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(1 ) ( (1 ) )F fPR F fF fF fPR F cs h h h s h h      = − + + = − + =   

Let us do this. So, í fih will be equal to now you expand this product PR fPRh . 

So, product CO2 and H2O they have heat of formation so, nonzero. That into the rate at 

which products are produced. 

Similarly, fuel has heat of formation which is nonzero that into rate at which fuel is 

consumed. So, that you have to add, but I should actually add Ox fOxh , but this is 0 

hf,Ox is 0, so, I need not add that. These are the two terms which will result from this 

summation.  

Now, you can see that the rate at which products are produced is PR . What that will be 

equal to? That is equal to this.  



So, we can say PR (1 ) Fs = − + , when 1 kg of fuel is consumed, 1 + s kg of products is 

formed, because 1 kg of fuel reacts with s kg of oxidizer to form 1 + s kg of products.  

Now, here 1 kg of fuel is consumed. So, I have put negative sign here into 1 + s that will 

be the rate at which the products are formed. So, now, this PR  is written as minus (1+ 

s) F  + F fFh . So, taking the F  outside, we get (1 )fF fPRh s h− + , this is the heat of 

combustion ΔhC. 

So, F c i fih h   = . So, that will be this heat of combustion times the rate at which 

fuel is consumed.  

So, that is this term. Now, if I do this then, why I am arriving at this? Because I invoke 

this when unit mass of fuel is burnt s times of that of oxidizer is consumed and 1 + s 

times of that of products is formed. That is the criteria used. 

Now, write the energy equation in this way that is ρcpudT/dx convective term equal to 

d(ρDcp)/dx. So, λ/cp = ρD; so, λ = ρDcp.  

 

So, that is what I have written here ρDcpdT/dx minus this. So, this I have to minus this 

summation term will be equal to this term. So, I am just substituting here this. So, this is 

the energy equation. So, we have three equations for the species conservation, any two 

you can use. 
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So, this three out of this any two can be used here. So, now, this plus energy 

conservation is this equation. Now, please understand that how will you now eliminate 

the source terms. How will you do that? So, if you consider variable like this YF - YOx/s. 

So, now what I do is I take this equation and will multiply by 1/s. The second equation I 

will multiply this by 1/s. First equation is YF this equation I will not do anything, this 

minus 1/s times this, then I can write the transport equation as this. The left hand side 

will be ρu for that combined equation, ρud(YF - YOx/s)/dx = d(ρDd(YF-YOx/s)/dx)/dx.  

So, these two terms no problem. So, that variable come, but now the source term will 

transform as / sF Ox  − . Now, you understand that this is the equation, 1 kg of fuel + s 

kg of oxidizer will form 1 + s kg; that means, if 1 kg of fuel is consumed s kg of oxidizer 

will consume. 

So, that means, if I write / sF Ox  − , this will be equal to 0. So, that means, when I 

combine the variable as YF - YOx/s, the source term in that equation vanishes. When you 

substitute for YF, YF - YOx/s, you will get this source term / s 0F Ox  − = ; that means, 

the source term goes to 0.  

So, YF is not a conserved scalar, YOx is not conserved scalar, but combination of these 

two YF - YOx/s defined for this equation will be a conserved scalar because the rate at 

which fuel is consumed will be the rate at which oxidizer is consumed divided by its 

mass s. 



So, when you subtract these two it will become 0. Similar way we have written here in 

this the rate at which product is formed is nothing but the rate at which fuel is consumed 

multiplied by the mass of the products or we can write the this as / (1 s)F PR  − = + . 

So, because of this statement, this is single step chemistry. So, we can see this is a 

conserved scalar now because no source term. Similarly, if you write YF + YPR/(1 + s) as 

I told you / (1 s) 0F PR  + + = . Because this is the relationship here. 

So,  / (1 s)PR F  − + = . So, this will be equal to F− . So, this will cancel out and 

become 0.  

So, this is a scalar which is conserved because there is no source term. Similarly, you can 

combine one of the mass fraction say YF and multiply that equation YF conservation 

equation with ΔhC. So, here this term ρuYFΔhC. This entire equation I multiplied ΔhC and 

this is added to the this energy equation. 

So, I have ρudYF/dx equal to so, totally this equation now it will be equal to 

d(ρDdYF)/dx + F . So, this I will multiply by ΔhC and add to this. I am adding these 

two. I will get a source term for this as F ΔhC from this equation and F− ΔhC from this 

equation which will equal 0. So, this cpT + YFΔhC again becomes the conserved scalar 

because the source term cancels out.  So, these are the way we define a conserved scalar.  
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When I say I define these three variables as a b variable.  

So, let us say b = YF - YOx/s or b = YF + YPR/(1+s) or b = cpT + YFΔhC, then I will have 

the equation for b only as this without the source term  ρudb/dx = d(ρDdb/dx)/dx.  



So, the second order governing equation without non-linear source term is solved with 

appropriate boundary conditions and you can get. So, define b as one of these variables 

calculate this and give get a reference for b.  

Similarly, define b as another variable and get so, once you solve for this and this and 

this all the three you can retrieve back the b. So, by the distribution of b we can retrieve 

back the primitive variables which are YF, YOx, YPR and T. 

The advantage of this is we do not need to solve this using a source term, there is no 

source term here. So, that is the advantage of this. Even though I simplify the equations 

like this here the complexity has not reduced because of the presence of the source terms 

non-linear source terms but by defining a variable like conserved scalars I get a equation 

without non-linear source term I can solve it easily.  

So, I can do this and solve for say let me let take this, this will be b1 I can call so, this is 

b1 and this second will be called b2 and third will be called b3 and I solve for b1, b2, b3 

then I can retrieve back these variables, but solve it by appropriate boundary conditions.  

So, b1 will have a boundary condition based upon fuel and oxidizers mass fractions; 

similarly, b3 will have temperature based boundary conditions also in addition. So, based 

on that, you can solve this. 

Now, here you can see that the b will vary in a range mass fractions normally it will vary 

in a range. For example, the first two if you use it will vary in range of say 0 to 1, but if 

you take b3 it will vary from say 298 K to the flame temperature. So, we can see that 

tremendous amount of variation is there. 
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So, is there any way to normalize this that is what we are trying to do here by defining 

what is called a mixture fraction? When I define a mixture fraction what I assume is let 

us see this. So, I want 1 kg of products. So, some fraction of fuel, fraction of 1 kg I burnt, 

f kg of fuel, then 1 - f is the stoichiometric air required for this. 

So, 1 - f kg of oxidizer you know, 1 kg of product. So, that is the equation I consider for 

example, but we can see that there is a flow process where f kg of fuel flows into the 

control volume through one of the inlet then 1 - f kg of oxidizer flows in through another 

inlet and finally, 1 kg of products are formed and they exit through another exit port.  

So, now any extensive property, E, I will take or it may be a specific property also. So, I 

take any property associated with the flow and what I do is I can write this.  

f EF + (1 – f) EA = EM 

f times EF + (1 – f) EA = EM. What is this? This is the property's value EF is the property 

value at the fuel stream. Similarly, EA is the property value at the air side or the oxidizer 

side. 

Similarly, I say mixture which is the product finally. So, EM is the property of the 

mixture or when complete reaction is finished it will be the property of the product. So, 

this equation holds good.  
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Now, based upon this equation I define f as property at the mixture stream minus 

property at the air side or the oxidizer side divided by property at the fuel side minus 

property at the oxidizer side. When I do this, this I call mixture fraction do you 

understand? 

f = (EM – EA)/(EF – EA). 



So, now the property can be anything as I told you I can have property, the property is a 

conserved scalar. So, that is what I have already defined, conserved scalar. So, let us take 

property as YF - YOx/s, one of the conserved scalar I have and I can write also Cp. So, E 

can be also CpT + YFΔhC. So, this can also be called. So, here what we defined in this 

here. So, this can also be one of the E values, property values. 

So, when you use this then you can see that f is a normalized variable that will vary from 

one at the fuel stream and it goes to 0 at the oxidizer stream. So, that is the definition of 

mixture fraction. Now, based upon this any variable we can take. 
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Now, I can write, let us take this for example, YF - YOx/s then f can be defined as what 

YF - YOx/s at the mixture stream minus the same quantity at the oxidizer stream divided 

by the difference between YF - YOx/s at the fuel stream minus that of the oxidizer stream. 

So, this will be the mixture fraction. 

   

   

/ /

/ /

F Ox F OxM A

F Ox F OxF A

Y Y s Y Y s
f

Y Y s Y Y s

− − −
=

− − −
 

But, you know that at fuel stream let us take fuel stream, YOx = 0 at the fuel stream. So, 

if complete combustion takes place YF and YOx will be consumed, but let us just take 

this. Similarly, since fuel is supplied through a particular inlet and oxidizer is supplied 

through a separate inlet. So, YOx = 0 at the fuel stream; similarly, YF = 0 in the oxidizer 

stream that is for sure.  

So, when you say the oxidizer stream, this will be zero, here this also will be 0. But, in 

the fuel stream this will be zero, that is it. Now, what will be the value of YF in the fuel 

stream? This will be equal to 1 only fuel is coming out of this. So, this will be equal to 1. 



So, I can write this as 1 + YOx/s in the denominator and in the numerator YF I am 

eliminating and in the mixture I have both YF and YOx. That means that in the mixture 

until the complete combustion takes place there will be some amount of fuel and 

oxidizer. So, this will be the mixture fraction in the mixture and this is the definition of 

mixture fraction.  
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Now, if chemical reaction is completed either fuel or oxygen is consumed based upon the 

value of s, f and will not be present in the mixture. So, for example, chemical reaction is 

incomplete; that means, if insufficient oxygen is there and that is consumed. Excess fuel 

will be there in the product. If excess oxygen is supplied and fuel is consumed, then 

oxygen excess oxygen will be there in the product. 

Now, if at some location say for example, if there is excess oxygen supplied, some 

location there will be stoichiometric combustion. If f is equal to stoichiometric value; 

that means, at that location there will be no fuel or oxygen, then both fuel and oxygen 

will be consumed. So, based upon that we have scenarios like this.  

 

 

/
:

1 /

Ox A
stoich

Ox A

Y s
f f f

Y s
= =

+
 

So, let us say the value is stoichiometric. For example, here also see here this is the 

stoichiometric value. Let us take that first. When I say f equal to, for this definition of f 

when I say f = fstoich; that means, I should not have any fuel or oxidizer in the mixture. 

So, that means, see here YF = 0, YO = 0. 

So, this term will go out and stoichiometric value of f will be the oxidizer side YOx/s at 

the oxidizer stream divided by 1 that is the fuel mass fraction at the fuel stream + YOx/s 



at the oxidizer stream. This will be the stoichiometric f value, by this definition what we 

have done here.  

So, this is the stoichiometric, but if there are two conditions now: if f is less than 

stoichiometric what will be the mixture. This f is less than stoichiometric, then what 

happens? Fuel will not be there in the mixture. 

   

 

/ /
:

1 /

Ox OxM A
stoich

Ox A

Y s Y s
f f f

Y s

− +
 =

+
 

So, other terms will be the same, the fuel will be consumed here. So, fuel YF = 0, you 

can note that YF = 0 here. So, you have to put YF = 0 in this and write that situation. So, f 

< fstoich. So, f will be defined as putting YF = 0 in the product mixture.  

Similarly, when f is greater than f stoichiometric, then oxygen will not be there, fuel rich 

mixture.  

   

 

/
:

1 /

F Ox AM
stoich

Ox A

Y Y s
f f f

Y s

+
 =

+
 

So, YF will be there, oxygen will go to 0 in the product. So, this will be the definition. 

Now I only trace the mixture fraction values and get these values. We can retrieve the 

value of YF, YOx etcetera just by solving the mixture fraction alone that is the advantage 

of defining the mixture fraction.  
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Now, once I know, I do not need chemical kinetics as I told. So, the extent of diffusion 

or non-premixed flame is depicted by the contour of f = fstoich. When I note the points 



where f = fstoich and connect them then I get the flame shape. So, that is the location at 

which the reaction takes place. 

So, several conserved scalars like YF + YPR/(1 + s) or YOx/s + YPR/(1 + s) anything can 

be used here. Similarly, this h also defined like this, say I can either use Tref. Tref may or 

may not be used here. I can say just cpT + YFΔhC or if you want you can add reference 

temperature T - Tref plus this anything can be done. 

( ) ,
ref

p ref j j T

j

h c T T Y h= − +
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So, now if you use this then you will get another equation based upon the f. So, for 

example, when I write the enthalpy cpΔT + YFΔhc. Now, we can say that Tref can be 0 

also. Reference number can be 0 also 0 K.  

So, in that case I write the f like this. So, we can see this when I say M this is the 

mixture.  

( ) ( )
( ) ( )

,p M ref F M C p ref

C p F p ref

c T T Y h c T T
f

h c T T c T T



 

− +  − −
=

 + − − −
 

So, mixture temperature cp(TM - Tref) + YF,MΔhC - cp(T∞ - Tref), there YF = 0 and this is 

air side. So, YF = 0 here. So, we can actually write YFΔhC at the oxygen side which is 

equal to 0 or this is air side, but this is equal to 0. So, I do not include that. 

Similarly, in this term you can see the cpTF T of fuel here this capital F is fuel TF - T∞ + 

YFΔhc, this YF = 1 here in the fuel stream and in the oxidizer stream again the same term 

appears here because YF = 0 there. So, this will be the definition of mixture fraction.  



So, this conservation, I have same conservation like b variable I can write a variable and 

solve for mixture fraction which will not have any source term. So, as I wrote the 

equation here for b, instead of b you substitute f here. So, that will be the conservation 

equation for the mixture fraction, solve that.  

Once you solve that, then you can retrieve the original variables. So, you can see that this 

T∞ is the air temperature, I have given everything. So, TM is the product temperature, 

YFM is the mass fraction of the fuel in the product stream and T∞ is the temperature of the 

oxidizer stream and TF is the temperature of the fuel stream. 

So, we have separate fuel stream, oxidizer stream etcetera. So, that will allow us and 

until the combustion is complete we will note all the values as the function of x for this 

one-dimensional problem the value of f and we can note exactly where the fuel and 

oxidizer are consumed and there we can say the flame zone is formed. 
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Now, retrieving the variables. Once f is known as I told you when f < fstoich, YF = 0, YOx 

= YOA (that is the oxidizer mass fraction at the oxidizer stream) × fstoich – f/f stoich.  

So, you know the value of f as a function of x. So, that is this f. That you substitute at 

any location, I want value of YOx this is at any x location I want value of YOx. I can 

retrieve it by knowing the value of f at that location f(x) that fstoich is known to me. 

So, that YOx at the oxidizer stream is known to me this is known fstoich is known. So, 

when I know f(x) I will calculate YOx(x). Similarly, when f > fstoich then I know that YOx 

= 0 at that location and it is the fuel side. 



YF can be calculated as the function of x at any x as with this relationship where f is 

calculated as a function of x. So, once f is known as a function of x, then YF is calculated 

as a function of x, using this I will retrieve the variables.  

For inert species, Yinert will be equal to Yinert at the oxidizer stream × (1 – f). I am 

assuming nitrogen for example. So, nitrogen mass fraction at the oxidizer stream × (1 – 

f). Similarly, products can be retrieved once you know inert then use this identity to get 

the product mass fractions, that is it. So, that is the way you retrieve. 

Similarly, temperature, when f < f stoich, then you see that f can be written like this. f as a 

function of x can be written in terms of this and you get this. Similarly, f > fstoich you can 

write this equation and get the values of T. Similarly, the flame temperature can be 

calculated with this equation. 

(Refer Slide Time: 25:43) 

 



So, now once you retrieve this, I can plot the structure. So, you can remember this I will 

go back to this and show this.  
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You can see the gradient. So, the temperature varies like this. This is the flame sheet, this 

is fuel side, oxidizer side and flame is formed and you can see the depletion of fuel, 

depletion of oxidizer, maximum temperature formed at the flame zone and decreases 

towards the fuel side and the oxidizer side.  

So, this is the structure of the diffusion flame which we get in the final slide you can see 

here. Now, fuel is depleted, the oxidizer this is the oxidizer side and this is the fuel side. 

So, fuel is depleted here to 0, where the flame is formed or the maximum products are 

formed. Similarly, oxidizer is depleted from the oxidizer side to 0 and they react to form 

the products; products go to both the sides.  

Similarly, temperature reaches maximum at the stoichiometric value F stoichiometric. 

You get a linear variation only here because already we have linearized the problem. We 

have removed the sources. In practice, actually I will get some non-linear variation as I 

have shown here. Schematically I have shown here, non-linear variation will be seen.  

But, it is fine. Actually it is not so non-linear. So, here at least we get the location of 

flame properly and the distribution of the species mass fractions and temperature. So, 

this simple chemically reacting system will be very useful to analyze the diffusion flame. 

So, from this I will stop the equations, governing equations for the reactive flow. 

 


