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Hello everyone, welcome back. So, in the last class, we discussed about localization of 

mobile robots. We briefly talked about the importance of localization, the challenges 

involved in localization, how the sensors properties affect the localization, and the error 

propagation in the localization process. So, and also we mentioned about the five step 

process involved in the map based localization.  

So, the first step in localization of mobile robot is basically the odometric, odometry 

based localization where we use the encoders on the robot. And then use the encoder 

data to find out how much the robot has moved over a period of time. And then use that 

information to find out the new position and orientation of the robot, so that is basically 

the odometry based localization where we call this the dead reckoning also where the 

position and orientation information is collected from the sensors.  

So, that is the first step where you predict the predict the position using odometry. And 

then of course, we need to go to the sensors for collection of information from outside 

the robot that is camera or some other sensors will be used to get the information from 



 

 

outside the robot. And then check whether that is matching with the map information 

already available with the robot. So, there is a matching phase where the observation 

from the sensor and the map database will be mapped.  

And then based on the error in these two information, the robot position will be 

recalculated, and you will be getting an updated position of the robot. So, this is the way 

how we go for the map based localization. So, the first step in map based localization is 

basically the odometry based prediction of the position of the robots. And I briefly 

mentioned about how we do this in the mobile robot. 
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So, how we use the odometry based information to get the new position of the robot. So, 

I will just explain it once again. So, we have the current position of the robot as 

. So, we put this as the current position of the robot . And then we assume 

that the robot is moving, and then it reaches the next position we call this as the 

, right.  



 

 

The robot will be moving in x,y plane, and there will be an angular position angular 

position change also which will be given as Δθ. So, this is the normal process especially 

for a when we consider it as a two wheeled robot with the differential drive. Now, we are 

estimating the robot position based on the information coming from the sensors.  

So, we have these two encoders which actually measures the distance travelled by the 

wheels. So, assuming that it is moving by 𝜔1 and 𝜔2, and we can say that it travels  

and  that is the left and right wheels are travelling distances,  and  and period 

of Δt. Then we can say that that will actually lead to Δx, and Δy, Δθ in the Cartesian 

space.  

So, how much will be sorry in the robot frame, you can say that it is with respect to 

the frame of the robots. So, now, what happens is that, we are estimating the position x, y 

and θ in the new position we call this x’, y’, and θ’, we are estimating this as a function 

of the previous position  because . And then this previous position is , 

and then we have a motion of  and . 

So, the new position   x’ y’ θ’ is actually a function of the previous position and the 

movement of the robot the wheel displacement  and . Now, we know that the new 

position is related to or depending on this. And therefore, if there is any error in this x y 

the previous position and the error and any error in the  and , that will actually 

lead to an error in the estimate of new position also.  

So, this is what we need to estimate how much will be the error in the new position when 

there is an error in  , as well as the previous position estimate also. So, we will 

see how can we actually generate an error model for this particular robot differential 

drive robot based on the information that we collect from the encoder. So, that is what 

we are going to do in this exercise.  

(Refer Slide Time: 05:24) 



 

 

 

So, we can write this Δx based on the kinematics of the differential drive robots. We will 

be able to write that ; ; and , 

where b is the distance between the two wheels. And we will define over 

the average distance travelled by the wheel.  

Now, we can see that the p’ as I mentioned is a function of , and  and , ok. 

And this function can be written as this way. So, the function f is actually this one. So, 

this is the function f (x, y, θ) + .  

So, that is basically the distance I mean we can write this  that will 

be written like this. Similarly, Δy is this, and Δθ is this. So, this is the function f. So, we 

now write it as y is a function of this, or we can write it as p’ is a function of p, and  , 

.  

Now, we need to know how much will be the error in p’ if there is an error in p, and  

, , so that is basically the error propagation. There is an error in the previous position 

estimate and the estimate from the sensors. How much the wheel has travelled that also 

has got some error. If that is the case, how much will be the error in p dash need to be 

understood.  
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So, we can actually do this by looking at the error propagation law that we discussed in 

the previous class. So, the error propagation law says that if y = f (x), then we can find 

out the error in y for the , where Cx is the covariance in the measured the 

previous one f f(x).  

And Cy is the covariance of the new value y is y = f (x). So, x has got an error Cx, then y 

will be having an error , where Fx is the Jacobian, which is defined by this. 

So, like the partial derivative of the function with respect to the variable x you will be 

getting the Jacobian.  

So, this was this is the error propagation law. Now, we can use the same error 

propagation law and then find out what will be the error in the position of the new 

position estimate of the robots. When we know the previous position and the 

measurement from the encoders, ok.  

(Refer Slide Time: 08:19) 



 

 

 

So, for that we assume that we know few things that is, so we have this P. So, P is given 

as . So, this is the; now, we assume that we know the covariance of the sensor. 

So, we know that the sensor has got some error. And we model that error. And we 

assume that that error is already known or the how much error that the sensor will be 

having is known is again not a what do you call a predicted one. It is more like a random 

error.  

So, we model this as probability function, and then say that the covariance sensor 

covariance ƩΔ. So, we will put it as ƩΔ. We will write that it is known and it is actually 

depending on  and . So, this can be written as a covariance matrix can be given as 

. 

So, we assume that this kr and kl are known for the sensor. So, how much will be the 

error that the sensor can give for right and left is given by this kr and kl a coefficient, and 

that multiplied by the actual travel distance will be the error in that sensor. So, this is 

what actually we assume that we know this. The sensor means since we have since we 

are choosing a a non sensor we assume that we have this information. 

Now, we have this p’ is p plus this one. So, the error will be basically coming from this 

one also. So, assume that p =  that was the initial value of θ. And we assume that the 



 

 

initial covariance of the position or the previous covariance is Ʃp. This can be if we know 

exactly from where the robot start, then this will be 0; otherwise, this will be some 

having some value, and as the robot moves the Ʃp will keep on change. 

So, we assume that we have this Ʃp known that is the previous covariance previous 

uncertainty is known and the uncertainty the sensor is known. Then we can write this 

error propagation model as like this, that is the new covariance of p p’ that is the 

covariance in the estimated position which we call it as 

. Now, this is basically the Jacobian. 

So, we have this Jacobian j Ʃp jT this is for the position and then we have Δrl ƩΔ and j . 

So, this is the covariance. So, this is the Jacobian. So, we can the error propagation 

model tells you that since there is a there are two things one is p and then the measured 

value.  

So, the p also will be introducing some error, and then  also this measured are also 

introducing some error. So, the total error can be written as j Ʃp jT + j Δrl ƩΔ and j . 

So, this is the way how we can write the error propagation model for this.  

Now, since we know this, so we assume that we know the previous estimated error in the 

estimated position, and we assume that we know the sensor error. Once we know these 

two, we will be able to calculate the Jacobians, and then find out what is the error in the 

estimated position p’, so that is basically what we need to do.  
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So, F p which is basically the Jacobian is del f they can be obtained as partial derivative 

of f with respect to  ok, so because the position p = . So, we will say that the f f by 

x y and θ will be the Jacobian for the position estimates. So, your F is known. So, the F is 

the function which actually you get . This is the function F.  

So, we take the partial derivative of this F with respect to x, y, θ we will get Fp. 

Similarly, if you take the partial derivative of F with respect to Δr and sorry Δsr and Δsl, 

we will be getting the Jacobian corresponding to this also. So, this is the way we get 

these two Jacobians.  

And then based using these two Jacobians, we will be calculating the covariance model 

of the position estimate or how much will be the error in the estimated position, so that is 

what we do in this. So, this Δrl, so this will be the Jacobian.  

(Refer Slide Time: 13:21) 



 

 

 

So, if you take this F function that is what is shown in the previous slide. So, this is the f 

function. So, you take the partial derivative of this with respect to x, because this is 

. So, partial derivative of F with respect to x will be this will be 1 

and then you will not be getting anything for the y, then x will be obtained then the F by 

y you can obtained and θ also you can obtain.  

Similarly, partial derivative of this with respect to Sr and Sl, you can take the partial 

derivative of this with respect to Sr and Sl, you will be getting the Jacobian. So, that is 

what actually you are getting yeah. So, this is what you will be getting as the Jacobian. 

And as you know that this will be function of the θ, current θ and the Δ θ how much the 

robot has travelled I mean change its orientation.  

So, this Jacobian will depend on these values kθ for the partial this Jacobian Fp will be 

functioning of function of θ as θ changes this also will change. Similarly, F Δrl Jacobian 

will be function of θ and Δ θ. So, current position and that changes in position also 

changes in the orientation will also be function. 

So, we now get this F Δrl, and Fp, and then what we do is we will just try to find out how 

what is a new estimated position and it is covariance. So, position the mu value will be 

simply x + Δx and y + Δ y and θ + Δ θ that will be the position p. And its covariance Ʃp 

will be this one. So, you will be able to get the Ʃp.  



 

 

So, at every step as the robot moves so, every step we calculate what is the new position 

and the new covariance of that position, and then use that information to calculate the 

next position and the next covariance. So, this is the way how we move forward and 

keep on estimating the robot position as the robot moves.  

So, this is the odometry based estimation where we use the error model to find out the 

estimated covariance of the new position. So, this, these steps need to be continuously 

carried out for the robot in order to estimate the new position of the robot position and its 

covariance.  

(Refer Slide Time: 16:05) 

 

So, for example, suppose the robot is starting from here, ok. So, it is an x y plane the 

robot is in the x y plane. So, we do not consider the θ motion for the time being. We 

assume that the robot starts from here and the position is completely known. So, the p is 

given, and it Ʃp is given as 0, I mean there is no uncertainty in the beginning.  

Now, at the robot starts moving, it will calculate at this position we will calculate what is 

the new position p’ and this covariance p’. So, as the robot has moved, then there was an 

uncertainty in the sensor measurement. There will be small uncertainty. So, this Ʃp’ 

would not be equal to 0 now because of the sensor error.  

And we can actually represent that like a I mean this is with a small ellipse over here. 

You know as the robot moves this uncertainty the covariance can actually be represented 



 

 

using this ellipse. So, you can see that the uncertainty will keep increasing – the ellipse 

size increases because the covariance increases the uncertainties increasing. And after 

some time, you will see that the it is uncertainty is very high.  

So, the robot will not be knowing exactly where it is. It says that it can be anywhere in 

this ellipse. The position of the robot could be anywhere within this ellipse, but it has 

actually moved in a straight line, it could be anywhere here. So, that much of uncertainty 

will be there. And as the robot moves it is only for a short duration you will see that it.  

And as it moves after some time it you will see that the uncertainty will be too high. And 

within the map itself, you will see that the robot is completely uncertain about its 

position. And therefore, it there is no, no more a meaningful localization can be done if 

you are using only the odometry. For short duration, yes, we can actually get some kind 

of an estimate. But for a long duration, you will see that it actually goes completely 

uncertain and the localization fails.  

So, this is the problem with odometry. So, this shows that how we can use the odometric 

information to estimate the position using the uncertainty measurements, and using the 

error propagation model. So that is one simple example to show that how odometry can 

be used for localising a robot, and what problems you face if you are simply doing it 

only using odometry. So, this was on a straight line.  
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But if you go it in a curved line, so obvious the robot is actually commanded like this to 

move. You will see that the uncertainty increases, but always the in the direction of 

motion the uncertainty will be less, because you are actually getting a lot of 

measurements in the direction of motion.  

But perpendicular to that the uncertainty will be increasing because you do not have 

anything to measure in that direction. So, your measurement is always along the 

direction of motion. So, the along the direction of motion, your uncertainty will be less, 

but perpendicular to the direction of motion you will have large uncertainty. So, this is 

the common in odometry based localization which cannot be solved easily. The only way 

to do it is to go for better sensors with very less uncertainty or error errors. 

So, if the sensor covariance is very small, then the error also will be small estimated 

position error also will be small. So, this is why how we do the odometry based 

localization. And this is quite old. We would have been using this for a long time. And 

there were lot of experiments carried out on based on odometry. 
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So, if you simply use the robot to simply command the robot to move along this paths in 

the commander position path is like this. You will see that the actual path the robot has 

move maybe something like this. So, it will never be reaching the same position if you 

do this. This is because of the errors in many things.  



 

 

One is the errors in the travel, then the errors in the rotation, it is you want 90  to be 

rotated, but it may not rotate 90 . So, like this you will be having lot of errors and the 

robot may be reaching here. So, this you will see that this is the actual path the robot will 

be travelling.  

(Refer Slide Time: 20:22) 

 

And of course, if you do this you many times you will see that the robot has completely 

lost its position, and it will never be following a a defined path or a predicted paths, ok. 

(Refer Slide Time: 20:36) 

 



 

 

So, that is the pure odometry based prediction of the robot position. And as I mentioned 

it is not at all feasible to use it for a long duration and that is where we go for the 

probabilistic and map based localization. So, in the probabilistic, map based localization, 

what we do we, still use the odometry, but then we tried to correct the odometric error by 

some other method, so that is basically the probabilistic map based localization, ok. 

So, this one I already mentioned that there will be lot of errors in the odometry. So, it 

may keep from non-location it may be able to move based on the odometry, but after a 

certain moment the robot will get very uncertain about its position. So, in the 

probabilistic map based localization what we do is, we update the position using an 

observation of its environment. So, this is what actually we do.  

We try to update the position based on observation of its environment. As I mentioned 

earlier, so we use a camera or some other sensor to observe the surroundings of the 

robot. And then use that information along with the map information and using that 

information we try to update the robot position. So, that is basically the map based 

localization.  

So, this observation lead to an estimate of the robot position which can then be, which 

can then be fused with the odometric estimation to get the best possible update of the 

robots actual position. So, what we do? We will fuse these two information- one is the: 

information collected from the odometry, and the other one is the information collected 

from the sensors, and then we will fuse these two to get a better estimate of the robot.  

So, we use some kind of a fusion algorithm to get the better estimate of the robot 

position, so that is basically the map based localization. So, we do not depend only on 

odometry. We use some other method also, and then fuse these two, and then reduce the 

error in the estimated position. So, at every stage, you try to reduce the error. So, when 

the error is actually going increasing like this as I mentioned earlier.  

So, at every stage, we will try to at this stage if this is the estimated position using 

odometry. We will try to use the information from the sensors and then reduce it to a 

smaller value. And again this will actually go up, and then again we will try to bring it 

down, and we will try to bring it down. So, the error estimated error will be much less 

compared to the odometry alone localization. So, that is basically the map based 

localization.  
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So, before we talk about map based localization, let me introduce some of the 

terminologies we normally commonly you encounter in this map based localization ok. 

So, we assume that there is a path commanded to the robot which is given as Xt. So, Xt is 

the path inputs. So, at every time instant t, you have a position , commanded. So, X is 

the with the vector which represents the pose of the robot at t.  

Now, we assume that there is a proprioceptive input Ut. So, there is the control input or 

the input that we actually given to the robot, which is measured by the sensors. So, the 

proprioceptive that what is sensored sensed by the sensors within the robot. So, for 

example, the encoder will measure the speed of the wheel that is basically the 

proprioceptive input Ut. 

So, when the robot is in that position Xt, suppose it is at initial at Xt-1, and then you give 

a control input U, then it moved to Xt. So, that is the control input that you give Ut for 

the to move to Xt. So, Ut is the proprioceptive input which is basically the control input 

given to the robot and that input is measured using the sensors what is the how much the 

wheel has rotated or how much the wheel has travelled is measured that is basically the 

Ut.  

Then we assume that there is a exteroceptive input that you are getting from the sensors 

which are attached to the robot. Exteroceptive sensors are the sensors, which collect 



 

 

information from outside the robot. So, we use a exteroceptive sensor, and then collect 

the information which we call it as Zt. So, Zt will be information about some object in the 

vicinity of the robot.  

The robot will say oh I can see a wall at a distance R and at an angle θ from my position. 

So, that may be an input which is given coming from the sensor, so that is basically a 

exteroceptive inputs Zt. And then we assume that there is a map available to the robot, or 

the map information is already available.  

So, we need to have the position of the robot, and what is the control input given to the 

robot for it to move forward. And what is the sensor that is seeing that is exteroceptive 

input Zt – what is what the robot is seeing, what the sensor is seeing in the surroundings, 

and then the actual map of the environment. So, these are the requirements for map based 

localization.  
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Now, we define something called a belief state. So, a belief state is defined as the best 

guess about robot state. So, the robot is believing that it is in this particular position we 

call that as the belief state of the robot. Now, this belief state can actually be having two 

types of belief states ok.  

So, the belief state can be defined as the probability that the robot is at x t probability that 

the robot is at Xt given the Zt that is the exteroceptive input, and the control input up to t 



 

 

that is known as the belief state of the robot belief Xt. So, the probability of robot being 

at Xt given all its past observations and all its past control inputs, so that is basically the 

belief state that is the robot was robot say that it is this t, it has moved from somewhere 

else.  

So, all its control input is given, and all its map information is provided. And based on 

all this information, the robot says that my position is this Xt, so that is basically the 

belief state of the robot. Now, we can have a belief state calculated before the new 

observation at t just after the control input Ut, which is defined as .  

So, we call this , which is probability of the robot is that it is the Xt provided the 

observations before reaching this position, ok. Before reaching this position, all the 

observations are there, and the control input till that t position t instant is provided. So, 

that is basically known as a  . So, to explain this, so we will take a again 

a one-dimensional case.  
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So, assume that the robot was initially here Xt-1. Now, you give a control input u t here, 

so the robot moves to Xt. Then it uses the information from the sensor and then collect 

the information Zt, and recalculate its position and then says that ok now this is the Z Xt 

that is the new position Xt. So, the robot believes that it is at this Xt when all the Ut is 

known and Zt is known, then we call this as the .  



 

 

 is it has it was in Xt-1 and then it has got a control input Ut, and then reached at 

this position Xt and did not did not get the information from the sensor, and that belief 

state is known as the  . So, is the belief state just before getting the 

update from the sensor exteroceptive sensor.  

So, it has got the control input, it has moved to its new location, but it has not corrected 

its position based on the sensor input, so that is basically known as the  . So, 

 is basically a prediction update based on the odometry; and  is basically 

a estimated position after getting the input from the sensor. 

So, we call this as the prediction update because we are predicting the new position 

based on the odometry is belief bar. And then this is known as the perception update. So, 

you are actually updating the new position based on the perception that is the data that 

you are collected from the environment, so that is basically the perception updates. 

So, you have two stages one is known as prediction update. Prediction update is purely 

based on the control input. And perception update is you have a updates of the prediction 

update based on the observations surrounding the robot, and that update is known as 

prediction update sorry perception update.  

So, the final belief state that we are interested is this one , and the intermediate 

stage is the , which is a prediction update. So, we will be having first state 

prediction update. So, the robot starts from a non-position. It update its position based on 

the prediction, and then it updates its position once again based on the observation, and 

finally, you will get the new position estimate of the robot.  

So, it is not only the position the it is covariance also will be estimated as the robot 

moves. So, we will be having a prediction update and perception update at every stage 

for the robot to move forward and localise itself. So, this is what we do in the map based 

localization, ok.  
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So, you have a prediction update which we call it as an action update because you are 

actually commanding the robot to move, there is the prediction update. And then there is 

a perception update and this is based on the measurement that you make from the robots 

using the robot sensor, so that is basically the measurement update or the perception 

update, ok. 

So, you have an action update and a perception update. So, prior belief state and then it 

increases the uncertainty. Because from the previous position, so if you have the position 

like this, so this is the position p we say there is a uncertainties Ʃp also. Now, as the 

robot moves with the control input Ut, it reaches the new position P’, and the uncertainty 

actually increased to Ʃp’ because now because of the control input and the errors in the 

sensor you will be having a large uncertainty.  

So, this uncertainty – large uncertainty will be reduced using the observation Zt, and it 

will calculate a new position we call this as new position estimated as using the sensor as 

P’’, and then we get a new covariance estimate also. And this new covariance will be 

smaller than this covariance. So, that is the (Refer Time: 32:37) here.  
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So, the perception update is basically the SEE that is that you are actually seeing using a 

sensor and then updating the information. And that actually decreases the uncertainty 

because of this updated belief state. So, you perception updates will reduce the 

uncertainty, while action update will increase the uncertainty. 
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So, this can be explained with a simple diagram. Consider this is a robot moving in a 

one-dimensional space, I mean it is just moving in a straight line. And assume that the 

robot does not know where it is. It is initial position and covariance is unknown. So, it 

assume that it could be anywhere in this, this location, anywhere, it could be anywhere 



 

 

here. And it equal probability, so this actually this shaded region shows that it equal 

probability for the robot to be anywhere in this region. 

Now, the robot starts moving. And assume that the robot has got a map, and the map 

shows that there are three poles like this and their distance between these are also known. 

Now, the robot starts moving. As the robot starts moving its uncertainty will keep on 

increasing. So, the uncertainty will keep increasing till here.  

And it sees one pole here ok, so that means, it has seen one of these, but it could be the 

robot could be here, or it could be here also. So, robot does not know where it is in the 

map. So, it says that I could be here or here or here. So, I uncertainty my probability that 

the robot, robot is here, here, and here are much higher than any other place. So, the 

robot has got some information saying that it could be anywhere in these three places, so 

that is the uncertainty. 

So, basically it has use the initially the odometry to update its position, and then using 

the sensor it has actually updated its position, and it has got a much more certainty that it 

could be here, here, or here, than any other place. So, that is the way how we reduce the 

estimate error. Now, the robot still starts moving because it could not really localise. It 

starts moving.  

And as it starts moving, again this probability decreases because now the robots 

uncertainty again increases. So, this probability decreases. And then it could be all the 

three probability decreases the robot does not know where it is. Now, as it moves it 

actually sees the next pole after some time after travelling a particular distance, it sees 

that another pole is there.  

Now, the robot is almost sure that it could be at this location only because from this 

location it has travelled this much distance and there, and it seeing the next one that 

means, it could be only at this position. It could not be any other location because no 

other location will be able to give you this information. 

So, it is use the sensor information as well as the odometry information to estimate its 

new position, and then it has actually got a very high probability that the robot is here. 

So, the robot localise itself and saying that I could be in this position. And there is a 



 

 

small uncertainty, but otherwise it is more or less sure about its position and so, it 

localises itself.  

So, so, it actually uses the prediction update and the perception update to update its 

current position and its uncertainty. And once it is able to use the map information and 

the sensor of information, and combine them together, and then identify its location then 

the robot localises itself. And then says that I could be in this position with maybe 99 

percent probability. So, that is the way how the robots do this map based localization.  

Of course, there should be some algorithms running to do this. So, we look into those 

aspects in the next class. How we can actually use some standard algorithms in order to 

do this matching of the features, and then use that information to get the covariant or the 

uncertainty estimate of the robots position. So, we will discuss that in the next class. 

Thank you. 


