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Ok now, once you know the Gibbs function or Gibbs free energy for a particular species 

i then the Gibbs free energy of a mixture of ideal gases can be calculated by just same as 

H, ∑niHi. Same thing I am using here ∑nigi but calculated at a particular temperature and 

pressure.  

So, that you can now expand this term here and write. ∑ni[gi(T,p0) + RuT×ln(pi/po)]. So, 

this is the Gibbs function at a particular temperature calculated at atmospheric pressure.  

Again, we have tables for this and this even you can calculate knowing the mole fraction 

of the particular species. In fact, if you want to determine mole fraction, this term is 

which is going to be useful for us.  

Now, this is the equation  
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Now, the condition for equilibrium at a given temperature and pressure is dGmix = 0. So, 

you have to just differentiate this by chain rule. 
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So, dNi g plus Ni dg. Now, you can see that the second term here goes to 0 because at a 

given temperature g has a constant value. Similarly, pressure is constant; partial pressure 

is depend on the total pressure that is constant. When you sum all the partial pressure you 

get the total pressure and total pressure is held constant. So, this second term goes to 0. 

That means, dGmix will be just equal the first term.  
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So, this is the condition for equilibrium. 

Now, this has to be implemented for any reaction. So, for example, when I said 

equilibrium reactions, I consider CO2 → CO + ½ O2. Similarly, H2O → H2 + ½ O2. 

These are all equilibrium reaction. I have to apply this condition to the equilibrium 

reaction to get the equilibrium products. 

Now, let us consider elementary reactions which are reversible in nature. So, let us 

consider an arbitrary elementary reaction written like this capital A, B, C, D represent the 

species and small a, b, c, d represent the stoichiometric coefficients. 

aA + bB ↔ cC + dD 



  

So, aA + bB reversibly giving small cC + dD, that is the general equation we are trying 

to consider here.  

We can also have a bi-molecular reaction like this. Now, you get any general equation 

written like this and try to apply this condition and see how to evaluate this.  

So, before going to this evaluation, we should understand what is the change in number 

of moles dNi. So, the change in the number of moles of a species is directly proportional 

to the corresponding stoichiometric coefficient.  

dNA = -ka; dNB = -kb; 

So, for the species A, if a, small a is the stoichiometric coefficient, then the change in the 

number of moles of the species a will be proportional to stoichiometric coefficient. So, I 

add a constant of proportionality k. I also put a minus sign here because that is the 

reactant.  

So, we definitely know that if I consider forward reaction here, then the reactants are 

consumed. So, dNA and dNB should be negative. So, I put a negative sign and the change 

in the number of moles is proportional to the corresponding stoichiometric coefficients a, 

b etcetera here. So, I put proportionality constant k. 

dNC = +kc and dND = +kd 

Coming to the products, the change in number of products will be correspondingly 

proportional to their coefficients. So, dNC will be proportional to c, dND will be 

proportional to small d and I put a plus sign because they are produced the forward 

reaction and the constant of proportionality is k.  

So, you can now replace dN's by ka, kb, etcetera for the particular reaction here with the 

sign. 

When I consider the reverse reaction then dNA will be positive, dNB will be positive. On 

the other hand, dNC and dND will be negative. So, the kb value etcetera what we are 

going to calculate next will be dependent on which direction you consider this reaction. 
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Now, let us apply this rule and calculate dGmix for the reaction. When I make it equal to 0 

then I get this. So, k cancels out, a×gA(T,p0) + RuT×ln(pA/po) + b×gB(T,p0) + 

RuT×ln(pB/po) that is equal to the c and d's correct. 

So, the products, c is the coefficient of the species C that into gC(T,p0) + RuT×ln(pC/p0). 

Similarly, you can do this for D. So, this is the equation I get when I subject this equation 

to dGmix equal to 0. 

Now, you now try to group the Gibbs functions in one side and the partial pressures on 

the other side.  
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So, -c×gC(T, p0) + d×gD(T,po) -a×gA(T,p0) -b×gB(T,p0) will be equal to now group this 

log terms RuT times logarithm of the product partial pressure of product raised to the 

stoichiometric coefficient.   

So, (pC/p0)
c×(pD/p0)

d divided by the reactants again say same products product of the 

reactant partial pressures (pA/p0)
a×(pB/po)

b raised to the stoichiometric coefficient. So, 



  

this is the equation what we get and I am grouping the g's on one side, partial pressure 

terms on the other side and get this equation. 

Now, I started from this equation, applied dGmix = 0, I got this equation and I grouped 

the g's in the left-hand side and the partial pressures in the right-hand side I get this 

equation.  
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Now, I define the left-hand side as standard state Gibbs function change ΔG(T, p0). You 

can see in the Turns book, this is represented by this in a compact notation ΔG0 that is 

for standard atmospheric pressure and the subscript T represent any temperature.  

So, I have just written ΔG(T, p0), you can also write like this 
0

TG  that will be equal to 

the products. Gibbs free energy of the products c×gC(T, p0) + d×gD(T, p0), then minus 

again add the reactant sides.  

So, all the product Gibbs free energy multiplied by stoichiometric coefficients should be 

added and that should be subtracted to this reactants Gibbs free energy, the sum of 

reactants.  

So, this is the Gibbs function change, standard state Gibbs function change calculated at 

any temperature, but only at atmospheric pressure. So, that means, ΔG is a function of 

temperature only. 

Now, in the right-hand side, I have already grouped the partial pressures like this in the 

natural logarithm term. Now, that I define as equilibrium constant based on partial 



  

pressures. This partial pressure is the ratio of product of the partial pressures of products 

raised to the stoichiometric coefficient divided by corresponding atmospheric pressure.   

Similarly, that divided by the product of the reactant partial pressure ratios raised to 

corresponding stoichiometric proportions. This ratio is called the equilibrium constant at 

partial pressure Kp. 
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So, now I can write the previous equation like this ΔG(T, p0) = -RuT ln(Kp).   

So, you please understand that to calculate Kp, I need this. So, temperature is known 

already. Since temperature is known, ΔG can be calculated because ΔG is a function of 

temperature only. It is done at atmospheric pressure.  

Then Kp can be calculated. So, Kp is also a function of temperature only.  
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Now, how the pressure effects come, because of the definition of Kp pressure effect 

comes here. So, partial pressures are involved, so the partial pressures of products they 

are multiplied together with the ratio with atmospheric pressure raised to corresponding 

stoichiometric proportions and that divided by the product of the partial pressure ratio of 

the reactants raised to corresponding stoichiometric proportions.  

So, this definition. The partial pressure itself pC, pD, pA, pB will change based upon the 

total pressure. So, the pressure dependence comes by the definition of Kp.  Kp itself is 

calculated as a function of temperature and you can substitute the value of Kp in this to 

get the product composition.  

So, in terms of H and S, Kp can be written like this. If you do not want to use G, you can 

also use H and S and both are same. 
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Now, to summarise you know that the Gibbs function change is a function of 

temperature only. So, Kp is also a function of temperature only. Now, after calculating 

Kp like this as a function of temperature you can use this equation. So, what I have done 

here is instead of pC I am putting XC × p.  

Similarly, pD I am writing XD × p and substitute here. This equation here when you 

substitute your pC, XC × p similarly for pB, XB × p etcetera you can write in terms of 

mole fractions and the total pressure p.  
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So, after evaluating Kp at a given temperature with Gibbs function change, standard 

Gibbs function change, then you can substitute this to calculate or to generate 

expressions. We cannot calculate everything so, if there is only one unknown, this one 

equation can be used to do that. Or you have to generate equations in order to solve for 

the mole fractions.  

So, mole fraction can be written in terms of the number of moles of a particular species 

see for example, mole fraction of C can be nC/nT or np; np I will say that is the number of 

moles of the product np. nC is the number of moles of the C so, XC will be this. 

When you substitute, you can also substitute this equation in terms of number of moles. 

So, straight away we can write the equation in terms of number of moles a, b, c, d, e 

what we saw earlier. So, once we do that, we can calculate.  

The procedure of calculating the equilibrium product is first you find the Gibbs free 

energy of individual species then calculate the standard Gibbs function change at a given 



  

temperature at the reference pressure of one atmosphere so, ΔG is got, then you calculate 

the value of Kp using this expression then substitute this for the given equation and find 

the number of moles or form an equation with the number of moles involved. 
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So, so, let us just take the equation what we considered in which we have some CO2 

dissociation taking place the equation is CO2 → CO + ½ O2. Now, in this case, we know 

that the mixture has 1-α kilomole of CO2, α kilomoles of CO and α/2 kilomoles of O2.  

At a given temperature, now we can calculate ΔG at atmospheric pressure. First of all, 

you have to group the products so, these were the products. So, gCO at a particular 

temperature, then 0.5 times gO2 at a particular temperature calculate them add up then 

calculate reactant gCO2 at the same temperature then subtract that to this.  

Now, you get ΔG, when ΔG is known calculate Kp.  
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So, we can write in a compact form like this. So, this is the expression you make.  

Then, use the definition of Kp. Kp for this equation is written as partial pressure of 

product first of all so, partial pressure of (pCO/p0)
1 and (pO2/p0)

0.5 / (pCO2/p0)
1. 

Now, if the pressure of the reaction is p and is equal to the total pressure, then pCO will 

be equal to XCO × p. Similarly, you can write the XO2 × p as pO2 and pCO2 will be equal to 

XCO2 × p. So, substitute this here, you get this equation.  



  

Then, what is mole fraction? Total number of moles = 1-α + α + α/2 = 1 + α/2. So, XCO 

will be equal to alpha by 1 + α/2.   

Similarly, you can substitute for other things and you could write this in terms of alpha. 

So, XO2 is α/2 / (1 + α/2)0.5. Similarly, number of moles of CO2 is 1-α / (1 + α/2).   

If you write, then you get a non-linear equation in α. So, Kp is known, right-hand side α 

in a non-linear is there. The total pressure is known, so, the pressure ratio can be 

calculated.  
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A non-linear equation results. If you are solving that, you get the value of alpha. So, it is 

the only one unknown, so, one equation is enough. But non-linear equation will give 

multiple roots. You have to choose physically possible roots that is all, that will be the 

value of α. We know that the Gibbs function change a is function of temperature only.  

So, Kp is a function of temperature only. The temperature dependence on the products of 

equilibrium comes due to that. The pressure dependence comes due to the mole fraction 

and this pressure term here. So, with that we take into account both the effects of 

pressure and temperature and calculate the equilibrium value of a particular species. 

Now, some observations. When pressure increases at a constant temperature, the 

backward reaction is favoured. Dissociation normally occurs at high temperatures at 

atmospheric pressure. When pressure increases, then there is a decrease in the 

dissociation.  

Now, adiabatic flame temperature when you calculate by calculating the equilibrium 

products of combustion, then that value is close to the measured value. So, such a 



  

temperature is called equilibrium flame temperature. Again, as I told you it has to be 

determined iteratively. So, this is the completion of this particular topic  
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If you see in this particular section, we have actually dealt with this. We have seen how 

to calculate heat, temperature, adiabatic flame temperature iteratively. So, heat 

calculations require enthalpy calculations of individual species absolute enthalpy then 

calculate the reactant enthalpy and the product enthalpy, apply first law. In a constant 

volume process heat of reaction is UP - UR and in a constant pressure process it is HP - 

HR.  

The flame temperature you calculate based upon some iterative procedure, for which you 

need composition of the products. The adiabatic flame temperature is the maximum 

temperature attainable, when the product enthalpy matches the reactant enthalpy for a 

constant pressure system or the product internal energy matches the reactant internal 

energy for a constant volume system.  

Composition of the products in equilibrium is determined using second law, a variable 

defined using second law is entropy. So, based on entropy, two free energies have been 

defined one is Helmholtz free energy, another one is Gibbs free energy used in constant 

volume and constant pressure processes, respectively.   

So, using that, we calculate the Gibbs function change and from that, we calculate the 

equilibrium constant which is defined as the ratio of partial pressures of product mixture 

and the reactant mixture and from that you calculate the equilibrium composition. So, 

this finishes this topic. 
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Now, we go for worked examples. This worked example is corresponding to the heat, 

temperature and equilibrium calculation. Let us do some simple example first.  

Let us consider the first problem, ethanol, C2H5OH is burnt in a furnace with a 

equivalence ratio of 1.1 and exhaust gas analysis specifies that there is no hydrogen or 

oxygen left in the exhaust gas.  

Now, for a constant pressure process, you have to determine the standard heat of 

combustion per kg of fuel. Now, the standard heat of formation of ethanol is given here 

that you can use that is the problem.  

C2H5OH + 3(O2 + 3.76 N2) → 3H2O + 2CO2 + 11.28N2 

So, ethanol stoichiometric combustion is written here C2H5OH + 3(O2 + 3.76 N2) giving 

3H2O + 2CO2 + 11.28 kilomoles of N2. Now, actual combustion occurs at an equivalence 

ratio of 1. So, you rewrite the equation for the actual combustion by replacing 3 by 3 / 

1.1 and it is given that no hydrogen or oxygen is left. We have already seen this in the 

previous worked example.  

So, hydrogen combust fully to H2O because it is highly reactive. However, the remaining 

oxygen is shared to form CO2 and CO. Now, by incurring C and O balances, you get two 

equations involving a and b by solving you get a equal to 1.4546 and b equal to 0.5454 

and the products are this    

C2H5OH + (3/1.1)(O2 + 3.76 N2) → 3H2O + aCO2 + bCO + 10.2545N2 

C balance: 2 = a + b 

O balance: 1/2 + 3/1.1 = a + b/2 + 3/2 

 



  

Now we can write the equations. So, product composition is known, so, we can find the 

standard heat of combustion.  
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Now, the entire equation is written here 1 kilomole of ethanol + 3 / 1.1 × air 4.76 

kilomoles of air giving 3 kilomoles of water vapour, 1.4546 kilomoles of CO2 0.5454 

kilo moles of CO and 10.2545 kilomoles of nitrogen.   

C2H5OH + (3/1.1)(O2 + 3.76 N2) → 3 H2O + 1.4546 CO2 + 0.5454 CO + 10.2545 N2. 

Now, standard heat of combustion ΔHC is nothing but -ΔHR which is nothing but –(HP - 

HR), which is written as HR - HP. So, this is the standard heat of combustion.  

Now, when I say standard, this has to be evaluated at 298 K, all the enthalpies have to be 

evaluated at 298 K. So, only heat of formation of species are involved in this. 

For example, HR the reactant mixture contains ethanol, O2 and N2; however, since O2 and 

N2 are basic elements heat of formation of them are 0. The HR is contributed only by the 

heat of formation of ethanol which is given as -235310 kJ/kmol.  

So, that is the enthalpy of reaction. Then, what is enthalpy of products? Enthalpy of 

product is nothing, but ∑nihi. 

HP = 3hf,H2O + 1.4546hf,CO2 + 0.5454hf,CO + 0 

= 3(-241845)+ 1.4546(-393546)+0.5454(-110541) 

Now, since we are talking about 298 K, this is ni × hfi, heat of formation that is it. so, 

now that is what we are trying to do here 3 times the enthalpy of formation of H2O and 

1.4546 times the enthalpy of formation of CO2 + 0.5454 times enthalpy of formation of 

CO + 0, that is 0. There is no enthalpy of formation of nitrogen because it is a naturally 

occurring species. 



  

So, when you do HR - HP, you will get the positive ΔHC value because say exothermic 

reaction. So, 1122966 kJ/kmol of fuel so, that is this. If you want per kg of fuel, then 

divide by the molecular weight of fuel you will get 24412.3 kJ/kg.   

So, this is a simple example where you try to find the calorific value or heat of 

combustion at standard state when there is a slightly rich mixture of ethanol and air 

reacting.  

 


