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So, we will continue with what is called Turbulent Stresses or Reynolds Stresses. So, this 

is the extra terms which are going to be coming because of the fluctuation terms. So, to 

illustrate this let us consider a two-dimensional boundary layer equation. Here you can 

see that the derivative in the x direction is not prominent as the derivative in the y 

direction.  

So, the diffusion term basically does not have the x derivative. And since the turbulence 

is time dependent, so we have included a time dependent term also here. So, ∂(ρu)/∂t, the 

x momentum equation equal to ∂/∂x with the convective term ∂(ρuu)/∂x and the ∂(ρu)/∂y 

and this is written in conservative form. So, writing like this is conservative form and 

you can see this diffusion term in the right hand side. 

 



So, this is what we are taking into account now. And let us do the Reynolds 

decomposition where you know that the u is at any time instant t is written as the time 

average value plus the fluctuating value again which is a function of time. Similarly, u v 

also you do the same. So, once you do this one more assumption which is made is the 

properties ρ and μ are assumed to be constants here. If it is not, then that will also 

fluctuate and that also should be added like mean and the fluctuating quantity.  

So, just to illustrate the stress terms let us consider ρ and μ to be constants and Reynolds 

decomposition we will do like this. Writing flow velocity as the mean value plus the 

fluctuating value, that is the Reynolds decomposition. And time average you know how 

to take this. You have to take considering a longer, sufficiently long time period and 

average of fluctuations. 

So, once you substitute this in the equation, for example, for u substitute u + u’. 

Similarly, for v you can write here v + v’. Then what you do? You have to take time 

average of the entire equation. Now, if you take time average and since we are assuming 

this, that is the x derivatives is much less than the y derivative, the x derivative term of 

the fluctuations.  

So, you get derivatives like ∂u’/∂x, ∂v’/∂x etcetera those things we will neglect. So, 

neglecting the x derivatives of the fluctuations we will get this equation. So, you can see 

that this equation if you take the time derivative, we have the mean value of the time 

derivative. So, you can say u  = 0. So, you can see that.  

∂ u /∂t will come. Similarly, the convective derivatives basically remain the same with 

the overhead bar indicating that they are mean values. However, the extra term which 

has come here is this, ∂/∂y of because I have already neglected the x derivative of the 

fluctuations. But keeping y derivative of fluctuations you see ∂(ρu’v’)/∂y is there in this. 

So, that actually comes in from the convective term. So, this term comes in from the 

convective term. But it is convenient actually to write it as a diffusion term. So, we have 

put this in the right hand side along with the stress term. So, along with the stress term 

we have put this in and this particular term is now called Reynolds stress.  

So, similarly, if you do it for x momentum and y momentum everything, you will get 

additional terms. These additional terms will create closure problems. See for example, 

continuity equation can be written as this. In general, if it is laminar this term will not be 

there, the last term will not be there.  



So, we can solve continuity equation and x momentum equation to solve the variable u 

and v. But the thing is now the additional terms have come, so number of unknowns are 

higher than number of equations, so this is called closure problem. So, that is what we 

get. 

So, one more thing what we should understand here is when you do this for continuity 

equation you get the average the continuity is obeyed by the mean value as well as the 

fluctuation value. So, even the fluctuation of v that will obey the continuity. So, 

continuity equation is actually used for understanding the relationship between u and v, 

basically this u and v. So, you have to understand that ( )u v   ≠ 0.  

Similarly, we have already seen that 2u  ≠ 0. So, u  = 0, u  = 0, etcetera. So, 

individually they are 0, but when you take average, the product of that that will not be 

equal to 0. So, that is the contribution by this term here, and that is going to be the extra 

term which is called Reynolds stress. Please understand that this term comes actually by 

the convective equation, convection terms, but it is now clubbed with the stress term and 

it is called Reynolds stress.  

Since the additional terms appear you get into what is called the closure problem. So, 

somehow you have to go about solving this. When you do not do the Reynolds 

decomposition we have to go to direct numerical modeling, as I told earlier, we have to 

go to extremely smaller grids, extremely smaller time steps and bigger problems cannot 

be done, very small problems can be attempted with DNS. 
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Now, eddy viscosity. The simplest concept what we have is to just take out the closure 

problem what we try to do here is the Reynolds stress term is modeled; that means, some 

change we make to the Reynolds stress term. For example, if you go back the term in the 

right hand side can be written like this. So, these two terms I am writing here. So, 

∂(μ∂u /∂y)/∂y - ∂(ρu v  )/∂y.  

 

So, this now I can write as ∂(μ∂u /∂y)/∂y - ∂(ρu v  )/∂y. So, this term is what is written 

here, you can see this. So, now, ∂(-ρu v  )//∂y is now written as plus ρε∂u /∂y. So, what 

we are trying to see here is see this mean term we have viscous stress here this is the 

shear stress here.  

So, the viscous stress, this is the molecular viscosity, dynamic viscosity, molecular 

dynamic viscosity that contributes to the first term here. The second term is due to the 

turbulent fluctuation. So, we introduce a viscosity called Eddy viscosity which is 

nothing, but ρε.  

So, if you write this ∂(ρu )/∂y I say this is equal to -ρu v  . So, basically -u v   is a 

positive term. So, u v   when you multiply that is actually a negative term. So, that can be 

illustrated by the continuity equation here. So, as I told you the continuity is obeyed by 

the fluctuation terms also. Now, if you write this, you can understand that ∂u’/∂x can be 

written as -∂v’/∂y.  

So, let us say if in the x direction the fluctuation increases u’ increases then; that means, 

that in the negative y direction v’ will increase. So, this term u’v’ will be negative. So, 

negative of negative will be positive, so this term you substitute for this and put it here. 

So, this is called eddy viscosity or we can say turbulent viscosity, eddy viscosity or 

turbulent viscosity which is nothing but ρε.  

Now, the effective viscosity μeff which is contributed by the molecular viscosity plus the 

eddy viscosity. So, why we concentrate on this? Because we can see that the diffusivity 

is one which is much enhanced, even though you have to keep in mind always that this 

term is generated by the convective term but the effect of turbulence is basically to 

increase the diffusion. Molecular diffusion is slow, but this basically increases the 

diffusion mixing. 



 

So, you can see that the when you add this the μ increases. So, μ/ρ basically, so μ 

increases then you can see that the diffusion term will be stronger and this is what is 

contributed by the turbulence. So, these fluctuations basically increase the mixing; so, 

the diffusion strength. And so, when you have effective viscosity that will be equal to the 

molecular viscosity plus the eddy viscosity or the turbulent viscosity; so, this turbulent 

viscosity or eddy viscosity is the same.  

Now, this is the simplest model where you can say that the effective viscosity will be say 

several 100 times more than the normal molecular viscosity. So, that is the effect. See 

when the intensity increases the mixing will increase. So, that is what the contribution of 

turbulence. So, this is a simple model. It is called the zero-equation model, we do not 

need any additional equation for this.  

There are several other models Prandtl’s, mixing length base models and so on. In fact, 

to evaluate this we need the Prandtl’s mixing length. Next, to improve this we go for 

what is called two equation models. I am not going to go to details, but I am just 

mentioning this. In the two-equation model we have a equation to be solved for turbulent 

kinetic energy. So, that is the first equation we solve. And the second equation is for 

solving what is called epsilon equation.  

So, we have what is called k-epsilon equation, k-omega equation and so on where you 

solve for the k (the turbulent kinetic energy) and epsilon omega are some forms of eddy 

dissipation. So, when you solve this then these stress terms are modeled using this. So, 

we have to handle the closure problem. 

For example, if I write this in the simplest way -ρu v   is written as ρε∂u /∂y then you can 

see that I call for some effective viscosity here and I try to solve this. So, that is the call 

here. Similarly, higher order models, this is two equation then Reynolds stress model that 

will solve for all the terms appearing like this. In 3D we will have 5 or 6 terms, so for all 

these we will model this.  

Now, we will have a separate equation to solve. So, that is solved by the Reynolds stress 

model, so 5 equation model. Then, we go to what is called large eddy simulation which 

resolve for larger eddies, resolves larger eddies, but you do not go for resolving smaller 

eddies, that is modeled. So, the smaller eddies are modelled and resolve those larger 

eddies.  



In the k-epsilon, k-omega models whatever be the size of the eddy you just model it. 

Here in the large eddy simulation the large eddies are modeled. So, you go for finer grids 

to resolve this large eddies. However, the smaller ones are modeled. So, if you take any 

turbulence book you will understand more about the turbulence modeling.  

And it is not so easy to understand all this. For our basic course we need to understand 

that the effect of turbulence is going to affect the flame structure, both in premix as well 

as the non-premixed flames, turbulent regime premixed and turbulent regime non-

premixed flames. So, we need to understand how we are going to understand the effect 

of this mixing and the eddies interaction with the reaction zones and so on.  

So, that is what our thing is. Now, you have to understand the extra terms which are 

going to come and how you are going to model it. 
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Now, let us do a simple analysis of an axisymmetric turbulent jet. We have already seen 

the axisymmetric laminar jet analysis. So, now, let us try to see how we can apply this 

eddy viscosity, what we have introduced here to solve for the turbulent jet. 

So, axial moment momentum conservation equation is written here. So, vx, please 

understand that we have to put bars here, but I have removed the overhead bars for 

simplicity. So, all are mean terms.  

So, you can see that the axial momentum conservation vx ∂vx/∂x plus the radial velocity 

vr∂vx/∂r = 1/r ∂(rε∂vx/∂r)/∂ r. So, this is the radial diffusion in the radial direction. 

 



So, this is the equation we have and of course, the mass conservation. Again, please see 

that all are mean quantities, mean values only. So, here since we are writing like this, 

you can see there are similarity between this equation and the previous equation. So, the 

laminar jet solution is applicable here.  

 

One more thing is please understand that we have seen that mu effective will be equal to 

μ + ρε. So, here this is very small, so; we have neglected this also. So, the dynamic 

viscosity also is neglected, so we have just substituted μ for ρ×ε and when I divide this 

equation by ρ. I do not have any ρ here.  

So, this is what we are going to substitute for the μ now, there is μ = ρε.. So, this will be 

equivalent to ν turbulent. So, that is a turbulent kinematic viscosity for turbulent. Now, 

this again you can see the continuity equation.  

So, you see the similarity between the laminar counterpart. So, we can replace the 

molecular viscosity in the laminar solutions by this eddy viscosity and we can go for 

prescribing solution do you understand. So, when I write the equation for the turbulent 

jet I have to replace by the above concept I have to replace the μ by μeff effective. So, μeff 

is nothing, but the dynamic viscosity, molecular level plus the eddy viscosity. 

Now, since the dynamic viscosity is much smaller than the eddy viscosity we neglect this 

and write only the μ effective as ρε. And by dividing this equation by ρ I get the epsilon 

here.  

So, vx∂vx/∂x, please understand these are all mean quantities + vr∂vx/∂r will be equal to 1 

by r  by dou r of r epsilon dou vx by dou r. So, this is the equation I get. So, we can see 

this is similar to the laminar jet axial momentum conservation. And the continuity 

equation also is the same when you just see the mean quantities are put in here. So, they 

are the same. So, the solution of laminar jets apply here, but only thing is we have to 

replace the μ by ρε. 
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So, the solution again we go for the same similarity variable which is dependent on r/x 

and initial jet momentum is same.  

 

 ρeve that is exit velocity, the density at the exit of the nozzle into the area of cross 

section of the nozzle or the port which is πR2. So, this is the initial jet momentum. So, 

similarity variable is already written. But please see that the μ term which was used 

there, so this is the μ term which was used in the laminar that is now substituted by the 

eddy viscosity.  

 

So, everywhere else I do the same. Similarly, we got the solution for the axial velocity 

vx. That is now replaced, now the same equation is written, but the μ part is now replaced 

by this. Similarly, wherever I have indicated this you can see that here also the Reynolds 

number was used basically. So, veR by mu, you can see that this is now replaced here.  

 

So, actually this should be ρveR divided by this, so ρ cancels, so we get veR/ε. So, you 

can see this. So, the Reynolds number is now written like this. Similarly, here also the 

Reynolds number was there. So, 2.97Re-1. Now, Reynolds number is replaced by this 

because ρ and ρ cancels.  



So, we can see that the solution what we got for and please understand these are the 

variations of the mean quantities only. Basically, we are interested only in the mean 

quantities, so the mean quantity variation, so all are mean quantities. Please understand 

everything is mean quantity here. 

 

So, the mean quantity variation is what? What we are interested in. So, that is got by just 

applying the laminar solution; however, replacing the dynamic viscosity, molecular level 

dynamic viscosity by the eddy viscosity ρε. So, that is the way followed. So, in this 

context it is very simple. However, the only problem is how do you evaluate this value ε. 

So, the eddy viscosity can be determined by Prandtl mixing length, as I told you Prandtl 

mixing length concept. So, actually Prandtl what he told was, if you take a velocity 

variation like this. Prandtl postulated a length called mixing length.  

So, this is say lm, mixing length and for example, in this the velocity will be u’ and here 

it is u’, say at a particular y and u’ at y + lm.  

So, some packet of fluid these are all going to flow in this direction, so I need not put u’ 

here, it says u. So, these are the layers which are going to flow parallel to the mean 

quantities, but the fluctuation quantities are going to be there.  

So, for example, if there is a v’ fluctuation then that will contribute to some packets 

coming across the transverse direction. So, that Prandtl assume that due to these y 

directional fluctuations, the packet can travel at most a length what is called the mixing 

length.  

So, with that assumption basically the epsilon can be evaluated. So, for this particular 

context the jet spread, we can say that the r1/2 that is the jet half width, grows 

proportional to x we have seen this.  

So, this is the jet exit and this is jet axis and a jet spreads like this. So, if you take r1/2, so 

we can say r1/2 also comes something like this here. So, r1/2 increases with the x, grows 

proportional to the x direction. So, this is the x direction, so and r1/2 grows increases as x 

is increased. 

However, the centerline velocity, axial velocity, this is vx0 means vx at R = 0. So, 

centerline velocity at the axis decays. So, you have seen after the potential core. 

Anyway, this solution is not applicable near to the jet exit. So, far field only it is 

applicable.  



We have seen that Reynolds will also 0.375Rej, if that is the location then from that 

location onwards this solution will be valid. So, in that region, you can see that the decay 

of axial velocity happens, the mass fraction axial velocity etcetera happens in that. 

 

So, based upon this the ε can be written in terms of constant times, r1/2 of the particular x 

and vx0 that is the central line velocity at the particular x. So, this we can write. Now, 

using this solution we can write the equations for r1/2 and vx0 and try to get the values in 

terms of ve and d radius. So, that is what we are going to do.  

So, please understand that as per the Prandtl mixing length concept, a mixing length is 

defined where the velocity gradients are used to get the epsilon values. So, using that 

concept we can derive this basically to get eε value for this jet spread as a constant time 

r1/2 at a particular x and v the centreline velocity at the x. 

 = 0.0256 r1/2(x) vx0(x). 
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So, now, so let us try to write this. The velocity decay you can see that vx/ve normalized 

by the jet exit velocity, vx0/ve = 13.15(x/R)-1. Similarly, jet spread rate is a constant. 

When you just put here, the values you can see that is a constant here r1/2/x, when you 

substitute this epsilon value in these equations.  

So, this equation and this equation you substitute the epsilon values, then you get these 

two. So, from that you can see that the epsilon value will be. That is why when we 

postulated the problem, we said that we will use the constant eddy viscosity for this 



solution of the turbulent jet. So, anyway a lot of simplifications have to be put in when 

you derive a theoretical solution for a complex problem.  

So, that is what we are trying to do here. So, when you substitute this in the vx/ve 

equation and set R = 0. Similarly, r1/2/x and substitute this you get these equations and 

finally, you get the epsilon value as a constant 0.285(veR). So, we can understand that for 

a turbulent jet neither the velocity decay nor the spreading rate, depend upon the jet 

Reynolds number. 

That is actually not for just transition regime or anything, it is actually in the strong 

turbulent regime. So, for example, the Reynolds number should be very high. When this 

is very high we can get the solutions. So, these are all far field solutions applied to very 

high Reynolds number. So, that we have to keep in mind. 

So, in the laminar jet case the velocity decay was directly proportional to the jet Re, but 

here you can see that the velocity decay is not. So, that means, that the turbulent jet is 

independent of the nozzle exit conditions. So, exit condition means nozzle exit 

conditions.  

So, that is very important to understand here. So, the eddies which are going to be 

present after the potential core region basically that is going to contribute to the 

characteristics of the turbulent jet. So, we can see that the spreading rate is a constant.  

Once you get past a particular Reynolds number, for all the Reynolds number this 

characteristic will be intact. So, that is the main thing you have to understand from this 

solution. 

 


