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Lecture - 28
Governing Equations for Reacting Flow — Part 5
Conserved Scalars and Mixture Fraction Approach
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It is noted that if unit mass of fuel is burnt, s times of that of oxidizer is
consumed and (1+s) times of that of products are formed.
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Let us do this. So, Y afhg; will be equal to now you expand this product »_ apghipg -

So, product CO2 and H2O they have heat of formation so, nonzero. That into the rate at

which products are produced.
Similarly, fuel has heat of formation which is nonzero that into rate at which fuel is

consumed. So, that you have to add, but | should actually add Za)gthOX , but this is 0

htox is 0, so, | need not add that. These are the two terms which will result from this

summation.
Now, you can see that the rate at which products are produced is @pg . What that will be

equal to? That is equal to this.



- m

So, we can say apg =—(1+S)a@g , when 1 kg of fuel is consumed, 1 + s kg of products is

formed, because 1 kg of fuel reacts with s kg of oxidizer to form 1 + s kg of products.
Now, here 1 kg of fuel is consumed. So, | have put negative sign here into 1 + s that will

be the rate at which the products are formed. So, now, this wpg is written as minus (1+
S)wg + afhge . So, taking the @f outside, we get hg —(1+S)hepg , this is the heat of

combustion Ahc.

So, wgAh, =Za’>,’hﬁ . So, that will be this heat of combustion times the rate at which

fuel is consumed.
So, that is this term. Now, if I do this then, why | am arriving at this? Because | invoke
this when unit mass of fuel is burnt s times of that of oxidizer is consumed and 1 + s
times of that of products is formed. That is the criteria used.
Now, write the energy equation in this way that is pcoudT/dx convective term equal to
d(pDcp)/dx. So, Alcy = pD; so, A = pDc,.
ar  d aTr

pcpuﬁ = E(pDCp a) — wp Ah_
So, that is what | have written here pDcpdT/dx minus this. So, this | have to minus this
summation term will be equal to this term. So, | am just substituting here this. So, this is
the energy equation. So, we have three equations for the species conservation, any two
you can use.
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Simplified Governing Equations

A = B e 7
Taking,'1 kg fuel (F) + s kg oxidizer (Ox) - (1+s) kg products (PR),
e

consider the species governing equations in one-dimensional
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Here\ u is the velocity|in x-direction, only ordinary diffusion is { \
considered and diffusion coefficients (D) are taken as the sameand & '

constant for all the species diffusing into the mixture.
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Simplified Governing Equations

Sy,

|

©

The energy equation without the pressure and viscous dissipation /Z{;
works, radiation and Dufour effects, is written as, =) y
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Invoking@(ﬂcp = pD), constant and same values of c, for all the \;\l"‘
species, the enthalpy transport due to species diffusion will cemcel@j”//u
ﬂt‘ Also, the source term will involve standard heats of formation. : é i
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Last term in the above equation is expanded to show that it is equal
to the product of net reaction rate of fuel and heat of combustion
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So, this three out of this any two can be used here. So, now, this plus energy

conservation is this equation. Now, please understand that how will you now eliminate
the source terms. How will you do that? So, if you consider variable like this Yr - Yox/s.
So, now what | do is | take this equation and will multiply by 1/s. The second equation |
will multiply this by 1/s. First equation is Yr this equation | will not do anything, this
minus 1/s times this, then | can write the transport equation as this. The left hand side
will be pu for that combined equation, pud(Ye - Yox/s)/dx = d(pDd(Yr-Y ox/s)/dx)/dx.

So, these two terms no problem. So, that variable come, but now the source term will
transform as @f —agy /'s. Now, you understand that this is the equation, 1 kg of fuel + s
kg of oxidizer will form 1 + s kg; that means, if 1 kg of fuel is consumed s kg of oxidizer
will consume.

So, that means, if | write @f —ap, /s, this will be equal to 0. So, that means, when |
combine the variable as Yr - Yox/s, the source term in that equation vanishes. When you
substitute for Yr, Yr - Yox/s, you will get this source term @f —ag, /s=0; that means,
the source term goes to 0.

So, Yk is not a conserved scalar, Yox is not conserved scalar, but combination of these
two Yr - Yox/s defined for this equation will be a conserved scalar because the rate at
which fuel is consumed will be the rate at which oxidizer is consumed divided by its

mass S.



So, when you subtract these two it will become 0. Similar way we have written here in
this the rate at which product is formed is nothing but the rate at which fuel is consumed

multiplied by the mass of the products or we can write the this as —@f = apg / (1+5).

So, because of this statement, this is single step chemistry. So, we can see this is a
conserved scalar now because no source term. Similarly, if you write Yr + Ypr/(1 + S) as

. m - m

| told you @f + @pg / (1+5) =0. Because this is the relationship here.

U4

So, —apg/(1+s)=wF. So, this will be equal to —@fF . So, this will cancel out and

become 0.

So, this is a scalar which is conserved because there is no source term. Similarly, you can
combine one of the mass fraction say Yr and multiply that equation Yr conservation
equation with Ahc. So, here this term puYrAhc. This entire equation | multiplied Ahc and
this is added to the this energy equation.

So, | have pudYe/dx equal to so, totally this equation now it will be equal to
d(pDdYE)/dx + @g . So, this | will multiply by Ahc and add to this. | am adding these

- m

two. | will get a source term for this as @g Ahc from this equation and —ag ahc from this

equation which will equal 0. So, this cT + YrAhc again becomes the conserved scalar
because the source term cancels out. So, these are the way we define a conserved scalar.
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Governing Equation of Conserved Scalar
)
Defining a variable, b, as one of the conserved scalars, Y¢ = Yo,/s, Y
+M1_+s) and c,T + YgAhg, the conservation equation is written as,

d_d( db).)
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The second order governing equation without a non-linear source
_term s solved with appropriate boundary conditions to get the
distribution of the conserved scalar, b

Itis clear that with the distribution of b, the primitive variables =1
such as Y; YOX/, Yor and T'can be calculated. Based on the definition -~ 4
of b and the boundary conditions, the value of b will vary in a range. 1
Maﬁfr_a@ns will vary between 0 and 1, and temperature will vary / »

between 298 K to the flame temperature.

| _——= - -

When | say | define these three variables as a b variable.

So, letussay b = Yr - Yox/s or b = Yg + Yer/(1+s) or b = ¢y T + YrAhc, then | will have
the equation for b only as this without the source term pudb/dx = d(pDdb/dx)/dx.



So, the second order governing equation without non-linear source term is solved with
appropriate boundary conditions and you can get. So, define b as one of these variables
calculate this and give get a reference for b.

Similarly, define b as another variable and get so, once you solve for this and this and
this all the three you can retrieve back the b. So, by the distribution of b we can retrieve
back the primitive variables which are Yr, Yoy, Ypr and T.

The advantage of this is we do not need to solve this using a source term, there is no
source term here. So, that is the advantage of this. Even though | simplify the equations
like this here the complexity has not reduced because of the presence of the source terms
non-linear source terms but by defining a variable like conserved scalars | get a equation
without non-linear source term I can solve it easily.

So, I can do this and solve for say let me let take this, this will be by I can call so, this is
b1 and this second will be called b, and third will be called bz and | solve for by, b2, b3
then | can retrieve back these variables, but solve it by appropriate boundary conditions.
So, by will have a boundary condition based upon fuel and oxidizers mass fractions;
similarly, bz will have temperature based boundary conditions also in addition. So, based
on that, you can solve this.

Now, here you can see that the b will vary in a range mass fractions normally it will vary
in a range. For example, the first two if you use it will vary in range of say 0 to 1, but if
you take bz it will vary from say 298 K to the flame temperature. So, we can see that

tremendous amount of variation is there.
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( Mixture Fraction 5

Consider the global reaction in which 1 kg of products is formed,

fkg fuel + (1 - ) kg oxidizer > 1 kg products.
/ﬂ_e (/f)gom izer g products

This is a flow process in which fkg of fuel flows into the control
volume through one inlet and (1- f) kg of oxidizer flows in through
another inlet and 1 kg of product flows out through the exit.

If E is a property associated with the flow, then for the mixing of
fuel and the oxidizer stream, which yields a product stream to exit the
control volume, the following relation holds good:

fE;+(1-f)Ep=Ey
where E is the property of the fuel str‘e-am,_E'A is that of the oxidizer
or air stream and Ey, is that of the mixture, which on completion of the
chemical reaction, will be the property of the product mixture.




So, is there any way to normalize this that is what we are trying to do here by defining

what is called a mixture fraction? When | define a mixture fraction what | assume is let

us see this. So, | want 1 kg of products. So, some fraction of fuel, fraction of 1 kg I burnt,

f kg of fuel, then 1 - f is the stoichiometric air required for this.

So, 1 - f kg of oxidizer you know, 1 kg of product. So, that is the equation | consider for

example, but we can see that there is a flow process where f kg of fuel flows into the

control volume through one of the inlet then 1 - f kg of oxidizer flows in through another

inlet and finally, 1 kg of products are formed and they exit through another exit port.

So, now any extensive property, E, | will take or it may be a specific property also. So, |

take any property associated with the flow and what | do is I can write this.
fEF+(1-f)EA=Em

f times Er + (1 — f) Ea = Em. What is this? This is the property's value Er is the property

value at the fuel stream. Similarly, Ea is the property value at the air side or the oxidizer

side.

Similarly, 1 say mixture which is the product finally. So, Em is the property of the

mixture or when complete reaction is finished it will be the property of the product. So,

this equation holds good.

(Refer Slide Time: 13:40)

Mixture Fraction

From the equation: f E¢ + (1 - f) E, = EM, mixture fraction f is written
e —

as,
F= (Ew-En(Ee - En).

|[ The property E is a conserved scalar obtained from any two regular
| flow variables such as mass fractions of fuel, oxidizer and products.
As seen earlier, if 1 kg of fuel and s kg of oxygen react to form (1 +s)

;‘ kg of products, the conservation equation involving the scalar N pre
I variable,? E=Yp- Yo,l% has no source terms. A

@ =

The mixture fraction, fis a normalized variable and always vary
from unity at the fuel stream to zero at the oxidizer stream, as per its
definiton.
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Now, based upon this equation | define f as property at the mixture stream minus

property at the air side or the oxidizer side divided by property at the fuel side minus
property at the oxidizer side. When | do this, this I call mixture fraction do you
understand?

f= (Em — EA)/(EF — Ep).



So, now the property can be anything as I told you | can have property, the property is a
conserved scalar. So, that is what | have already defined, conserved scalar. So, let us take
property as Yr - Yox/s, one of the conserved scalar | have and | can write also Cp. So, E
can be also C,T + YrAhc. So, this can also be called. So, here what we defined in this
here. So, this can also be one of the E values, property values.

So, when you use this then you can see that f is a normalized variable that will vary from
one at the fuel stream and it goes to O at the oxidizer stream. So, that is the definition of
mixture fraction. Now, based upon this any variable we can take.

(Refer Slide Time: 15:02)

Mixture Fraction

When E = Yg = Yo,/s is defined as a conserved scalar, the mixture
fraction is written as,

Vg i 7
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Itis understood that Y, will be zero in the fuel stream and Y will be

zero in the oxidizer stream. Also, Y in the fuel stream will be unity.
Based on this, f may be written as

/ '/’ /
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Now, | can write, let us take this for example, Yr - Yox/s then f can be defined as what
YE - Yox/s at the mixture stream minus the same quantity at the oxidizer stream divided
by the difference between Yr - Yoyx/s at the fuel stream minus that of the oxidizer stream.
So, this will be the mixture fraction.

Y —Yox/s]y —[Ye —Yox/s]4

~[Ye —Yox/s]e ~[Ye ~Yox /],

But, you know that at fuel stream let us take fuel stream, Yox = 0 at the fuel stream. So,

if complete combustion takes place Yr and Yox will be consumed, but let us just take
this. Similarly, since fuel is supplied through a particular inlet and oxidizer is supplied
through a separate inlet. So, Yox = 0 at the fuel stream; similarly, Yr = 0 in the oxidizer
stream that is for sure.

So, when you say the oxidizer stream, this will be zero, here this also will be 0. But, in
the fuel stream this will be zero, that is it. Now, what will be the value of Yr in the fuel
stream? This will be equal to 1 only fuel is coming out of this. So, this will be equal to 1.



So, | can write this as 1 + Yox/s in the denominator and in the numerator Yr | am
eliminating and in the mixture | have both Yr and Yox. That means that in the mixture
until the complete combustion takes place there will be some amount of fuel and
oxidizer. So, this will be the mixture fraction in the mixture and this is the definition of
mixture fraction.

(Refer Slide Time: 16:57)

Mixture Fraction and Conserved Scalar

If the chemical reaction is completed within the combustion chamber,
either fuel or oxygen is consumed based on the value of f, and will
not be present in the product (M) st@
SWE, then both fuel and oxygen will be consumed.
Thus, fcan have three possible values: -2

\/ 5
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Now, if chemical reaction is completed either fuel or oxygen is consumed based upon the
value of s, f and will not be present in the mixture. So, for example, chemical reaction is
incomplete; that means, if insufficient oxygen is there and that is consumed. Excess fuel
will be there in the product. If excess oxygen is supplied and fuel is consumed, then
oxygen excess oxygen will be there in the product.

Now, if at some location say for example, if there is excess oxygen supplied, some
location there will be stoichiometric combustion. If f is equal to stoichiometric value;
that means, at that location there will be no fuel or oxygen, then both fuel and oxygen
will be consumed. So, based upon that we have scenarios like this.

[Yox /s]A

f=fgoich:f=——"2—
stoich 1+[Y0x /S]A

So, let us say the value is stoichiometric. For example, here also see here this is the
stoichiometric value. Let us take that first. When | say f equal to, for this definition of f
when | say f = fsoicn; that means, | should not have any fuel or oxidizer in the mixture.
So, that means, see here YF =0, Yo =0.

So, this term will go out and stoichiometric value of f will be the oxidizer side Yox/s at

the oxidizer stream divided by 1 that is the fuel mass fraction at the fuel stream + Yox/s



at the oxidizer stream. This will be the stoichiometric f value, by this definition what we
have done here.

So, this is the stoichiometric, but if there are two conditions now: if f is less than
stoichiometric what will be the mixture. This f is less than stoichiometric, then what
happens? Fuel will not be there in the mixture.

[Yox /8]y +[Yox /5],

f<funion: f=
stoich 1+[Yox / S]A

So, other terms will be the same, the fuel will be consumed here. So, fuel Yr = 0, you
can note that Yr = 0 here. So, you have to put Yr = 0 in this and write that situation. So, f
< fstoich. SO, T will be defined as putting Yr = 0 in the product mixture.

Similarly, when f is greater than f stoichiometric, then oxygen will not be there, fuel rich
mixture.

[Ye Iy, +[Yox /5],

f > fooien: T =
stoich 1+[YOX/S]A

So, Yr will be there, oxygen will go to 0 in the product. So, this will be the definition.
Now | only trace the mixture fraction values and get these values. We can retrieve the
value of Yr, Yox etcetera just by solving the mixture fraction alone that is the advantage
of defining the mixture fraction.

(Refer Slide Time: 19:52)

Mixture Enthalpy

The extent of a diffusion or a non-premixed flame can be depicted by
the CW

As seen before, conserved scalars may also be defined using the
mass fraction of the products, such as, Y+ Yg/(1+s)and Yy/s +
Y4/(1+s). In all such cases, the source term will be zero.

s o b«

The mixture enthalpy is defined using mixture specific heat (c;) as,

h= 5 (] X ]“_6"_ )+ ZYJ hﬂ,g

Noting that the difference between enthalpy of reactant and that of
the product should be the heat of combustion, Ahe, h may be
conveniently written as, h = ¢,(T - T) + Y¢Ahc, which is a
conserved scalar. Here, T, may or may not be included as required.

Now, once | know, | do not need chemical kinetics as | told. So, the extent of diffusion

or non-premixed flame is depicted by the contour of f = fsoich. When | note the points



where f = fswich and connect them then | get the flame shape. So, that is the location at
which the reaction takes place.

So, several conserved scalars like Yr + Ypr/(1 + S) Or Yox/s + Ypr/(1 + S) anything can
be used here. Similarly, this h also defined like this, say | can either use Trer. Tref may or
may not be used here. | can say just cpT + YrAhc or if you want you can add reference

temperature T - Trer plus this anything can be done.
h= Cp (T _Tref )+ZY]hJ|T
j

(Refer Slide Time: 20:49)
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The mixture fraction, f, can be written in terms of h as follows: 7'1’*

£ {
= rgf)+Yr_.\/Ahr _'/VC;)(T/ _/_[rﬁL)/
Yee, T —I,)—CP(T,—TW/)

Here, Tr is the temperature of the fuel stream, Ty, is the product
temperature, Y, is the mass fraction of the fuel in the product
Stream and T’Llsthetemmﬂm
—  —
As discussed with the b variable, the mixLefracManfbesﬂed
without involving any non-linear source terms, and the original
variables, such as mass fractions of the species and temperature,
may be obtained from the mixture fraction field.

So, now if you use this then you will get another equation based upon the f. So, for
example, when | write the enthalpy c,AT + YrAhe. Now, we can say that T can be O
also. Reference number can be 0 also 0 K.
So, in that case | write the f like this. So, we can see this when | say M this is the
mixture.

o (T —Trer )+ Ye mAhe —Cp (Too ~Trer )

A+ (Te =T, )=y (T —Trer )

So, mixture temperature Cp(Tm - Trer) + YEMARNC - Cp(Tw - Trer), there Ye = 0 and this is
air side. So, Yr = 0 here. So, we can actually write YrAhc at the oxygen side which is
equal to O or this is air side, but this is equal to 0. So, | do not include that.

Similarly, in this term you can see the ¢, Te T of fuel here this capital F is fuel Te - T +
YrAhe, this Yr = 1 here in the fuel stream and in the oxidizer stream again the same term

appears here because Yr = 0 there. So, this will be the definition of mixture fraction.



So, this conservation, | have same conservation like b variable I can write a variable and
solve for mixture fraction which will not have any source term. So, as | wrote the
equation here for b, instead of b you substitute f here. So, that will be the conservation
equation for the mixture fraction, solve that.

Once you solve that, then you can retrieve the original variables. So, you can see that this
T is the air temperature, | have given everything. So, Twm is the product temperature,
Yewm is the mass fraction of the fuel in the product stream and T is the temperature of the
oxidizer stream and Tr is the temperature of the fuel stream.

So, we have separate fuel stream, oxidizer stream etcetera. So, that will allow us and
until the combustion is complete we will note all the values as the function of x for this
one-dimensional problem the value of f and we can note exactly where the fuel and
oxidizer are consumed and there we can say the flame zone is formed.

(Refer Slide Time: 23:23)
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When,f,(tsmc"r YF = 0, éx = yOx.A (fslotch & f)/ fsro:m /V
When f> fygin, Yo, =0, E= (F= fsoion)(1 - fsoic)-
At any f, the mass fraction of the inert species is obtained as,
Your = Yours1-1 ,
The mass fraction of the product is obtained as, \{1/’
oYy Yor Ve B

Similarly, by solving the scalar transport equation for h based mixture
fraction, temperature distribution may be determined.
5 Lo
When < fugen F= Ty - T.) /[c(Te-T.) + h]
When > fgien, = [Co(Ty - Te) - YouAe/S]/ [65(Te -T.) - YouAhe/S]
Atthe flame sheet, the temperature may be evaluated as,

W = fuel( Al + Te- T] + T,

Now, retrieving the variables. Once f is known as I told you when f < fstich, YF =0, Yox
= Yoa (that is the oxidizer mass fraction at the oxidizer stream) x fsoich — f/f stoich.

So, you know the value of f as a function of x. So, that is this f. That you substitute at
any location, I want value of Yox this is at any x location | want value of Yox. | can
retrieve it by knowing the value of f at that location f(x) that fstwich is known to me.

So, that Yox at the oxidizer stream is known to me this is known fsoich is known. So,
when | know f(x) 1 will calculate Yox(x). Similarly, when f > fsoich then 1 know that Yox
= 0 at that location and it is the fuel side.



Yr can be calculated as the function of x at any x as with this relationship where f is
calculated as a function of x. So, once f is known as a function of x, then Y is calculated
as a function of x, using this I will retrieve the variables.

For inert species, Yinert Will be equal to Yinert at the oxidizer stream x (1 — f). | am
assuming nitrogen for example. So, nitrogen mass fraction at the oxidizer stream x (1 —
f). Similarly, products can be retrieved once you know inert then use this identity to get
the product mass fractions, that is it. So, that is the way you retrieve.

Similarly, temperature, when f < f swich, then you see that f can be written like this. f as a
function of x can be written in terms of this and you get this. Similarly, f > fswoich You can
write this equation and get the values of T. Similarly, the flame temperature can be
calculated with this equation.

(Refer Slide Time: 25:43)

Flame Structure by SCRS
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So, now once you retrieve this, I can plot the structure. So, you can remember this | will
go back to this and show this.
(Refer Slide Time: 25:52)

Control of Combustion Phenomena

/If te «)Lthe combustion phenomena is transport controlled.

In this case reactants are mixed only at the flame zone, the gradients
of species are significant. The rate of the depletion of the reactant

‘mixture is dictated by the relatively slower transport rate of reactants
into the flame zone, and chemical kinetics is much faster‘

a
\/ Ii te= tRj the combustion phenomena is controlled by both.

e

A

]

You can see the gradient. So, the temperature varies like this. This is the flame sheet, this
is fuel side, oxidizer side and flame is formed and you can see the depletion of fuel,
depletion of oxidizer, maximum temperature formed at the flame zone and decreases
towards the fuel side and the oxidizer side.

So, this is the structure of the diffusion flame which we get in the final slide you can see
here. Now, fuel is depleted, the oxidizer this is the oxidizer side and this is the fuel side.
So, fuel is depleted here to 0, where the flame is formed or the maximum products are
formed. Similarly, oxidizer is depleted from the oxidizer side to 0 and they react to form
the products; products go to both the sides.

Similarly, temperature reaches maximum at the stoichiometric value F stoichiometric.
You get a linear variation only here because already we have linearized the problem. We
have removed the sources. In practice, actually 1 will get some non-linear variation as |
have shown here. Schematically I have shown here, non-linear variation will be seen.
But, it is fine. Actually it is not so non-linear. So, here at least we get the location of
flame properly and the distribution of the species mass fractions and temperature. So,
this simple chemically reacting system will be very useful to analyze the diffusion flame.

So, from this I will stop the equations, governing equations for the reactive flow.



