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So, let us think about the boundary layer problem and try to extend that to the jet here. 

So, boundary layer problem is a Cartesian coordinate problem, here we are trying to put 

it in the r-x coordinates that is the axisymmetric coordinates.  

Now, non reacting jet, that is enough for us for the diffusion flames basically. So, 

considering the non reacting jet, assumptions have to be made, uniform density, the 

density will not change. So, constant density, then ordinary diffusion only occurs and 

obeys Fick's law and ν = D, the usual assumptions what we made.  

So, the momentum diffusion is same as the mass diffusion. Then important assumption 

here is the diffusion is predominant in the radial direction only, in the axial direction, 

there is a jet velocity which is coming out. So, in the axial direction predominantly 

convection will take care of the transport, that is why the axial velocity component vx is 

stronger.  



So, this will take care of the transport of the fluid in the axial direction convectively. But 

in the radial direction it should occur only by the diffusion. So, diffusion is predominant 

in the radial direction. So, in the axial direction since velocity is predominant the axial 

direction diffusion is considered as negligible.  

So, that is fine. This means I cannot see in the initial potential core region etcetera, where 

the velocity has not even decayed properly. So, that in the position basically, we cannot 

ensure the diffusion in the radial direction. So, this solution will not start until a given 

distance from the nozzle exit; there is no the diffusion effect in the radial direction 

coming in so promptly there.  

So, we cannot take that. So, this solution will be valid only from a given distance from 

the port or the nozzle exit that you have to understand, that is fine. So, this jet actually 

spreads a long distance and we are basically looking for the location at which the fuel 

goes to 0 in the axial direction, that will give the flame height for us. So, let us discuss it 

later. 

So, in analysis of jet, these are the simplified conditions which we have, constant and 

uniform density, ordinary binary diffusion that is fuel and air these are two fluids, binary 

fluids which are present. Fick's law is obeyed for ordinary diffusion. Then Schmidt 

number is 1, then diffusion is predominant in the radial direction only because, 

convection is going to take care in the axial direction. 

In the cylindrical polar coordinates, with two dimensional axisymmetric coordinates, 

boundary layer type of assumption is made. What is boundary layer type of assumption? 

vx >> vr. The radial velocity component is very small. Similarly, the gradient in the x 

direction is actually smaller than that in the r direction. So, these are the two assumptions 

invoked for the boundary layer type of problem. So, same type of assumptions are made 

here.  

So, we write the conservation equations continuity equation  

 

∂vx/∂x + 1/r ∂(rvr)/∂r. So, that will be equal to 0. So, simple continuity equation, mass 

conservation, steady state problem.  
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So, there is no time dependent terms involved in this. Similarly, axial momentum 

equation vx∂vx/∂x convective term plus vr∂(vx)/∂r. So, the axial momentum conservation 

so, vx is the convective term here.  

 

And here you can see the pressure gradient is also negligible. So, here you can see this is 

diffusion term. And we have assumed only the radial direction diffusion here.  

So, the ρ from the left hand side has come to the right hand side and you get this value. 

This is nothing but ν, the momentum diffusivity. So, 1/r×(∂/∂r)(r∂vx/∂r), that is the 

diffusion term only in radial direction. So, this is the conservation of axial momentum. 

Please understand that since vr << vx, we assume that is an assumption along the x 

direction. The velocity that is predominant is the y direction velocity. So, we neglect 

that. Similarly, here the radial direction velocity is neglected. So, there is no momentum 

required for this velocity.  

So, what we do is, we will try to solve vx using this axial momentum conservation. And 

solve vr using the continuity equation, apply that vx value here and get the value of vr. 

So, two equations two unknowns are there for the velocity components. So, that is 

enough, pressure is not there. So, two equations and two unknowns we can solve this. 

So, there is no separate equation required for the radial velocity. 

Next, fuel conservation that is again convective term  

 



vx∂YF/∂x + vr∂YF/∂r, convective term equal to diffusion. So, diffusion is D×1/r (∂/∂r)(r∂ 

YF/∂r). So, this is the conservation of the fuel species. So, once you get the conservation 

of fuel species, oxidizer, that is air, here nitrogen plus oxygen together, the mass fraction 

of that can be found by 1 - YF. So, that is what we are going to use. 

Now, please see that we already assumed that ∂/∂x << ∂/∂r, but why you are retaining 

this term, because vx is very strong. Since vx >> vr, due to vx this term stays not due to 

∂YF/∂x this stays, this term stays because of vx. Similarly, here ∂vx/∂x may not be very 

high, but vx is very high. So, by scaling this term stays. 

But here you can see that this term is due to the radial gradient of vx, this term stays, vr 

will be very small. But, the gradient of vx in the radial direction is ∂vx/∂r is very high. So, 

due to that it stays. So, we did not cancel anything. But, in the diffusion term ∂/∂x is 

cancelled because, ∂/∂x second derivative of that is not very high for the vx. So, that has 

been neglected, that we have to understand.  

So, the terms are chopped off when they are not required, because of the scaling analysis 

which are due to these two equations what is written here. So, these equations are 

boundary layer type of equations. Diffusion term in x direction and momentum equation 

in the radial direction are absent, due to scaling analysis vr << vx, ∂/∂x << ∂/∂r. So, these 

are the three equations which we need to solve. But please understand again partial 

differential equations are non-linear because of the convective terms and we have to 

solve this.  

But, anyway as Blasius did the solution for the boundary layer equations in the Cartesian 

coordinates, again using the self similar profiles we can try to get the solution for this. 

So, that is what we are going to do next. So, before we are going to the solution, we need 

to see the boundary condition.  

So, we have three equations now. The mass conservation which is going to pretty much 

give us the value of vr and you can see, this is ∂vx/∂x + 1/r ∂(rvr)/∂r = 0. Then, we have 

the axial momentum equation, convective term vx∂vx/∂x + vr∂vx/∂r equal to in the 

diffusion term, there is only radial direction diffusion and pressure gradient is also 

absent.  

If you solve these two equations, the axial momentum and the mass, you can together 

solve to get the velocity components vx and vr. Then the fuel conservation is going to be 

solved to get the value of YF.  

And here also you can see that only the diffusion of fuel in the radial is considered. 

Axially, convective term is going to take care of those. So, this is the boundary condition 



for this. So, we have to specify boundary condition at three locations r = 0, r → ∞, then x 

= 0, parabolic equations. 
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So, these are the boundary conditions, we have to apply for this. What are the boundary 

conditions? So, at axial, the centre line axis at r = 0, vr = 0, there is no vr is exactly 0 the 

gradient of vx in the radial direction will be 0 at the axis. So, ∂vx/∂r at this radius equal to 

0, at any x location along the axis it should be equal to 0, vx cannot be 0 vx is decaying, 

but it will not be 0, but it the gradient of that, that will be 0. 

Then, similarly gradient of YF, radial gradient of YF at axis, at any x will be equal to 0. 

So, these are the conditions at the axis. There, at r = 0, we have the radial velocity is 0. 

Radial velocity will be there at other far r locations. There, radial velocity need not be 0. 

But at the axis due to symmetry this should be there, and again due to symmetry the 

gradients of other variables should be equal to 0. In the radial direction at r = 0.  

So, this is one of the boundary condition, at the fixed r = 0. Then, we see far off radius r 

→ r∞ or as I told you it may not be exactly infinity, you cannot use infinity. If you 

numerically want to solve this you have to go for say 100 times the radius or something 

like that. So, long far field you take.  

So, where you can see that asymptotically the values, this is actually vx asymptotic 

values of the velocity and YF → 0 correct. Even vr will be 0. So, you can also say vr. So, 

vr also will tend to 0. Still air is present, far from the jet there will be no movement. 

So, the jet is actually getting into a very still air environment, quiescent environment. So, 

far from the jet axis the values of the velocity should be 0. Similarly, there will be no 

fuel present. Only air will be present. So, velocity components plus the fuel mass fraction 



will tend to 0 at far r locations, this is the second boundary conditions at the r → ∞ or 

very high r value. 

Then, at exit of the nozzle or the port, there are boundary conditions which actually 

defines when the radial direction distance is less than or equal to the radius of the port 

that is small r ≤ R. We know that the average velocity can give here, vx is the average 

velocity which is coming out of the port. Similarly, YF at exit it may not be 1. But, in this 

case only fuel is coming out. So, I am assuming it as 1 that is fine.  

Similarly, at x = 0, when r is greater than the radius of the port capital R, then these 

quantities are 0. So, these are the boundary conditions do you understand. So, parabolic 

equations, the boundary layer equation are parabolic in nature. We need a boundary 

condition which has to be specified at this location r = 0, r → ∞ and x = 0. And for the 

variables what we are considering we are trying to solve it.  

So, now this you can numerically solve if you apply this boundary condition. We can 

numerically solve this, but theoretically we can do it by doing what exactly Blasius did. 

So, Blasius transformed these partial derivatives to ordinary governing equation third 

order ordinary governing equation, differential equation, and then solved it using a 

similarity variable. 

Similar to that when you normalize vx at any r by vx at r equal to 0 this centre line value, 

which is the maximum. And then its radial distribution becomes universal depending 

only upon a similarity variable, r/x. So, if you define a similarity variable r/x, then we 

can solve the problem exactly like what Blasius used for boundary layer approach. I am 

not going to the derivations of the solution, but I only present the solution here. 

So, you can see that these parabolic equations, boundary layer type of equations result. 

Continuity, then axial momentum, then fuel conservation equation. Then you can solve 

this numerically by applying these boundary conditions at r = 0, r → ∞ and x = 0. Or, we 

can use a theoretical analysis what Blasius used similarity approach and get the solution. 
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Now, the similarity solution is presented here as I told you a similarity variable is 

required which is r/x, a function of r/x. So, that variable is defined like this. So, this see 

as I told you similarity variable is r/x. So, ξ is the similarity variable, ξ is defined as some 

constants, this is all, they are all constants. So, ρe, density is assumed as a constant, and 

at the exit it is a constant, initial momentum jet Je that is also a constant.   

 

So, this is a constant times again μ, μ actually can be a constant here, the assumption μ 

can be a constant can be made. So, r/x, this is actually defined as some constant times 

r/x. So, similarity variable is defined. So, once you use the similarity variable and also 

normalize the axial velocity with the central value, normalize this then you get the 

solution in terms of this.  

 

So, this is solution for vx that is axial velocity at any x location, vx at any x location will 

be 3/8π(Je/μx)(1 + ξ2/4)-2, this is whole power minus 2. Similarly, r profile you can see 

that r profile is also given like this. 

 

So, as I told you these are going to be applicable only after a particular distance from 

this., Away from the potential core, jet exit potential core. Away from that only the 

similarity will be there. So, if you see the profiles again, the profiles are going to be self-



similar only after a particular axial location. So, which is actually much greater than Xc, 

the potential core.  

After a distance from the potential core, when you apply that vx/vx0 versus r/r1/2, then you 

collapse this. So, below that you cannot do that as you can see here you cannot collapse, 

here at x = 0 and x = x1, you cannot collapse by using that rule. So, only away from the 

jet exit or the nozzle exit this solution will be valid. So, whatever solution I am posing 

here, these are valid only at a region far from the port exit. That you have to understand.  

So, that is enough for us basically. So, we do not need to concentrate our solution in the 

near field, only the far field you will try to apply. So, this is the equation. Similarly, you 

can see YF is nothing but vx/ve..  

 

So, the same profile we got correct. So, YF is nothing but vx/ve and that varies exactly 

like this, you can see this. Now, instead of this I am trying to put μ instead of μ I am 

putting μ/ρ = ν = D. 

So, this is the thing so, D I say. So, this is the Schmidt number equal to 1. So, when I 

apply the Schmidt number equal to 1. So, μ I take ρe from the Je so, Je you know so, Je is 

nothing, but ρe(ve)
2πR2. So, when I substitute here πR2(ve)

2 that ve here, you can see that 

ve stays here then μ/ρe comes to the bottom. So, μe/ρe will be D which is ν = D. So, that is 

what I am getting here. 

So, one of the ve in (ve)
2 cancels out because, vx/ve I am putting. So, that cancels this, ve 

cancels one of the ve in the product here (ve)
2. So, ve alone stays πR2 stays ve stays, ρ 

comes to the bottom. So, μ/ρ = ν, so, ν = D. So, I am substituting D here. So, this is the 

variation of YF, this is r and x are there it is applicable to any radial location. I can vary 

the r here. And similarity variable will vary so, that I can get the profiles. So, this is the 

solution I get. 

So, similarity solution is the one which we will make, see for example, all the variables 

like vx and YF are function of both r and x. But, if I define a similarity variable which is 

ξ. ξ is a function of r/x, seeing the self similarity in the profiles away from the nozzle 

exit. Then, I can have only one independent variable ξ and I can express my solution as a 

function of that particular variable ξ only. So, that is what I am trying to do here. So, at 

any x you can do this and this is the profile. 
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Now, if you want to plot here, so, non-dimensional axial velocity and mass fraction 

distributions are given here, basically this is the vx/ve, which is equal to YF, that is the 

profile here.  

 

So, that is what I get 0.375 ρeveR/μ. Jet momentum I am expanding now and getting this 

value, you may remember this is ρe, ρ × velocity × characteristic dimension, which is the 

radius divided by μ which is the Reynolds number of the jet. 

So, this jet radius, jet exit velocity, jet density divided by mu I am using to get the jet 

Reynolds number. So, now, this vx/ve can be defined as 0.375. Reynolds number of the 

jet (x/R)-1, 1 + ξ2/4)-2. So, this is the distribution for both YF and non-dimensional axial 

velocity. So, now if you want to get centre line profile, ξ is set to 0, because r/x, R = 0.  

So, r/x is set to 0, then you will get the centre line profiles. So, for centre line profiles set 

ξ as 0, in this equation you will get the centre line profiles, the velocity decay etcetera. 

So, for example, if you set ξ = 0 here, then this term goes, then you get only vx at 

centreline. So, vx0 will be without this term. So, you will get centreline profiles.  

Similarly, centreline decay of the YF also you can get. Now, for half width and spreading 

angle, we use this r1/2/x = 2.97 by, I have not given the derivation, this is the derivation. 

You can try to derive it or see some books to derive this. So, r1/2/x = 2.97/Re. 



So, when Reynolds number increases then the r1/2 will decrease. Similarly, spreading 

angle α = tan-1(r1/2/x) so, you can use this. Now, as I told you far field only the solution is 

valid; that means, x/R should be greater than 0.375 into Rej for this solution to be valid. 

Now, what is flame height, the diffusion flames basically are transport controlled. We 

have already seen that its transport controlled that chemical kinetics does not play a role, 

because chemical kinetics are very fast when compared to the time of this diffusion, the 

radial diffusion time, molecule diffusion is actually much slower and the chemical 

reaction is much faster. 

So, when a fuel molecule travels from the centre line to the jet edge, where you can also 

see the oxygen diffusing in the radial direction towards the centerline. At some point in 

the radius the fuel molecule and the oxygen molecule will mix at some stoichiometric 

proportions, where a flame zone will be formed upon ignition. That flame zone will be 

very thin when you plot the locus of all this, you will see the flame surface basically. 

So, this is transfer controlled. When you have more momentum for the jet, then you can 

see that as I told you when Reynolds number increases, then r1/2 decreases; that means, 

your radius of the flame will decrease and so on. So, exactly where the flame surface will 

come, you have to calculate the stoichiometric value of the fuel mass fraction.  

So, that is nothing but, YF,st = 1/[1 + (A/F)st]. So, if you trace that basically you will get 

the flame profile.  
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So, laminar jet diffusion flames. So, fuel jet which is coming out with some momentum 

which will entrain the air due to the viscous effects, what we have saw after the potential 

core region, you can see that the viscous effect will be more and the mixing takes place 



indicated by the reduction in the velocity value and the value of the mass fraction of the 

fuel.  

So, air entrains from the atmosphere and the jet spreads along the radial direction, as I 

say the radial direction you can see more the YF value at centre line and decays at the 

larger radial direction as you go along the axial direction.  

Now, oxygen from the ambient air and the fuel mix, and when ignited a flame zone is 

formed at locations where the mixture composition is around the stoichiometric value. 

So, fuel from the centreline decreases like this, oxygen from the ambient diffuses like 

this.  

So, somewhere it will form a stoichiometric mixture. So, we ignite here at this location, 

where they mix at the stoichiometric proportions. This is fuel and this is oxygen. So, 

somewhere in the radial direction, this is radial direction basically, r, some radial 

location they will form a stoichiometric mixture. So, YF, stoichiometric what I told. So, 

that values attain, when you ignite in this location, flame will form. 

The diffusion of fuel and diffusion of oxygen in the radial direction are much slower 

when compared to the chemical kinetics or we can say the chemical kinetics is much 

faster. So, at this location the flame is formed. So, that is what is given here the oxygen 

from ambient and the fuel mix, and when ignited a flame zone is formed at locations 

where the mixture composition is around the stoichiometric value. 

So, there flame will be formed. So, this is at the particular x location. So, if you trace all 

the x locations you get the flame surface. These types of flames are characterized by the 

visible length. See for example, I will show you figures later. So, visible length, jet of the 

fuel comes out and you ignite this and a flame form. So, what is the characteristic of this 

flame? It is the length.  

For a given fuel flow rate, you will get a particular length of this laminar flame. So, that 

length is the characteristics. See, when you saw the premixed flames the laminar flame 

speed was the characteristic, one of the characteristics of that. See, for example, the 

Bunsen burner method, you get a conical flame and a half cone angle is used to calculate 

the laminar flame speed.  

So, that is the characteristics of a premixed flame, but in the case of a diffusion flame 

like this, where nothing is mixed and they mix only at the flame zone like this. So, under 

these circumstances, the distance what the fuel travels to get all the oxidizer it needs, that 

is the characteristics.  



So, we will say visible length of the flame, which is measured from the burner exit will 

be the characteristic, important feature of the diffusion flame. And that indicates the 

distance the fuel has to travel to get the required amount of oxidizer for its complete 

oxidation. So, that is the important thing.  

So, flame length, which is what we are going to see as a main characteristic of a 

diffusion flame or a non-premixed flame. Now, again I am repeating here, the fuel 

molecules travel through molecular diffusion in the radial direction and by convection in 

the axial direction.  

You can see the convection is predominantly in the axial direction, because of the jet 

momentum which is coming from the nozzle exit. But in the radial direction it is only by 

diffusion, concentration gradient driven. Of course, soret effects also will be there, but 

predominantly it is diffusion driven. 

 


