

𝑟 )

exp (−
𝑍𝐹�̇�𝐹

𝑟𝑓
)
− 1) 

So, this is the profile. Now, you can verify this. So, when you put YO = 0 you will get that is 

rf. Then actually if you put rf here this and this will cancel and become 1 and 1 - 1 = 0. So, YO 

will become 0. 

Now, one boundary condition is used here. Then I will use one more boundary condition, which 

is nothing but as r → ∞, YO → 1. If I use that condition when I put r∞ here, so, this will be 1/∞ 

= 0. So, this is 1/exp(-ZF�̇�𝐹/rf) - 1 that will be equal to here, it will be 1. 

(Refer Slide Time: 02:18) 

 

So, when I use this, I get another equation which I called F. So, this is another equation which 

will involve flame radius. Now, please understand that it has two unknowns here; flame radius 

as well as this �̇�𝐹. So, I get this. So, maybe I can say that I will write flame radius in terms of 

�̇�𝐹. So, everything I can write up in terms of �̇�𝐹. So, this is the second equation I have 

generated. 

exp (+
𝑍𝐹�̇�𝐹

𝑟𝑓
) =

(𝑠 + 1)

𝑠
                  (𝐹) 
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The first equation what I have generated is this. YFS in terms of �̇�𝐹. So, that is equation E. 

Now, I am writing rf in terms of �̇�𝐹 or other way whatever you want you can keep. So, there 

are two unknowns here again. So, I have created a second equation. So, two equations are 

created by considering the species conservation in inner and outer regions. Now, I will do the 

energy conservation. 

Again, I have energy conservation to be done in the inner and outer region that will generate 

two more equations. So, two equations are now generated. One is the equation due to the 

species conservation in the inner zone another one is the that is the fuel conservation. Second 

one is the oxidizer conservation in the outer zone then I have got this second equation. Now, 

energy conservation. 

Please understand that there is a thin reacting zone, the inner zone, the outer zone. So, only at 

r = rf, infinitely fast reaction is complete. So, that means, just left side of this; so, this rf. So, I 

will say rf just left side of this, I will say rf- and just right side of this I will say rf+, the thin zone 

just to the right of that I will say rf+ just to the left of that let us say rf-. 

𝑑

𝑑𝑟
(𝑟2

𝑑𝑇

𝑑𝑟
) =

𝑚𝐹̇ 𝑐𝑝𝑔

4𝜋𝜆

𝑑𝑇

𝑑𝑟
 

You will see there will be no reaction because reaction is complete within the thin zone. So, 

this is very important that reaction is occurring infinitely fast; that means, when you just step 

out of the thin zone you will not have any reaction. That means, chemical reactions are assumed 

to be occurring only in the thin flame sheet, which is very fast. So, other than r = rf, when r is 

not equal to rf then reaction rate is taken as 0. 
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Only at the location of r = rf reaction is started and finished; 0 thickness, infinitely fast. So, 

very thin, thickness of the reaction tends to 0 as the reaction rate tends to infinity. So, in both 

outer and inner regions you will see that reaction rate is 0. So, the energy conservation is very 

simple second order equation which is written in this. So, this is a diffusion term and convective 

term. 

You can write the d(r2dT/dr)/dr it will be equal to, actually it will be 4π which come this side 

and λ, here λ also should come inside, but we have taken everything to the other side because 

we have treated cpg, λ, mF etcetera are constant. So, some constant dT/dr. So, diffusion and 

convective terms are there. 

Now, please understand that this equation is second order equation involving temperature. So, 

we can basically go and integrate. So, boundary conditions we have to appropriately use, but 

please understand that there are two regions inner and outer region. So, same governing 

equation can be used to solve both boundary condition for the second order differential 

equation in temperature. 

(Refer Slide Time: 05:45) 

 

Now, there are two regions as I told you. Inner region at r = rs, equilibrium surface temperature 

T = Ts prevails. At r = rf, T is the maximum flame temperature, Tf, and an outer zone starting 

from r = rf you have flame temperature and as r → ∞, T → T∞. So, these are the boundary 

conditions at the both zones, inner and outer zones. 

Now, let us define the properties cp/4πλ as ZT, ZT that is the basically you can see that cp by 

that the properties that 1/4πρD etcetera we have taken as ZF. Here, we have taken the 

coefficients. The properties club together we have taken as a constant, ZT.  
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Now, integrate this 2 times; second order equations you can integrate 2 times and I get 2 

constant, one for each time. Then this is the profile I get, general profile and in this if I apply 

boundary conditions corresponding to any zone I will get equations.  

𝑇(𝑟) = 𝐶1
exp (−

𝑍𝑇�̇�𝐹

𝑟 )

𝑍𝑇�̇�𝐹
+ 𝐶2 

So, let us take inner zone first. There are two constants. To eliminate two constants, I need two 

boundary conditions. So, taking inner zone the boundary conditions what I am going to use are 

at r = rs, T = Ts. So, when I say here I will put r = rs then at T say here r = rs I will say T = Ts. 

Then I will form one equation involving c1 and c2, where the left side is Ts and right-hand side 

r will have to be rs. So, in one equation constant is c1 c2. Second equation will be at r = rf, T = 

Tf and substitute here r = rf, T I will put Tf.  

Now, please understand that Tf is not known, rf is also not known, but I will form again equation 

corresponding to with the c1 and c2, where I will have variables like r1 or rf and Tf or Ts, all the 

three are not known to me yet.  

Now, I get the equation. So, when I solve for c1 and c2, these two boundary conditions in the 

inner region then I get the profile for temperature given here. It is a very big profile So, you 

can see Ts - Tf into exponent of -ZT which is the property constant mF by r plus Tf into exponent 

of minus ZT mF by rs minus Ts into exponent of ZT mF by rf. 

𝑇(𝑟) =

(𝑇𝑠 − 𝑇𝑓) exp (−
𝑍𝑇�̇�𝐹

𝑟
) + 𝑇𝑓 exp (−

𝑍𝑇�̇�𝐹

𝑟𝑠
) − 𝑇𝑠 exp (−

𝑍𝑇�̇�𝐹

𝑟𝑓
)

exp (−
𝑍𝑇�̇�𝐹

𝑟𝑠
) − exp (−

𝑍𝑇�̇�𝐹

𝑟𝑓
)

 

Now, please see that the temperature profile basically in the inner zone consists of Ts and Tf 

because now for the surface the influence of the T ambient is gone, T∞ is gone. So, Tf and Ts, 

that is the driving force here. So, that we have seen here. Now, this is the equation, I get the 

big equation for the inner temperature profile. 

But please understand that the unknowns here again are �̇�𝐹. �̇�𝐹is not known, Ts is not known, 

Tf is not known and rf is not known only rs is known here. So, anyway we will try to use some 

boundary condition some more boundary conditions and use this equation in order to get this.  

Basically, we are going to see the other boundary conditions also. We have to generate five 

equations. This itself have four unknowns. So, these are also profiles. Once unknowns are 

known then the profile can be plotted, that is the idea here. 
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S  

Now, same thing you do for outer zone. The same profile, this equation is valid for the inner 

zone as well as outer zone but the boundary conditions are different. Based upon the boundary 

conditions the constants c1 and c2 are evaluated.  

So, by substituting the inner zone conditions r = rs, T = Ts, r = rf, T = Tf we have evaluated this 

profile. Again, please understand that once all the variables all the five variables what we are 

talking about are known then the profile can be drawn. 

Now, outer zone again you have to use the boundary conditions, outer zone that is at the flame 

outer zone at the flame r = rf, T = Tf, flame temperature as r → ∞, T → T∞. So, these are the 

two boundary conditions to evaluate the two constants. The same profile you take, but now 

substitute r = rf in the right-hand side, put T = Tf here. So, the same first equation what we got 

we get here. 

For the first inner zone, the second equation will be there as the first equation here. Then, when 

r → ∞, here you put r∞. So, this will be 1, 1 by this etcetera then you will get another equation 

in c1 and c2.  

So, solving c1 and c2, I get the profile for the outer zone as T. Now, you can see that the outer 

zone Tf and T∞ are the two temperatures involved. So, Tf - T∞ exp(-ZTmF/r) + T∞exp(-ZTmF/r) 

- Tf. 

𝑇(𝑟) =

(𝑇𝑓 − 𝑇∞) exp (−
𝑍𝑇�̇�𝐹

𝑟 ) + 𝑇∞ exp (−
𝑍𝑇�̇�𝐹

𝑟𝑓
) − 𝑇𝑓

exp (−
𝑍𝑇�̇�𝐹

𝑟𝑓
) − 1

 

So, this is the equation. Now, we can check the boundary condition. See you can go back here. 

You will check the boundary conditions here. So, if you say r = rs, now, this will be Ts, I will 
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put r = rs here. So, here rs and when you put rs here then Tsexp(-ZT mF/rs) plus. So, -Tf, +Tf that 

will cancel. Ts into exponent of this -Ts into exponent of this will come, but Ts we can take 

common outside and the exponent of ZT mF/rs here and –(exp(-ZTmF/rf)). So, this will cancel 

and I will get T = Ts. So, when you go to other conditions where r = rf if you substitute here Tf 

will come, and you are putting rf here. 

Then you can see that Ts this + Ts(exp(-ZTmF/rf) and -Tsexp(-ZTmF/rf) will cancel. Then here 

you can get Tf take commonly out and Tf(exp(ZFmF/rs) and exp(-ZFmF/rf). So, this will cancel 

and we will get T = Tf. So, the profile is matching the boundary condition basically. 

Similarly, here you get the outer zone. Outer zone you have flame r = rf, Tf is the temperature 

here and as we go to infinity you get T∞. Now, you substitute here and see if you put say T as 

r → ∞ basically you can put this will be infinity. So, this will be 1. So, Tf - T∞ + T∞ into; so, Tf 

Tf cancels basically T∞ into exponent of this divided by this. 

So, T∞ into one minus this will come. So, if this minus 1 will come. So, this exponent term will 

cancel exponent term -1 will cancel and get T∞. So, if you substitute r = rf here in this r = rf you 

will get Tf in the left-hand side. You can see whether you will get it. So, the main crux here is 

now we have developed the profiles, but the profile cannot be plotted because I do not know.  

Here also you can see the unknowns are mF, Tf and rf. These are the three unknowns present 

here. Since after evaluating all the unknowns we will be able to plot the profiles, but how do 

you generate the equations? These cannot be used now. So, already we have created two 

equations. One relating the YFS and the mF another relating the rf and mF. 

So, we have created two equations. One equation is rf and mF are related and here I have related 

YFS and mF. Now, three more equations are required. Now, we have generated profiles for inner 

and outer zones for temperature, is there any way to use these profiles to get the two more 

equations? For that I will first do the energy balance of the interface. 

So, interface. What is the energy balance here? I said we have drawn it already. So, that will 

be Q gas to interface; Q gas to interface and that will be taken inside here. So, Q interface to 

liquid and vaporization occurs. So, 𝑚𝐹̇ hf, 𝑚𝐹̇ hg. Now, dividing by the mass, this small ql is 

nothing but Qi-l/𝑚𝐹̇ . 

So, that you can; so, this 𝑚𝐹̇  into this. So, 𝑚𝐹̇  you can say actually here, the fuel is actually 

generated out. So, 𝑚𝐹̇ . So, when I do this Qi-l, 𝑄𝑖−𝑙
̇ /𝑚𝐹̇  that will give you the heat which is 

going into the interface, to the liquid phase. And this is the heat which is required for this, hfg. 

(hg - hf) 𝑚𝐹̇  that will be the heat which is required for phase change. 
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So, that is coming in through the conduction from the gas phase to the interface which is written 

as this. This is the 𝑄𝑖−𝑙
̇ /𝑚𝐹̇ . So, this is the term. Now, this is interface boundary condition, heat 

balance at the interface. See we are taking the boundary conditions, additional boundary 

condition I am trying to create here where derivative of temperature is present. 

And since it is done in interface, I can calculate this dT/dr. dT/dr of the above equation can be 

evaluated using temperature profile for the inner region that is this. So, this equation I will take, 

differentiate it with respect to r. So, I will get dT/dr.  

Once I get this value I can substitute there and I set this dT/dr in the above equation is evaluated 

using temperature profile inner region and r value is set to rs because I want the derivative at 

the surface.  

So, you take this profile, inner profile and differentiate this with respect to r. So, dT/dr then 

there will be r terms that r you set as rs. So, that will give you this equation. Substitute back 

here and try to get the equation that is what we are trying to do.  

(Refer Slide Time: 17:06) 

 

So, this is the equation which is representative of the heat balance at the interface. So, this is 

the equation. You can see the unknowns are 𝑚𝐹̇ , Tf, Ts, rs.  

So, r is known or r is rf here. So, these are the unknowns in this. These are the unknowns in 

this; flame temperature, surface temperature, rf and 𝑚𝐹̇ . So, the third equation we have 

generated. So, already two equations; one for the inner region species conservation, fuel 

conservation, outer region oxidizer conservation by using the balances. 

We are trying to get now here after getting the temperature profiles we are trying to put the 

heat balance at the interface based upon that I get this equation. So, this is third equation I can 
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generate. Now, let us do the heat balance at the flame sheet. Next is the energy balance or heat 

balance at the flame sheet, this is flame. 

Now, how the heat balance occurs here? So, whatever be the chemical energy converted into 

thermal energy. So, this is here. So, whatever be the chemical energy which is released out as 

thermal energy that will partially be transferred. So, this is the flame. So, this is the surface. 

This is rs. So, partially it will go here like that from the flame, this is the Q dot flame to interface. 

−(−𝜆4𝜋𝑟2
𝑑𝑇

𝑑𝑟
)
𝑠
= 𝑚𝐹̇ (𝑞𝑖−𝑙 + ℎ𝑓𝑔)  

So, partially it will go towards interface to heat up there or to supply the heat for the droplet 

and partially it will go away. This is Q flame to ambient, it will be lost away. So, it will go 

away. So, this should balance what? The chemical energy release, which is nothing but, delta 

hc. So, this is  𝑚𝐹̇  into this. So, these can be the enthalpies if you properly write you can 

consider. 

For example, enthalpy to be constituted as the formation enthalpy plus the sensible enthalpy; 

sensible enthalpy is we have constant property. So, T minus some reference temperature we 

take Tf. So, this will be the this. So, this actually know the temperature is Tf also you can write 

because Tf is the flame temperature. 

So, the enthalpy of any species, now, I have taken example of fuel and the enthalpy of fuel will 

be the heat of formation of fuel hf of F plus sensible enthalpy which is cpg(T-Tref), but T is 

actually the flame temperature itself. So, Tf - Tref; so, this will be the enthalpy of this.  

Similarly, you can write for the enthalpy of the other species. See for example, oxidizer, this 

enthalpy of formation will be 0, but only sensible enthalpy may be prevailing, but please 

understand that cpg is constant for all. So, for all these terms sensible enthalpy can be written 

as (Tf -Tref)cpg. 

So, that is what we will have for all the species of the sensible enthalpy. Formation enthalpy 

will be based upon on which is fuel or oxidizer we will have some values. Now, you can see 

the delta hC. Delta hC is the heat of combustion which is nothing but the enthalpy of formation 

of the fuel plus enthalpy of formation of the oxidizer which can be 0 actually into s – (1 + s) × 

enthalpy of formation of products. So, this will be normally 0.  

So, this is the expression for the delta hC. So, using these in this, enthalpy definition etcetera 

and the definition of delta hc we can write this equation basically.  
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But one more assumption what is made here with respect to cpg(Tf - Tref) is if we know that cpg 

is constant. Since cpg is constant basically what happens is a delta hC will not be affected by Tf. 

So, Tf itself can be taken as the different state basically.  

So, Tf if you take Tf as reference state then the sensible part can be neglected, reference 

temperature also this is Tref. Now, Tref is also taken as Tf itself. So, this term sensible enthalpy 

goes away. So, we will only consider this. Now, what happened in this case I can write the left-

hand side as 𝑚𝐹̇  into delta hC that is I can see that 𝑚𝐹̇  × delta hC is nothing but the thermal 

energy generated at the flame zone due to the chemical reaction that is all. 

The mass of the fuel which is coming out from the liquid surface that is fully burnt. So, that 

times delta hC that will give you the thermal energy which is generated. So, that should be 

partially conducted back to the inner zone that is rf- represent the inner zone. 

So, conducted back to the inner zone and can transported to the outer zone. So, this is the 

conduction to the outer zone rf+. So, this is the equation what we get. Now, you please see here 

the Qg-i, gas to the interface if you say the interface, so, this is actually gas, you can also say 

flame, both are same. Either from gas phase with interface, but here this is actually flame. 

Flame to this, we have written here flame to the interface and flame to the infinity. So, from 

the flame sheet, this is the flame sheet, you can see that this conduction when I write this g to 

i here like this, this will be a negative of -4π(rf)
2λ × dT/dr. So, that is going out like this to inner 

zone. So, minus of minus why I am putting because this is direction from Tf, temperature 

decreases towards the Ts. 
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So, this gradient is negative. So, there is a positive heat flow also is in this direction. So, that 

is positive, but this negative sign is put because this flow happens, it is a vector and happens in 

the negative radial direction.  

So, negative radial direction. So, this negative of negative I put. So, this is a positive quantity 

here. Now, if you take this side here you have 4π(rf)
2 that is the area of cross section into 

λ×dT/dr. 

Now, at rf means this is the; so, again you can see that from this point I will put a negative sign 

here and leave it, negative sign and leave it. Why you put negative sign here because we know 

that the temperature gradient is negative, temperature decreases there right. So, the temperature 

upstream minus the temperature downsream and upstream will be actually negative. 

Since this is negative and the heat flows in this direction basically this is the negative terms. 

So, this negative term comes because of this term here because this has become positive; 

negative of negative is positive because of the direction of the heat. So, these are vector forms. 

So, the heat flow, any flow or flux when you have a direction you have to take care of the sign. 

So, the negative of negative comes because of the negative radial direction. Here in this the 

heat flow and the radial direction are the same direction, positive radial direction or the same 

direction. So, this negative sign is to take care of the gradient being negative. So, the chemical 

heat converted into thermal energy will be equal to this. Partially used to heat the interface or 

supply the latent heat partially transported away to the ambient. 

𝑚𝐹̇ 𝛥ℎ𝐶 = (𝜆4𝜋𝑟𝑓
2
𝑑𝑇

𝑑𝑟
)
𝑟𝑓
−
− (𝜆4𝜋𝑟𝑓

2
𝑑𝑇

𝑑𝑟
)
𝑟𝑓
+

 

So, this is very important equation. Now, please understand that I have this equation and now 

gives the energy balance of the flame sheet. Now, I have two derivatives here. Temperature at 

the rf-; that means, I have to get that temperature gradient at rf-, I have take the inner profile and 

here rf+ I have to take the outer profile. 

Now, the dT/dr terms here are evaluated using the temperature profiles in both inner and outer 

regions first. So, for this value of dT/dr at rf- I will take the inner temperature profile. This inner 

temperature profile I will take, calculate the dT/dr and set r = rf and use this here because at rf 

know so, set r = rf and use this here. In the other derivative I will take from the outer zone. 

Here, the outer zone this profile I will take a differentiation of this with respect to the radius 

and set r = rf. So, I will get the values here.  
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So, when I do this I get the fourth equation.  

𝑐𝑝𝑔(𝑇𝑠 − 𝑇𝑓) exp (−
𝑍𝑇�̇�𝐹

𝑟𝑓
)

𝛥ℎ𝐶  [exp (−
𝑍𝑇�̇�𝐹

𝑟𝑠
) − exp (−

𝑍𝑇�̇�𝐹

𝑟𝑓
)]
−

𝑐𝑝𝑔(𝑇∞ − 𝑇𝑓) exp (−
𝑍𝑇�̇�𝐹

𝑟𝑓
)

𝛥ℎ𝐶  [1 − exp (−
𝑍𝑇�̇�𝐹

𝑟𝑓
)]

− 1

= 0                 (𝐻) 

So, first equation was due to the species transport in the inner zone that is fuel transport in the 

inner zone. Second equation was generated using the oxygen transport in the outer zone. 

Third equation is generated using the interface heat balance using the energy conservation. 

Inner temperature profile was used and using that derivative term calculating differentiation of 

that temperature profile with respect to r and setting r = rs, I got the heat balance of the interface 

that was the third equation. Fourth equation is the heat balance at the flame sheet. 

So, there we get two temperature derivatives. One for the inner zone, one for the outer zone 

and use that and get an equation. So, there are now four equations, but five unknowns are there 

still. So, again please see that this equation has �̇�𝐹, Ts, Tf, rf as the unknowns; basically, there 

are four unknowns here. 

So, what is the next step? how the fifth equation can be created? There are four equation I have 

used. Now, please understand conservation equations for species, see there are two species. So, 

only one conservation equation can be used. The other one can be found as 1 minus the mass 

fraction of the other species. So, one conservation equation is enough for the inner zone and 

outer zone. For the inner zone we have used fuel, for outer zone we have used oxidizer. So, 

you got two equations out of that. For temperature we have two profiles for inner and outer and 

we have the heat balance at the interface providing one, heat balance at the flame sheet 
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providing one more. So, we have consumed all the boundary conditions now. So, four 

equations are got. Fifth equation is not available. There are five unknowns here. For getting 

that I need to connect this Ts and YFS; that means, the fifth equation can be generated using the 

thermodynamic relationship which is Clausius Clapeyron equation. So, these are the important 

things. Now go to that.  

(Refer Slide Time: 29:11) 

 

So, Clausius Clapeyron equation as we have seen already which is written in a different form.  

(Refer Slide Time: 29:29) 

 

So, XFS = psat/p = exponent of this. But you can see this, these are the variables which are 

known to us. T surface, if you substitute, I get the XFS value but the fuel properties like hfg and 

Tboil has to be given as an input. 
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