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Now, let us see in detail. So, this when I say α and ω, we all are normally interested in 

finding the temperature, pressure dependence and maybe Φ dependence which we have 

already seen. So, ω reaction rate is exponentially dependent on the temperature. So, SL 

will have the similar dependence.  

So, you know ω is written as A×exp(-Ea/RuT) into concentration of reactants power some 

order. Say, order n. So, now this exponential dependency of ω will also say this, this 

power half, so exponential dependency is this term basically, this is temperature term; we 

also can have a term called Tm here.  

Now, if that is present, we can also add Tn/2 here because SL α (ω)0.5. So, the exp(-

Ea/RuT)0.5Tm/2, but this term is not going to affect the SL so much as this exponential 

term. 

So, SL has an exponential dependency on temperature since ω has that. Then, let us 

consider nth order reaction. Most of the reactions are second order reactions, but let us 



first consider here general nth order reaction. So, the reaction rate of nth order reaction 

depends upon pressure as pn-1.  

So, as the pressure varies, the reaction rate will vary to as pn-1. So that means, where ω is 

affected by p. ω is the function of p comma T, ω(p, T); we have seen the T dependence 

here, pressure dependence here. Now, similarly α will be λ/ρcp.  

So, all other variables, λ, cp etcetera will not vary much with these pressures; but ρ will 

vary. So, ρ = p/RT. So, ρ will vary with pressure. So, that term is here. So, this is p. So, 

SL varies as (1/p)×p(n-1)0.5 which is nothing but 2 1/2( )np − . So, SL varies with pressure as 

for the nth order reaction. Please understand, for nth order reaction, it varies as 2 1/2( )np − . 

But many reactions are second order in nature; that means n equal to 2. So, if you put 2 

here p power 0; that means, SL may not depend much on pressure. However, some small 

dependency is shown by the experiments which show that SL presents a decreasing trend 

with increasing pressure up to 10 atmospheres, where the experiments are conducted. So, 

this you have to remember. So, temperature is the one which is going to mostly affect the 

SL value and pressure slightly affects it. 
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Now, the thermal theory gave us; see here the from thermal theory, we got these points, 

for example this. 
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Important conclusion from thermal theory is SL ≈  , is proportional to under root α 

which is thermal diffusivity and ω, product of αω. And based upon that, the other factors 

temperature pressure etcetera which influence, we have already seen how the 

temperature is going to be affect. See since the strong dependence on SL and temperature 

is present here, so SL follows the temperature which is also seen already. 

As you can see that the adiabatic flame temperature variation which was shown here in 

this slide, which presented a variation with equivalence ratio producing a maximum 

value at a slightly richer condition for methane air flames. 
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Similarly, its laminar flames also poses the typical variation producing a maximum at the 

slightly richer point. So, temperature dependence of SL is clearly illustrated and 

equivalence ratio that affects the temperature, it affects the SL also in the similar manner. 
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But if you take hydrogen type of fuel, there are some discrepancies which we have noted 

here due to the highly non unity Lewis number and temperature dependent property 

values. Now, we are going to go for what is called simplified analysis in which what we 

are trying to do is we will assume several things try to pose equations; but anyway, use 

the energy equation to find some quantitative equation or expression for SL and δ, that is 

laminar flame speed and the flame thickness. 

So, here also we are assuming one-dimensional flame propagation, that is a simplified 

approach has been given by or reported by Professor Spalding. Lot of assumptions have 



to be done for any simplified analysis, where we are not going to use say numerical 

approach, only theoretical approach is used, then simplified assumptions have to be 

made.  

So, one-dimensional constant area duct in which the flame is propagating, then constant 

pressure, the pressure variations are not much. Steady propagation which is almost true, 

steadily the flame propagates. Then, what we are not going to see is take into account 

thermal radiation; radiation heat transfer is not taken into account.  

Then, the thermal diffusion which is called Soret effect, it is not going to be taken into 

account. The secondary effect, second order effect which is due to Soret effect the mass 

diffusion takes place; thermal gradient drives the mass. Similarly, due to the mass 

transport or concentration gradients, energy flux will be transported that is Dufour effect.  

Then, viscous dissipation etcetera which are work done due to high speed flows, which is 

not take into account. Obviously, it is not significant at all. So, these are negligible. 

Again, which is not true always. Lewis number is 1, but we are assuming that. 

Similarly, another assumption is specific heats of all the species are the same, that is cp,i 

is constant; i can be any 1 to N. There is no variation in the cpi’s and they are constant 

values. So, they will not vary with temperature also; cpi equal to constant means at a 

given temperature cp of CO2 may be equal to cp of N2 or cp of CH4.  

So, that assumption is made because of little difference at a given temperature. But with 

temperature, the variation is not taken into account because we are going to take some 

average temperature and calculate these values. So, cp values are constant. The mixture 

cp also is a constant because there is mixture cp; cp is a single variable here that is also 

held as constant.  

Then, single step reaction is assumed here. Please understand that premixed flames are 

kinetically controlled. So, in a simplified assumption, we cannot invoke all the equation, 

chemical reactions and elementary reactions. So, we assume a single sub reaction here. 

But understand that in a kinetically controlled process, we cannot assume the reaction to 

be single step to get accurate results. 

But in a simplified analysis, to get some order of values, magnitude values, we can 

invoke the single step reaction; but we cannot eliminate a chemical reaction at all. So, 

please understand at least a finite rate reaction is necessary. So, we cannot assume that 

the reaction rate is infinitely fast, that cannot be assumed, that is the finite rate which is 

imposed to the chemical reaction.  



It may not be a very detailed mechanism, but at least it should take into account some 

finite rate at which the reaction takes place. That means, if we assume the infinitely fast 

reaction, then the flame thickness will approach 0 value. 

So, in order to avoid that, in order to impart some finite thickness for the flame, the 

reaction rate also is assumed to be at a finite rate, which is due to a single step reaction. 

So, now governing equations; mass conservation d/dx; x is the direction of the 

propagation, d(ρu/dx) = 0.  

So, mass is conserved. ρu = ρuSL. Please understand, ρu is the product of density and 

velocity at any point which is should be equal to the velocity at which the unburnt 

reaction mixture approaches the flame in the normal direction. So, SL is velocity there or 

the speed. 
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Now, for the reaction 1 kg of fuel + s kg of oxidizer → (1 + s) kg of products PR. The 

conservation equations are written in the one-dimension without the unsteady term.  

 

 

 

So, this is the diffusion term; convective term, diffusion term and the source term. So, 

please understand one more thing, this D is also taken as constant here and same for all 

the variables. So, that assumption is also made. So, ρD is constant.  



So, you can write this equation. But please understand this, these equations are still non-

linear, we can see the we cannot eliminate the reaction rates; the reaction rate is 

important for this particular thing. But by using these three equations, we can simplify 

the energy equation. So, simplified energy equation is given here. This is simplified. So, 

we have already seen how to simplify energy equation in the previous chapter governing 

equations for the reacting flow. 

 

So, we have taken a single like one-dimensional equation energy equation and applied 

the conservation equations to find this equation. So, this we have derived actually in the 

previous chapter. Please understand the species equations are not going to be used in 

this; but the species equations are used to get this value. So, this energy equation which 

is simplified. We have enough equation to solve the problem. 

So, here what we are trying to say is convection of the thermal energy ρu that is the mass 

flux in to cpdT/dx that is the enthalpy will be equal to the conduction of heat and the heat 

which is released due to the combustion that is F− , it is a negative quality because 

consumption of fuel. So, negative and negative is positive.  

So, this becomes a source term for us multiplied by Δhc. Δhc is the heat of combustion 

which is positive. So, these equations are used to derivate the simplified energy 

conservation equation. Now, we are going to solve the energy equation in the zone.  
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Now, what is the zone we are assuming? The zone where this is the x direction, here this 

is the x direction; at x = 0 and this is x = δ and this is x → -∞ and x → +∞ on either side. 



Now, as the reactant approach at this point, at x = 0, its temperature starts to increase and 

at the end of this reaction zone, x = δ, its temperature reaches the flame temperature.  

So, single zone we are assuming; reaction zone with the thickness of δ is taken and 

single zone is assumed, where the unburnt reactants with the temperature of Tu 

approaches from -∞, at this point, it is at x = -∞ to x = 0, it approaches. 

Then at that point of x = 0, it simply just starts to increase and finally reaches the flame 

temperature Tf at the end of the reaction zone given by x = δ. So, the boundary 

conditions for this is as x → -∞, T = Tu and dT/dx = 0, because its flat. As x → +∞, T = 

Tf and dT/dx = 0. So, these are the boundary condition; second order equation. 

This is a second order equation. Due to this conduction term, the second order equation 

we get. To solve this, we need boundary conditions in surrounding -∞ to +∞. Again, you 

can split into several zones and do this, we will see that. Now, the mass flux ρu which is 

arising due to the mass conservation and this thickness of the reaction zone, this ρu = 

ρSL. So, that SL itself is a unknown quantity. 

Similarly, this thickness is unknown quantity, they are eigenvalues. Other problem; so, 

this problem. We are stating this as an eigenvalue, we are going to solve this. Please 

understand as I already told that species conservation equations are not used here, they 

were actually used to simplify the energy equation and write this in this form. Energy 

equation is written in this form due to by the help of these equations. We have already 

seen that. 
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Now, integrate the energy equation. So, just integrate each term and in the limit, we have 

to put. For example, in the limit of -∞, T will have a value of Tu and +∞, it will have a 



value of Tf. So, the first term, the convective term is integrated ρucp = constant; ρu is 

constant as a result of mass conservation and we have assumed cp is a constant.  

So, based upon that Tu we have to do integration in the limits. Similarly, the diffusion 

term, the conduction term will be written like λdT/dx; dT/dx = 0 at -∞ and +∞, both. So, 

we have to apply this. And source term, which is this, Δx (which is constant) × F
+

−

 .  

Now, evaluating the integrals first, first term here in the left hand side ρucp(Tf - Tu) and 

this term becomes 0, the first term in the right hand side becomes 0 and this term is 

retained here. So, -Δhc F
+

−

 dx. So, please understand that in this analysis, we are not 

eliminating the source term, that is the reaction rate term is very important. 

So, we have to implement a finite rate of reaction so that we get this value of δ evaluated 

properly. So, the limits of the integral right hand side can be changed from x to T 

because know we do not know see, we know that the reaction rate, the rate of 

conservation of fuel etcetera strongly depends on temperature. So, we can calculate the 

temperature the limits which are in the x now can be changed to T and dx can be 

changed to dT. 
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So, for that the reaction rate is valid. So, we can see that only in the zone between x  = 0 

and x = δ, where T is in between Tu and Tf, the reaction rate has some meaning. So, in 

this zone, we can write dT/dx as ΔT, that is Tf - Tu/δ.  



So, when you write this, then we can write dx as δ/(Tf - Tu)dT. So, substitute that, you 

get this. Left hand side remains the same; ρucp(Tf - Tu) = -Δhc×δ/(Tf - Tu)

Tf

F

Tu

 d T.  

Now, you can note that this 1/ (Tf - Tu)

Tf

F

Tu

 dT is a average reaction rate. The reaction 

rate is very low at Tu; its very high at Tf; within this range. It is some average value. If 

you integrate the reaction rate which is lower at Tu and very high at Tf, you get an 

average reaction rate which is defined as F , that is the average reaction rate. 

So, that we can substitute now. Average reaction rate, we can calculate using an average 

temperature. Obviously, (Tf + Tu)/2, we can use to calculate F . So, you know 

expression for F . So, that is Aexp(-Ea/RuT), you have to put this into concentration of 

fuel or reactant power n. So, this is the reaction rate. Now, you have to put the T here, 

you have to put Taverage here to get this value. 
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So, once you get this value, you can substitute this, the right hand side can be simplified 

and I now write the right hand side, ρucp(Tf – Tu) = -Δhcδ F .  

This equation, the δ comes there. So, this remains. So, SL is unknown, δ is unknown. So, 

two eigenvalues are still there in this equation. 

So, what we do is we have to integrate this equation one more time, but now with the 

different limits. When you see this, initially what we integrated? When we integrated the 



energy equation, we considered limits as minus infinity to plus infinity. Now, we once 

again integrate to get 2 eigenvalues.  

So, one more eigenvalue I have to get. So, I integrate this equation energy equation, now 

with the limit which is from minus infinity to δ/2. So, half of the reaction zone. So, this is 

δ/2. So, -∞ to δ/2, let us try to integrate now. So, that is what I am going to do now. 

So, to handle two eigenvalues, the energy equation is again integrated within the limits 

of extending to -∞ to half of the reaction zone and generate. So, eliminate one variable. 

For that, I am trying to do this. So, in this regime, why I am choosing this regime 

because I am assuming that, in this regime no reaction will take place.  

So, it is a one-zone model. But I know that some pre-heat should have happened. So, 

now, what I am assuming that in this zone -∞ to x equal to half of this reaction zone 

thickness, I assume that the reaction rate may not be so high because of the low 

temperatures prevailing because exponentially the reaction rate increases with 

temperature increase.  

So, when the temperature is between Tu to the middle portion of the reaction zone, there 

is not much increase in the temperature; even though, it is linearly varying. So, in this 

regime, the reaction rate is assumed to be negligible or 0. So, now what is the 

temperature value?  

T, we know at -∞, T = Tu and dT/dx = 0, these two boundary conditions I know. But 

what are the boundary conditions at δ/2? T at δ/2 is average temperature because linear 

profile, here linear profile. 

So, in this point temperature will be average of these two; Tf and Tu. So, I say that as T 

average, Ta = (Tf + Tu)/2. So, temperature at δ/2, the second boundary is this. Similarly, 

dT/dx can be assumed to be (Tf - Tu)/δ. So, that is the temperature gradient slope; slope 

is constant know. So, that is the slope which we have in this.  

So, that dT/dx at that point δ/2 is the slope of the entire curve which is Tf and Tu by δ. 

So, if we use this, now we integrate the equation; the source term disappears because in 

this range of regime -∞ to δ/2, it is easy to approximate the reaction rate to be 0 because 

temperatures are low enough, exponentially temperature increases. 

So, at low temperature, the reaction rates are low; temperature increases to a higher 

value, exponentially the reaction rate increases. So, keeping in mind, the source term is 

absent. Now, you can see the limits of the left hand side will be Tu to Taverage.  

Similarly, dT/dx = 0 to dT/dx = (Tf - Tu)/δ. So, now, when you do this, you get the 

equation which connects ρu and δ. ρuδ/2 = λ/cp, so that is what we get here. 
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So, that you can use here this and if we connect A and B, we will get the solution. So, 

now, you know ρuSL and α is λ/ρcp and now, the heat of combustion is nothing but the 

mass flow rate of the heat.  

So, 1 kg of fuel + s kg of oxidizer → 1 + s kg of product. So, 1 + s kg of products into its 

cp into temperature difference Tf - Tu that will be the heat flow due to the flow of the 

products. So, Δhc is nothing but that. So, if you substitute, you get the expression for SL 

which is this.  

So, here the negative is because of this 'F  is negative. So, this is a positive quantity. 

So, again, the same thing we are getting that is (ωα)0.5, but other terms are there which 

we can evaluate now. We know the fuel, I know what is s value, what is ρu value etcetera 

and I can find the α and 'F  at average temperature. 

So, some value of SL can be determined based upon the reaction rates and these 

quantities. So, δ can be written in terms of α and SL like 2α/SL. So, these are the two 

quantitative expressions which we have got from the simplified analysis. Still, you please 

understand that this is not so accurate, but it will give some quantitative results.  

In the previous thermal theory that Ti was used, so in the two-zone model, the ignition 

temperature cannot be like eliminated. So, for that some assumptions have to be made. 

Here, the zones are combined and actually what we are trying to do here is we are saying 

that the Ti approaches Tf, that is what we are trying to do here and try to get the values. 

So, here the dependency of SL on  (average reaction rate) is clearly present. 


