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Kalman Filter Localisation 

 

Hello everyone, welcome back. So, we are discussing the localisation methodologies, 

basically map based localisation where we have a probabilistic approach for localizing 

the robots. And we discussed that there are two methods; one is Markov localisation, the 

other one is Kalman filter based localisation. And all these both the methods use the five 

step process.  

What we discussed in the last class, where we have a prediction update based on the 

encoder data and the previous position. And the prediction update will give you a mean 

position and the covariance of that estimate. And then we go for a perception update. In 

perception update, we will get the data from the sensors, the features on in the map will 

be collecting through sensors or the features in the environment will be collected using 

the sensors, and then this should be compared with the map data.  

And then based on this matching of these features, we will update the position of the 

robot that is the perception update. So, the advantage of perception update is that the 

prediction update errors will be drastically reduced by their perception update. So, this is 

what actually happens in the map based localisation.  
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And we saw that a Markov localization is one of the methods used in mobile robotics 

where we try to divide the whole area into grids, and then we will try to assign equal 

probability for all the grids, so that the robot does not know where it is initially, and then 

try to update the probability of each grid as the robot moves.  

So, when the robot is moving, it will try to update the probability that the robots in a 

particular grid using the prediction update and perception update. And then whichever 

grid has got the highest probability or the distribution of probability within the grids will 

be assessed and accordingly the robots position will be estimated, so that is what actually 

happens in Markov localization. 

And we saw one example where I explained about the methodology used in Markov 

localization. For example, if you have a one-dimensional travel a grid in one dimension. 

So, you have many grids in this direction x-direction motion. And we assume that 

initially the robot could be anywhere in the 4 grids 0, 1, 2 3, 4 with an equal probability 

of 0.25.  

And then we will consider the control input u which has got a value of 2 or 3 with equal 

probability that the robot say the encoder says that the robot has moved two-steps or 

three-steps with equal probability that means, there is an uncertainty in the movement of 

the robot. So, it has was moved two or three-steps and that is basically the motion model 

of odometry. 



 

 

So, you have this initial probability , and then here this motion model of 

odometry. And based on this previous  and the motion model of odometry, we 

will estimate the new position which is  which is the prediction update by using 

this rule where we will try to add all the probabilities that the robot is at .  

And then this  = 0 to 3 all the possible positions of the robot in the previous stage. And 

then we will try to find out the use conditional probability that the robot is at a particular 

 when the control input  is given from the initial position , and the previous 

. So, we will take this probability and find out what is the probability that the 

robot is at 0, 1, 2, 3, 4, 5, 6, or whatever the grid, so that is what actually we do. 

And when we do this, we will get a distribution like this. So, after the first movement 

from  to , the robot has got a estimate of its position in this format where actually it 

says that it could be in grid-2 with a probability of 0.125 and could be in 3, 4 or 5 with a 

in equal probability of 0.25 and it could be in point grid-6 with a probability of 0.125. 

So, that is a there is a large uncertainty in the position of the robots. So, that is the 

prediction update. 

Now, we go for the perception update where we get the information from the sensor, 

sensor array, sensor will measure the distance from the starting point to the current 

position and then use that information to update the position. Now, the sensor also is not 

accurate. So, sensor will tell that it could be 4 units or 5 units away from the starting 

point.  

So, there is an uncertainty. It says that it could be in four or 5th, 4th, sorry the 5th grid or 

the 6th grid based on the information. So, there is an uncertainty in the sensor 

measurement also, but still it says that ok this is the equal probability that you have. So, 

this is your sensor data or the map information collected from the sensors. 

Now, using this perception update, perception data and the , we will try to find 

out the actual belief state , so that is what actually the perception updates. And 

this can actually be obtained by using these two probabilities the   and the 

perception or the sensor uncertainty, or the measurement model we can get use that one 

to get the probability estimated and that is what actually we do. 
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So, here we can see that. So, you can see that this is the  and the measurement 

update we have. And then using the measurement update, we will be able to calculate the 

. So, we will get the probability of the measurement, and the previous belief state 

or the   , and get the total probability.  

And find out what is the probability that the robot is at 2, 3, 4, 5 or 6 based on this. And 

then if you do this multiplication of probabilities , you will be able to 

get the probability at these two locations 5 and 6. So, you can actually set the belief state 

the belief that the robot is at  or  can be obtained by this one. So, you have 0.5 the 

robot is at 5 is 0.5 from the sensor, and 0.25 from the prediction.  

So, 0.5 into 0.12 0.5 into 0.5, so, that will be 0.25, sorry 0.5 into 0.25, so this is 0.5 into 

0.25. And at 6, it is 0.5 into 0.5 multiplied by 0.125. So, this is the probability that the 

robot is at  or . Now, these two, if you add these two, it will not become 1. So, we 

need to have the total probability is equal to 1. So, if you use a eta a multiplication factor 

and if you do that multiplication factor, you will get it as 0.67 and 0.13, 0.33, so that is 

the way how you get the probability the robot is at 5 or 6.  

Now, we know that after this perception update, the robot is much more certain that it is 

in 5, the robot is currently at the grid 5 rather than any other grid 0, 1, 2, 3, 4, or 7, 8, 9. 



 

 

And there is a small probability that it could be at 6 also, but it is very high probability 

that it is at point 6, I mean at the grid 5. 

So, you can see that the uncertainty of the position estimate from the prediction has 

drastically increased with a perception update. So, you will be getting that the belief the 

robot is at 5 is much higher than any other grid. So, this is the way how the perception 

update helps to increase the accuracy of localization. So, this is the Markov method of 

localization. 
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And I mentioned about the 3D grid also. So, now, you can see the previous example 

which I mentioned you can see that it actually uses the same principle here because so it 

seeing a image in a pole here and, so it increases the uncertain I mean increases the 

probability. And then again it sees here, it actually again comes here it increases the 

probability.  

So, you will be able to get a very high probability that the robot is at this point. So, this is 

the way how the Markov localization helps to improve the prediction, and the actual 

localization of the robots using the prediction update and perception updates ok, so that 

is about the Markov localization. 
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So, what we need to have is a fine fixed decomposition grids which actually results into a 

huge state space. So, when you have a fine grid and I mean large area and fine grid, and 

we have the state also is more number of states to be observed, then it becomes a very 

huge state space, so very large processing power and large memory. So that is the main 

problem with the Markov method of localization. 

And there were many methods suggested in the literature for reducing the complexity, 

how to reduce the number of states, how to reduce the number of grids, and how to 

reduce the number of computations needed at each step. So, there are methods like 

randomized sampling, particle filter, etcetera, etcetera. So, we are not going into all those 

methods here.  

You can, if you are interested, you can actually go through the literature and you can find 

out that. People have been trying to improve the Markov localization methodology using 

many strategies, and there are lots of papers in the literature about these methods. So, in 

some cases you know you update only 10 percent of all possible locations.  

So, do not update all the locations, only 10 percent of all possible locations can be 

updated, so that is these are the strategies adopted by various researchers ok. So, that is 

about the Markov localization. 
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So, now let us look at the Kalman filter localization. So, the difficulties with the Markov 

is known that lot of computations needed. You need to update the all the grid at every 

update updates stage.  

But the advantage is that you do not need to know the exact location of the robot, the 

robot could be anywhere. So, it can actually update its location wherever it is; or even if 

it is does not know the location, it can identify its location based on the updates that it 

gets through perception and prediction, prediction and perception.  

So, to simplify that process over we do not need to go for that kind of a complex 

computation. So, the Kalman filter based localization was proposed. So, Kalman filter is 

a it is a very useful and highly utilized filter update in many fields it is not only in for 

localization, you will see that it is applicable in many other fields also.  

So, it actually takes that the whole system and then we assume that there is a error in the 

system, and then you have a measurement from the so using the sensors an error using 

the measuring devices. And then it takes these two information from the system state and 

the observation, and then uses a filter to fuse these two information and grid the optimal 

estimate, so that is basically the principle of Kalman filter localization. 

So, it is a mathematical mechanism for producing an optimal estimate of system state 

based on the knowledge of the system and the measuring device. So, you have the 



 

 

knowledge of the system and the measuring device, and to some extend we know the 

system noise, and the measurement errors, so that means, every system has got its own 

errors and the measurement system also has got its own errors.  

So, we know these two the measurement errors and the uncertainty in the dynamic 

models. And once you know this, then you can actually fuse this information to get a 

better estimate of the system, so that is basically the principle. So, it is the system state 

can be estimated using a measurement and the previous the knowledge of the previous 

position. 

So, the in this localization, what we assume that we know the previous position and its 

uncertainty and from there, we start with the new calculation. So, Kalman filter basically 

recreates the previous state and its uncertainty to do the updates. Now, how does it work 

ok? It is a powerful method for sensor fusion and this system is assumed to be linear. So, 

we assume that it is linear and with the white Gaussian noise.  

So, we assume that the distribution of noise is white Gaussian that is a normal 

distribution which can be represented using a probability density function, so that is 

basically the understanding here. Now, what is the requirement? The initial position and 

that also is assumed to be a white noise. So, the uncertainty in the initial position also is 

considered to be a white noise. And the system is also to be assumed to be a white noise 

including the measurement system. 
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Now, what is the benefit of doing this, or how does it work? So, if you want to know the 

basic principle of the Kalman filter, we need to look at the way how it works. So, now 

suppose you have a is of the basic principle is that suppose you have two measurements; 

one is this one, and another is this one ok. So, we assume that this is one measurement. 

So, we say that this , and this is .  

Now, this can say this distribution, so we have one distribution here and another 

distribution here. So, this is a x and y some distribution you have. And we have that this 

has got a  and this has got a . So, these are the two distributions. Now, the Kalman 

filter strategy is that when you fuse these two, you will be always able to get a 

distribution which is more accurate and less uncertainty.  

So, we can actually get a new mu by combining these two distributions, you will be able 

to get a new distribution where you will be getting a new σ, and this σ will be always 

smaller than  or , so that is the basic principle. So, you can actually get a new 

estimate where the covariance will be smaller than the two of these two signals or the 

systems. 

So, you have two distributions with its own mean and covariance. And if you combine 

these two using a Kalman filter, you will be able to get a distribution or an estimate 

based on these two which will be having a covariance which is less than the covariance 

of these two. So, you will be always getting a better estimate using this fusion of these 

two data, so that is basic principle of the Kalman filter. So, how is it coming or what is 

the mathematical foundation for that? We will just look into that.  
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So, as I mentioned, so let us consider these are two distributions. So, I will call this as   

and . So, this is and this  and  , or   we can call. This is ; this is . So, 

it has got a standard deviation of  and , these are two .  

So, let me write this  as  is the covariance. So, we will write this ,  as 

the mean value of this. And σ is the  and σ are the standard deviation. So,  is the 

covariance. Similarly, , so that the distribution the probability function can be 

written as . So, that is the these two distributions what we have  and .  

Now, suppose we want to combine these two, then we can use the Bayes rule, and we 

can write it as P(q) =  that is the Bayes rule of this probability. Now, if we 

write this , so can be written as the distribution can be written because we are 

assuming it is a white noise and the distribution. So, we can write this as 

  

So, this way we can write , So, similarly also can be written as 

. So, this is the distribution and , so that is the assumption 

that we have it has a white noise distribution. 



 

 

Now, this P(q), when you do this Bayes rule application, we will be getting it as, so we 

can actually multiply these two we will be getting it as 1 by ok. So, if you multiply these 

two, we able to write it as 1 by, so this can be written as 

. So, we will be able to get this P(q) as this format.  

Now, we know that P(q) is also assumed to be a white noise when you have the total 

probability that also will be a white noise. So, if that is the case, so if P(q) can be written 

in this format, then we can again assume that what is the corresponding σ of P can be 

obtained from this relationship. So, if you do that, we will be getting this as q that is the 

mean of this estimate P(q).  

So, if you have a new estimate using these two, you can actually say that this is the q. So, 

this q, q can be obtained as  can be obtained as  that is the new 

mean value of the estimate. So, we have two estimates initially P1 and P2. Now, a new 

estimate by combining these two, you will be getting it as P(q).  

And the mean value of q is given as  plus that is this is  this plus some value, and 

that value is something multiplied. So, this thing is there this is multiplied with the 

difference of these two means, so that is  - . So, you have this  -  as the 

difference of the two means of the previous estimates – the two estimates, that multiplied 

by a factor and that is added to  will be the new q.  

So, the q will be the new mean will be more than , and that will be a function of the 

difference of the  and  also. So, that is the new mean value for the estimate. And it is 

. So, variance is given as . So, this will be the new covariance of the 

estimate. So, the previous estimate is what  as the variance.  

Now, σ the new variance will be . And this will be always a positive 

quantity. And therefore, you will be seeing that this will be always smaller than . So, it 

is a covariance will be always smaller than the  and the  also. So, both the new 

covariance will be always smaller than  or , and that is the basic principle of Kalman 

filter estimate. 



 

 

And this factor is known as the Kalman gain. So, we call this  is known as the 

Kalman gain. So, this is basically the Kalman gain. So, we call this as the Kalman gain 

ok. So, this is the principle of Kalman filter. So, we assume two distributions  and 

with its own mean value  and σ , and its variance .  

And then we combine these two using the Bayes rule, and find out what is the new mean 

and covariance, the new mean and mean and variance. And you will see that the new 

mean is the first mean plus Kalman gain multiplied by the difference of the two gains, 

two means, and then you have the covariance which is smaller than the two of the 

previous estimates. So, that is basically the principle of Kalman filter. 

So, the same can be used for position estimate also. If we have the old position as   and 

then a position estimate based on the map or the sensor information is this one, you can 

combine these two and get a new estimate which will be having a lesser I mean it will be 

having a better mean value and a better variance. So, that is the principle of Kalman filter 

localization. 

So, the principle is basically to have two measurement two distributions and then 

combine them to get a better estimate of the robot position ok. So, the two measurements 

will be there. And then we have this Kalman gain which is .  

And then as you ensure that, these two will actually the σ square that is the estimated 

variance will be less than the previous two variance. So, you will be always getting a 

better estimate of the position, so that is basically the Kalman filter gain, Kalman filter 

based localization principle. 

Now, if it is a, so if this n-dimensional case, so we would not be able to use this as σ 

square. So, we have to go for the covariance matrix. So, in the matrix form, we can write 

this as, so the measurement will be in for an n-dimensional case. 



 

 

(Refer Slide Time: 26:17) 

 

So, if you consider it as an n-dimensional estimate, so for single dimension or one 

dimension one dimension we normally use the σ and the mean and the σ values – the 

standard deviation values. But for n-dimensional case, what we do is we write this new q 

that is the mean value of the estimate can be written as , 

where  and  are the mean values of the previous estimates the two estimates; one is 

the measurement and the other position estimate.  

And  is the first one. So, you have this , - . And here P is the covariance, P and 

R, so P and R are the covariance of the two measurements. So, covariance of  and . 

So, P, P and R are the covariance of  and . So, the first measurement has got a 

covariance of P1; second one has got a covariance of R, and a mean of  and . So, P 

and R are the covariances of  and . And this P +  is this is known as the 

Kalman gain.  

In the previous case, we represented in terms of the σ, but here since they are matrices 

will be the Kalman gain. So, now, you can see that the new covariance sorry 

the new mean will be the first mean plus Kalman gain multiplied by the difference of 

these two measurements  a mean into , so that is the new value of q. And the 

covariance of the new estimate, so P and R are the covariance of the measurements.  
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Now, the new covariance  can be written as  . So, this is 

basically the new covariance. So, we have P as the covariance of the first measurement 

, and then R as the second one. So,  which can be written as 

, where K is the Kalman gain which is .  

And , i  is known as the innovation covariance, we call this as the innovation 

covariance which is defined as P + R. So, this is if P + R is known as the innovation 

covariance that is the covariance of P  1 and are added, and that is known as the 

innovation covariance P + R. 

So, the new covariance of the estimate will be  = , where K is the Kalman 

gain given by , and σ innovation is the innovation covariance which is 

nothing but P + R, and then K transpose will be the new covariance.  

So, when you have two one initial position and a measurement, you can combine these 

two, you can fuse this two information two data and get a new estimate with a mean of 

t and a covariance of  and that is given by this relationship. So, what we need to 

know is the mean value of the estimate and its covariance, and the new mean value of the 

measurement and its covariance.  

Once you have these two information, you will be able to get a Kalman filter based 

estimate which will be having a new mean and covariance. And this new mean will be 



 

 

better than the previous two measurements, and the new covariance will be smaller than 

the two measurements.  

So, you will be having a much better estimate or you will be having much less error in 

the estimated position of the robot, so that is basically how we do the Kalman filter based 

localization. I hope you understood this. So, let us see how this can be implemented in a 

real mobile, I mean the mobile robots ok. 

(Refer Slide Time: 31:05) 

 

So, what we do here is assume that the robot is at a position initially. So, we take this as 

the robot position. And the robot is at a position which is given as previous position 

. So, assume that the robot is at t - 1. So, this is . Now, from this position, so 

 has got a μ value μ and it is a deviation P.  

So, we call this as μ and P that is the mean value and its covariance is known for that 

particular . And from there, you give a control input u, and the robot moves to t, . 

So, this is the control input given u t is given here. So, the robot moves to the  ok. So, 

now we have a prediction update that the robot is it has moved from  to  using the 

control input.  

So, this . So, the at this position the mean value x t minus 1 can be the new value , 

sorry, the new  the new position  can be estimated as a function of  plus sorry 



 

 

 with the control input , so that is basically the position. So, , that is the new 

position , its mean value of x can be obtained as a function of  and .  

So, we use the control input to calculate the new position . And it will be having a 

covariance. So, its Pt can be obtained using the error propagation rule that we saw in the 

previous case, where we use this as  So, this was the error 

propagation model that we saw. 

So, we will be able to move from  to  in the prediction stage. So, this is the 

prediction stage. In the prediction stage, we will see that the robot has actually moved 

from  to . And the mean value of  and the covariance Pt can be obtained using 

this relationship.  

Because we know based on the robot kinematics you will be able to find out what is the 

new position of  if we know the control inputs. And the covariance the uncertainty in 

that position can be obtained using the error propagation model. We saw this for the for a 

differential drive robot how do we actually calculate the position and its uncertainty, so 

that is the prediction update for the about. 

So, now, we have this prediction. So, initially  was known, and , so I call this as 

 is the uncertainty here. So, the position x, so it called this position  and the  

is it is a uncertainty the t - 1. Now, from here, we have moved to with the prediction. So, 

initially assume that it was like this with a  and . Now, it has moved to here.  

So, you have a higher uncertainty. So, you can say that this is the uncertainty. So, now, it 

has the uncertainty has increased because of the sensor errors, and the previous . So, 

the new  which is the prediction update will be given by this, and the new position  

will be given by this. So, this is ,  the new position at t is given by this, and its 

uncertainty is , and that two can be calculated using this. So, now, the robot is this 

position with the prediction update. 

Now, we go for the next stage which is the perception update. So, in the perception 

update, what we do we will look at using the sensors and then get all the information 

coming from the sensor as . So, assume that, the robot is here. And it has got a sensor, 



 

 

and it measures something from the surroundings ok. So, I am just representing it here, 

there is a wall here, or there is a wall here something. So, there may be many things. 

So, it can actually the robot can actually see or the sensor can see n number of objects in 

the vicinity ok, so that is why we call it as , so observation, so the sensor is seeing , 

where i = 1 : n. So, it can actually see n objects, so that is basically the observation of the 

sensor. So, we call this as the observation, observation using the sensors. 

And then the next step, so the perception, the first step is basically observation using the 

sensor. So, you will get see there are 5, 6 objects which is seen in the robot or seen by the 

sensors which is attached to the robots. So, these are the features Z at t location. Now, we 

check with the map that is the next one which is basically the measurement prediction, 

we call this as the measurement prediction.  

So, measurement prediction is the robot will check with its map, and then see look at the 

map and then see if the robot is at this location at t, what are the things it is supposed to 

see ok, so that is basically the . So, we call this as  ok. We call it as j , and j = 1 : 

m. There can be many things that the robot is supposed to see, but whether it is all are 

seen or not is not it is not known. 

But if it is here, it should see these two ok that is what the map says ok. It should see 

these two or more also depending on where the robot is it is current position. Some of 

them may not be visible to the robot, sensor, some of them may be visible to the sensor. 

So, what it will do? It will check what is the measurement prediction we call it as .  

So, one is the observation from this using sensor, one is the prediction using the map. So, 

from the map, the robot will be able to predict ok, I am able to see 5 objects. Sensors, see 

tells ok, I am able to see 6 objects ok. It could be like that or sensor is saying I am able to 

see 4, but the as (Refer Time: 38:00) map, it says no, no, if you are actually in that 

position, you should have seen 5 objects. So, this way there will be a difference. 

And then we try to find out what is the difference between these two measurements. So, 

we will try to find out are they matching? and the  i and j for all i and j try to find 

out what is the mapping between these two, are they able to are they matching properly 

or not? If they are matching exactly, what is there in the map, and what is there in the 



 

 

what the robot is seeing? That means, the robot predicted position is it is accurate. There 

is no error in the predicted position of the robot. So, it exactly at t ok. 

So, this can actually be explained using this way. Suppose, this is the these are the 

objects on the in the environment, and the robot is travelling from here this location. So, 

it is moving in this direction ok. And the robot predicts that it is in this position. And 

using the sensor, it should be able to see all the things what are there in the vicinity ok.  

It will say that my position is this and from there, I can actually see this object. But in 

reality, the robot may be somewhere here. We do not know the robot has actually 

reached here, instead of here, the predicted position is not correct. So, the robot is 

actually here, and it is able to see this object this many objects.  

So, there is a difference between what the actually the robot is seeing, and what the robot 

is supposed to see from that location, so that is basically the difference between these 

two. So, we try to map these two and see what is the difference in this what is seen and 

then what is predicted, so that is basically the second stage where we do the match, the 

third stage where we do the matching.  

So, the matching cannot be done directly, because what all the map is with respect to a 

reference frame. So, the map will be having a reference frame. And the features are 

actually given with respect to the reference frame ok. And the robot is seeing from using 

the sensor, it is mounted onto the sensor platform at the robot platform. And robot will 

be having its own coordinate frame. So, what it is seeing, it will say I am seeing a object 

at a distance R1 and at an angle theta with respect to my reference frame.  

But this object is defined with respect to a map as this is the distance to the R and this is 

the theta. So, we need to if you want to compare these two objects, we need to move 

everything into a single coordinate frame, so we will move all this to a common 

coordinate frame and then do the matching. So, first we will represent all those features 

with respect to the common frame either the robot frame or the map frame, and then find 

out the difference between these two that is the mapping stage. 

So, we need to transfer this to the common frame, and then find out the difference 

between these two. So, that is basically the difference. So, what we will do here is we try 

to find out the each one all of these this will be transferred to the map frame. So, all this 



 

 

will be transferred to the I mean all the map features will be transferred to the robot 

frame using a transformation matrix h, we call this as a hj. So, this Zt will be transferred 

to the map frame using a transformation hj at xt, m.  

So, we will find out the transformation matrix and then we transfer all these parameters 

all these to the Z the frame the robot frame using a transformation matrix. So, this h is 

the transformation matrix. All those feature that is seen from the map or which is 

predicted from the using the map at xt will be transferred to the robot coordinate frame, 

and then we get this Ztj.  

And then that Ztj will be used for the comparison. It is not the directly what the map is 

giving, but after transforming to the transferring to the robot frame you will find out the 

difference, so that is that Ztj ok. So, once a that matching is done, then we will find out 

how much is the difference between these two I mean the between i and i, or i j because 

there can be different numbers.  

So, we will try to map each feature, feature with what is supposed to see, and then find 

out which one is matching, and then find out how much is the difference. And this 

difference is known as the Vtij. So, we call this as the Vtij that is what is the difference 

between ith and j th observation and the measurement prediction, and that we call it as 

the innovation.  

So, the difference between this is known as the innovation and that is given as Ztj -  t 

ok. So, this is basically the innovation that the difference between these two the features 

are known as the innovation. So, we get this innovation, so that is the mapping matching 

stage we will get the innovation. And once we get this innovation, we will try to find out 

the innovation covariance. 
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So, that is what actually we do. We will try to find out the difference, and then we will 

try to find out the innovation covariance. So, we call this as Vti is the innovation, and 

then we will try to find out the innovation covariance which can which is written as Ʃin at 

the t for i j, so that is the innovation covariance.  

So, this innovation covariance is obtained as because we have this measurement sensor 

uncertainty is known, position uncertainty is known because the robot is measuring from 

its position using a sensor. So, sensor has got uncertainty, position also has got 

uncertainty. So, the measurement in covariance or the innovation covariance can be 

written as this is equal to Hj  -   + Rti, where H is the Jacobian of this 

transformation h j.  

So, we have the transformation hj which transformed from the one coordinate frame to 

the other coordinate frame. So, H is the Jacobian of this. So, this is the Jacobian of hj is 

hj. And Pt is the covariance at t, so that is what we calculated here from xt-1 to xt moved, 

so there is a covariance , so that is the . And Rti is the covariance of the sensor. 

So, you are using a sensor to get the information. So, the sensor also will be having a 

covariance its uncertainty. So, Rti is the sensor measurement noise or sensor covariance. 

So, now, we have this innovation and innovation covariance. Innovation is basically the 

difference between these measurements, and the innovation covariance is the uncertainty 

in the measurement also.  



 

 

So, once we have these two, then we can actually get the an estimate of the new position 

using the Kalman gain, Kalman gain principle which can be written as hxt =  + Kt Vt 

ok. So,  is the position here that is the predicted position using the control input. And 

the this  is the new estimated position after the measurement that is  Kt which is 

the Kalman gain and Vt is the innovation.  

Innovation is this one that is the innovation, Vt is the difference between the measured 

and the observed sense and the predicted and observed features that is the difference is 

the innovation. So, we get this innovation Vt from the sensor and the map information, 

and then we have this Kt which is the Kalman gain, and xt is the previous the predicted 

position.  

And Kt is given as here the Kt will be  that is the previous covariance, Ht which is the 

Jacobian transpose and the Ʃ innovation inverse, so that is the Kalman gain. So, we will 

be getting this Kt as Pt . Now, we know this, we know this and we know this Pt, 

and  is known Ht is the transformation σ innovation covariance is known. So, you will 

be able to get Ktr. So, Kalman gain also obtained here. Once you have this, you will be 

able to get the new position estimate xt.  

Similarly, once you have this position you can get the new covariance also. So, the new 

covariance can be obtained as that is Pt. So, we what we have is Pt here. So, what we are 

interested in now the new covariance Pt can be written as  that is the previous 

covariance minus Kt . So, this will be the new covariance. 

So, you have the new position estimate and its covariance using the Kalman gain. So, 

that is the basic principle of Kalman gain or Kalman filter based localization of mobile 

robots. So, there are a few steps involved in it. First we do the prediction, and then we 

use the sensors to find out all the features. Then we use the map to check what are the 

features supposed to see.  

And then we try to match them by transferring all these information to a single 

coordinate frame, we try to match them and find the differences between this seen and 

supposed to see. And using that, we will find out the innovation and innovation 

covariance. And once you know innovation, innovation covariance we will find out the 



 

 

Kalman gain. And use the Kalman gain and innovation, to get the new position 

predicted, so that is basically the principle of Kalman filter based localization. 

So, I will stop here. Please go through this lecture, and then we will discuss this again 

tomorrow, I will explain it and then explain the way in which it can be implemented for 

the mobile robot also, so that we will discuss in the next class. 

Thank you.  


