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Lecture - 12
Equation of Motion and Dynamic Simulation of a Mobile Robot

Welcome back to Wheeled Mobile Robot. So, last class what we have seen lecture 11 we
have made it 2 part. So, where we were talking about a dynamic model of mobile robot

that to we have taken a very general what you call land base mobile robot.

So, we have taken 2 popular method 1 as Newton-Euler the other one is Lagrangian-
Euler, but at the end of the lecture 11 part 2 | said that the next class we will be talking
about the same equation of motion what we obtained in these 2 methods we will write it

in a you call state space form.

So, what that mean we will write it in @ matrix and victor form. So, that is what we are
going to cover in the lecture 12 in the beginning then we will move to a dynamic
simulation using MATLAB for a generalized land base mobile robot. That is what going
to cover in the lecture 12. So, what we are actually trying to cover. So, we will be trying
to cover equation of motion then we would be actually like writing the equation of

motion with respect to inertial frame.
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So, what that. So, you know like this is what the mobile robot the mobile robot having a
B as the point and where you can say this is | as the another point. So, this is what you
call actually like inertial frame. So, now this initial frame you can actually like write it
and whatever we have derived that is actually like derived with respect to what you call

body frame.

So, now, first we will write the equation of motion in what you call matrix and vector
form which we simply call state space form thereafter actually like we will talk about the

equation of motion with respect to inertial frame.

Once these things done then we will actually like move to the MATLAB environment
and we will try to simulate. So, both forward and inverse dynamics certain extent and
then we will move or we can actually close this lecture 12 and lecture 13 we will actually

like talk about more on wheeled configuration ok.
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So, now, in that sense we will actually like begin. So, this is the you can say model we
have shown in the last class where you can actually like say that Fx Fy and Mz we can
actually like do it either Newton Euler or Lagrange Euler, but their generalized equation

what you have actually like obtained what | mean to say generalize the equation.



If your body frame and the what you call the centroid is actually like away or it is not
you can say same point they are distinct. Then you can actually like get the dynamic

model in this form. So, now this is what we are actually like considering.
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And we are writing in a very simple sense where matrix or not in this case it is actually
like vector to vector we are writing. So, now, you can see that what we wanted is
actually like something we can actually like integrable. So, what that means? So, you

know the state variable which is n right and » and | can write # this is one way or | can

write nand & and £ .

So, this | can do it. So, in the sense you can see that | can write it either this or this form,
but | wanted to have this form. Why? Because | told that the tau | can write as function

of you can write in the sense #j and # or in the other way round if you write f(n, &, & ).

So, this is what | wanted. So, in order to do that what | am trying to do? So, here you
1t
i':]are the what you call the acceleration. So, which is actually like with
],'1

know like




e

respect to body frame whereas, lz:l actually like your body fixed velocity at
-

instantaneous time and you know like the other things.
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So, now what we are trying to do we are trying to rewrite that into other way round
where we are putting every coefficient of the acceleration. So, what that means? So, you

can see here there is no #. So, | am putting that coefficient and similarly the second

equation do not have any 1. So, that is also | am putting and the reminding equation | am

Tt
rearranging in the such a way that. So, I can write it in terms of coefficient of I!’»‘].
],'.

So, this is what the overall idea and now what | can do? | can actually like segregate this

Tt
[z':] and the remaining | can actually like put it in one side and I can rewrite this equation
],'1

this is what | wanted. So, in the sense what you can write x = AX + bu. So, where this all

vector.
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So, this is what we call state space form. So, this is what | also wanted in this way. So, in

the sense what | can do? So, this | am rewriting in a matrix you can see like now these

Tt
are the coefficient related to [i’»‘] and the remaining | am putting as a simple vector and
],'.

equal to the forces which are actually | given.

So, now what you can actually like see. So, this particular matrix hereafter we are going
to call inertia matrix why it is actually like purely based on the inertia, but this particular
matrix has a speciality. What the speciality? You can see the diagonal value all are
positive and you can actually like see that off diagonal is actually like similar of the
bottom one or you can say the other way round. What that mean? So, it is actually like

symmetric matrix.

In the sense if | call this as one of the matrix called D for example. So, this D matrix
would be actually like positive and as well as what you can see the D matrix is actually
like symmetric. So, this is what one supposed to know in this particular slide.
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So, now this is what | am going to write as a equation of motion in a state face form. But
what | said | wanted actually like everything in the form of what you call integerable
form that we will see in the dynamics simulation right now we will move. So, this one
you can see what this equation is in the form. So, this equation with respect to what you

call body frame right, but what | wanted? | wanted everything in the initial frame.

So, that I no need to actually like make this what you call body frame as a instant and |
cannot actually like explained what are those things, but on the other way round the body
frame equation would be benefit because you are what you call wheels are connected
with the body.

So, whatever you are going to give as a wheel inputs those would be beneficial directly if
you write the equation with respect to body frame that is why in the mobile robot
community what we used to do we will write the kinematic equation which is actually

like 77 = j(¥) x &, but the & we will write in terms of only body frame.
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D - is the inertia matrix, further, D" =D > 0.
n(() - is the other effects.
) 7-is the vector of inputs.
T T
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So, what that means, or we will actually like rewrite this. So, what we will do? So, we

will actually like first take what principle it is. For example, now | call this is actually

like with respect to body and this is what I call with respect to I. So, now, if the body is

actually connected with a wheel and it is actual like a start getting a motion. So, now,

what would be the power. So, something right. So, | am writing that is the power, but if |

realize the same power in the inertial frame.



Do you think that the power would get changed? No, right because only thing you are
representing with respect to one frame to another frame. So, in the sense that the total
power you can say consumed by the system will not get changed. So, that is what we are
trying to use as long we assume that there are no losses, then what we can bring? We can

bring the principle of conservation of power.
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So, then what one can actually like right the power to move a robot at the inertial frame
supposed to be equal to power to move the robot what you call at the body frame. So,

then what you can write?

You can write what is a power relation. So, what you know the velocity and the forces or
you can write the input vector and thee what you call velocity vector you know. So, in
the body frame what would be the velocity vector? n ¥ &. So, what would be the inertial

frame that is 7 right.

And what you can write here in the you call input with respect to body frame? That

already we have written as T right. So, now, the T(&) supposed to be equal to what | am
writing T 77 17. So, what this Tn? This is actually like the control input or you call input

vector with respect to inertial frame where this tau is actually like inputs with respect to

body fame that is all.



So, now you know this is we have written in a what so, called dot product this dot

product we can write as actually like inner product you can rewrite as. So, tau T x 7. So,

the other way round T' x & right, but what you know & and T you can say that we know

from the what you call dynamic model with respect to body frame and # to & you have

already relation. That is what we are trying to use.
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So, you can see like what we are doing that we are assuming that the T x n is the vector
of applied forces and moments with respect to inertial frame and tau is actually like
vector of applied forces and moments with respect to body frame. | am actually like

bringing this equation.

So, now, what | am actually like trying to rewrite in the you can say inner and you can

say inner product way. Then what you can write this equation you know. So, 1 = J(¥) X
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So, that is what we are actually like trying to substitute right. So, then what you can see
like the & goes away and what remains T n' x J(n) ok. So, here this J(¥) | am actually

writing as J(n) because this ¥ is actually like in the n form that is what only change we

have made ok.

Based on Principle of conservation of power:
Power to move the robot at the inertial frame = Power to move the robot at the body
frame

Assuming that,
T, is the vector of applied forces and moments w.r.t to inertial frame, 73( i
7 is the vector of applied forces and moments w.r.t to body frame. J’ G{/

TII-";' :T'C
T,)Tr'] =rT¢
)¢ =r"¢
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rewritten equation. So, that is what we are actually like writing. So, you can actually like

rewrite. So, this would be J(n)T x T(n) is z. So, you can see Tn = T.

So, now you can see what you got it this relation also you got it. So, now, what you

know? So, D& + n(&) = T and what else you know? So, 77 = J(17) x &. So, these 2 equation

| am going to use and bringing the inertial frame form.
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So, that is what we are actually like writing. So, this is the mobile robot kinematic
relation we have obtained and that I can rewrite in this way and similarly what | am

writing. So, differentiating this with respect to time what | will get 7. So, the # would be
in the form of ¢ and & and you ¢ right. So, what is £? € | can write as D! of you can say

T —n(&) I can rewrite with the dynamic equation right.
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So, that | can actually like do it right now | am actually like writing & in this form | am

going to substitute that in the general equation. So, this is also we have obtained. So,
what that means? So, this equation | am taking and | am actually like substituting this

here.

(Refer Slide Time: 11:12)

B0B480 tkessiadaasy
[far1eomenma

7 M
Mobile robot dynamic relation: .

0

So, that is what we are trying to do ok. So, now, this I will substitute from the # relation

and this I am substituting with respect to this equation.
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So, now, you can see like | substituted that. So, what | get? So, I get this is a bigger
relation, this bigger relation I can regroup it with only acceleration. So, what that would
be equivalent? That would be equivalent to a inertia matrix. So, that is what I am trying
to do I regroup it only acceleration term and the remaining all 1 am putting in another

group ok, which all put a other vector.

So, that is what I did. So, in the sense I first | take this inverse and then | have actually
like regroup and make it. So, now, what happened? This is what you called Dn and this
whole what you call np ok. So, now, you can see like the entire equation you have
written in the what so, called inertial frame. So, now, if you are actually like trying to

control your overall system you can try a directly say that these are the inputs ok.

So, in the sense you can give the desired generalized coordinate, desired derivative of
generalized coordinate and you can say desired double derivative of generalized
coordinate you can give it in the sense you can give the vehicle position with respect to

inertial frame velocity and acceleration, you can give then also you can do it right.

So, now you can see that the overall system you have written with respect to inertial
frame. So, this is one side. So, now, what we wanted we wanted actually like see how the
vehicle behaviour will happen. So, in the sense we can do the forward dynamics and if

you have given this way can | actually like do the inverse dynamics.



So, for that what one supposed to know. So, you should know the dynamics simulation
tool already I gave a small idea in the you can say kinematic simulation how we can one
can use the Euler method the same Euler method can be extended here ok. So, that what

we are trying to do in the dynamic simulation.
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So, what we are trying to do. So, we are actually like trying to take one of the simplest
equation which we have derived and this is the kinematic equation and this is the

dynamic equation. | will be keeping the dynamic model as it is in the body frame



because | told right my wheel forces or you can say my input forces would be with

respect to body. So, | will keep it that.

So, that that would be you see then I will actually like make a another loop which will be

doing the 5 integration. So, in the sense what | am trying to do? | am trying to do this

with respect to what you call in MATLAB. So, now we will move to the MATLAB

window then we can actually like see how that stuff works.
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So, now, | am actually like opening one of the new scripts. So, we will actually like see
how that takes place. So, you know how actually like we have done in the previous. So,
we have actually like taken the simple Euler method and we have tried how to actually
like simulate both forward differential kinematics and inverse differential kinematics. So,
now the same thing we will extend to the land based mobile robot where you would be

doing the dynamic simulation.
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1 %% Dynamic model of a land-based mobile robot

2

3 clear all; cle; close all;

4

5 %% Simulation paraméters

6 dt = 0.1; % Step size

il ts = 10; % Simulation time

8 t = 0:dt:ts; % time span

9

10 %% Initial conditions

11 eta0 = [0;0;0]; % Initial position and orientation of the wvehicle
12
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So, for that I will actually like write in the same way. So, dynamic model of a land based
mobile robot. So, why | am actually like saying the land based? Because we are
restricted with only one play. So, the half planar movement we are not discussing ok. So,
now what you have to do? So, | am just taking I will be running so many things. So,

better | will actually like put the mandatory things.

So, we will come back. So, what we did? So, the simulation we have started. So, the
simulation parameter | will take it from the previous case. So, what we have done? We
said &t we denote as dt that would be 100 milli second which we have written as Step

size. So, | will write it that. So, then we write a total Simulation time as ts.

So, | can take it any, but right now | am taking 10 second, this is the simulation time. So,
which are actually like same, but you can see that something is going to change ok. So,
then the t also like a times span where it start from 0 and it increased by the &t time or
you can say the increment by &t up to ts. So, this is what you are at total time. So, in the
sense this is | put time span, but what we have done earlier. So, earlier we have done as
the initial condition. So, that is only first order derivative, but here second order

derivative.

So, then the condition would change. So, in the sense what are the things we have to do?

So, n you have to define. So, no | am actually like defining. So, which is xo yo and Yo |



am taking that as 0; O just for my convenient ok, but we will change it later on. This is
initial position and orientation of the vehicle. So, then what you can actually like see.
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14 eta(:,1) = etal;
15 zeta(:,1) = zetal;

17 %% Robot parameters

19 m = 10; % mass of the vehicle
20 Iz = 0.1; % Ineratia of the vehicl

22 xbc = 0; ybc = 0; % coordinates of mass center

24 %% State propagation

%5 for
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So, I will put it & So, because this is second order derivative right the £ we are trying to

integrate. So, in the sense & also | am taking. So, which is what you call the input
command so vector of. So, | will write initial you can say vector of input command. So,

which is nothing, but the body fixed velocity.

But what we are trying to do? We are trying to propagate where n would be getting
propagate up to you call tenth second. So, in the sense | am actually like taking the first

segment is no because every loop iterating. So, this n would be increased by 1.

So, in the sense | am taking the &o, then the & also like the same way. So, that is also like
going to iterate every loop. So, I am assuming that this is 0 ok. So, now, what we have
done? We have taken the initial condition now we will go to the vehicle parameters I will
write robot parameters because | always teach vehicle dynamics on that way. So, robot
parameters. So, here what are the robo parameters we a supposed to use? You are to use

what would be the mass of the vehicle right.

| assume that the mass of the vehicle is 10 kilogram. So, mass of the vehicle then what
we have taken the inertia of the vehicle that to like is z axis inertia I am taking just a

small one, we will take it original when we are doing in real time. So, this is the Inertia



of the vehicle or inertia of the robot whatever you can call because this | assume that
vehicle because mobile robot. So, is there any other things that required? You can
actually like open the slide. So, where we were talking about what you call the stuff. So,

I will just show you.

So, here you can see is there anything else is coming? No right so, but if you look at the
CG and the body frame is actually like away then you have to bring the coordinates of C
with respect to B right. So, that also like I will bring it here. So, in the sense Xuc is actual
like 0 I am taking, but I will bring it that ok. So, in the sense these are actually like what

you call.

So, coordinates of mass center | will just put it mass centre ok. So, what is required then
that is all. So, we will actually like move to the what you call system or state
propagation. So, | am just putting State propagation where | will be starting with the for
loop. So, you may think that we are doing a second like a we would be solving 2
derivative, then there may be 2 for loop no because we are actually trying to do in a

single instance.
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22 xbc = 0; ybc = 0; % coordinates of mass center
24 %% State propagation

26 for i = 1:length(t)

27 u = zeta(l,i); v = zeta(2,i); r = zeta(3,i);

28

29 %% Inertia matrix

%% D = [m,0,-ybc*
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So, in the sense only one for loop where it starts from i = 1 : length(t). So, but what are
the stuff you required? You see like we have written everything as generalized. So,
where we have written u. So, u is actually like what & of 1 because that is what the case



right and v is actually like what & (2, i ) the i"" instant that what you call and r is what you
call §(3, 1) right.

So, then what else you required? You required Xoc we have given Yoc we have given m
we have given i is that given. So, then that is straight forward right you can actually like
recall here is there anything else is there no right. So, | will just use them what you call
this one. So, this matrix form I will actually like use. So, that would be easy. So, you can
see like this is diagonally it will come and as well as off diagonal you can see it is going

to give a symmetricity.

So, I am just using that ok. So, what that would be? So, the Inertial matrix I call D I will
write that is Inertia matrix. So, Inertia matrix which is what you call D as a matrix. So,
that would be. So, mass right. So, then 0 and -Yrec X m right. So, | can actually like cross
check right. So, this is what the case. So, | will take this equation and put it here. So, that

it is easy for you to recall what we are trying to write ok.
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21 u = zeta(l,i); v = zeta(2,i); r = zeta(3,1);

28

29 %% Inertia matrix

30 D = [m,0,-ybc*m;

31 0,m, xbc*m;

32 -ybc*m, xbc*m, Iz+m* (xbe*2+ybe2) ;15

33

34 niva=Al!

35

36

B

38

39

40
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So, this is what we are doing it then the second one is 0, m then m x Xy into because we
have taken in the earlier is like that then you have actually like -Yunc X m then. So, m
sorry Xnc X m then the final one is actually like Icz so, which we have written Iz + m x
(Xbc? + Yne?) ok. So, although it is not there in our case, but we are actually like taking it
that as a general case. So, now, you can see that the inertia matrix which as 3 x 3 we

have actually like taken.



So, now what is required? So, you need to have the n. So, | put n vector as small one. So,
n. So, that also like would be having 3 components. So, I will use it here that vector is
ok. So, this is the n where you can see there is a coriolis down and as there you call the

radial term is there. So, I will actually like use it that.
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33 %% Other vector

34 n v = [-m*r*(vixbc*r);

35 m*r* (u-ybc*r) ;

36 m*r* (xbc*ut+ybc*v) ; ];

37 %% Input vector

38 tau(:,i) = [1;0;0];

39

40 %% Jacobain matrix

41 psi = eta(3,i);

42 J eta = [cos(psi),-sin(psi),0;

43 sin(psi),cos(psi),0;

44 0;0,11;

45

46 zeta dot(:,1) = inv(D)*(tau(:,i) - n_v);

%S zeta(:,i+l) = zeta(:,i) + dt*zeta dot(:,i);
@ 2 ipenerensene o n ARNEUCEE 4 B8, 0

| hope you are able to see my screen. So, which is actually like m x r. So, multiply with
what you call v + Xuc % r. So, then the second term which is what you call m x r. So, u -
Yoe.

So, I will actually like type it faster. So, that it would be beneficial. So, this is Xoc X u +
Yiue X V then you can see this is what the last term and this is what we have actually like

done. So, then what else required? So, remaining all we need to do it ourselves.

So, that tau what you call that is actual like every instant is going to change. So, this is |
call other vector ok. So, this I call input. So, the Input ok. So, the Input vector what we
are going to write Fx Fy and Mg, but right now | am taking that is simple only F axis is
having one Newton y axis is not having anything and z axis is also not having anything
just for simulating. Then what you need you need actually like Jacobian matrix because

you are going to do 2 things. So, | am just taking a Jacobian matrix.



Why we are doing 2 things? Because it is 2 you call second order system you would be
integrating twice. So, the first one you are trying to get the & then the & you would

substitute in the 77 equation that is why we are writing the Jacobian matrix. So, J(n) | can

write as. So, cos(¥) ok. So, then — sin(¥). So, then 0, then what you call sin(¥), then
cos(¥) a 0 then what you call 0, 0, 1 ok.

So, this is what the case so, far that what one supposed to know. So, you should know
what is ¥. So, ¥ | am writing as. So, n of third element so, that also | have written ok.
So, now, we can actually like do the integration. So, the first one is actually like I am

writing £ at the i instant ok. So, this would be what D'* x T ith instant - 7 right.

So, this is what you do €. So, then what you want?¢ you want &(i) + 1 iteration. So, that
what you call &(i) + dt x & right. So, € of i one right, this is what we have taken as a

Euler integration. So, till now you can see right this is only for a velocity update, but you
know like this is actually like second order system. So, we need to actually like do little

more. So, we will actually like come back to the other you can say state which is you call

n.
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44 J eta = [cos(psi),-sin(psi),0;
45 sin(psi),cos (psi),0;
46 0,0,1];
47
48 zeta dot(:,i) = inv(D)*(tau(:,i) - nv );
49 = zeta(:,itl) = zeta(:,i) + dt*zeta dot(:,i); velocity update
50
51~ :,i+1) = eta(:,i) +dt * (J_eta*(zeta(:,i)+dt*zeta dot(:,i)));
52
53
54 end
55
56
57
()
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So, we are actually like updating that n with the help of n ok. So then you can see like

what usually we does because the /7 we write it in a & form where J() x &. So, this is

what we usually say that that would be equivalent for a first order system, but if you look
at this n this n is actually like dependent on not only initial velocity it is dependent on

even initial acceleration.

So, in the since we can actually like add one more fact. So, which is what we call you
can see this fact we can actually like add what that mean actually like you can see we are

adding the acceleration part what; that means, ¢ also becoming. So, in the sense | am
actually like making it.
So, &(i). So, now, you can see like this is actually like dependent on the initial velocity

and initial acceleration. So, now, if we actually like close this then you can see like this

is what the n of update the sense I can actually like write this state update ok.
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44 s(psi),-sin(psi),0;
45 n(psi),cos(psi),0;
46 0,1

47
48 i) = inv(D)*(tau(:,i) - nv);

49— = zeta(:,1) + dt*zeta dot(:,i); % vglocity update

50

51- =eta(:,i) +dt * (J_eta*(zeta(:,i)+dt*zeta dot(:,i))); % state update
52

53

54

55

56

57
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So, this is | call the velocity update. So, only issue is actually like here we are

multiplying this j(n) because the & and ¢ is in the other domain where it is actually like

with respect to body what we call instantaneous velocity and instantaneous acceleration



with respect to body frame, but we are looking for the generalized coordinate which is
actually like you call eth fixed. So, that is what we are actually like trying to find.

So, now if we apply this way then you can see like whatever we have done we have
assume that the tau as the input and actually like we are taken J(n) actually like

calculated based on the ¥ and then we are actually like going again with £ and then & we

calculated based on the velocity update then n. So, now we can actually like bring the

you can say the file which we have usually uses for the animation
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60

61 Animation ( n)

62-= 1 =0.6;

63 w=20.4; %

64 Mobile robot coord s

65 mr_co = [-1/2,1/2,1/2,-1/2,-1/2;

66 -w/2,-w/2,w/2,w/2,-w/2;]);

67 figure

68— -for i = l:length(t) % animation starts here

69 psi = eta(3,1);

70— R psi = [cos(psi),-sin(psi);

71 sin(psi), cos(psi);]; % rotation matrix

125 v_pos = R psi*mr_co; .
l{g:u"m' Tound U gk b 5t < :
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So, that | have already copied here. So, you can see like this is the animation part. Now,
if 1 give any T. So, in this case | modified to 1 and 0.5 in the sense 1 Newton in x and 0.5

Newton in'y.
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“u.: = 7 0 WL ,;’\_;A.c -
8 t = 0:dt:ts; % time span
9
10 %% Initial conditions
11- etal = [0;0;pi/4]; % Initial position and orientation of the vehicle
12 zeta0 = [0;0;0]; % Initial vector of input commands
| 13

14 eta(:,1) = etal;
15— zeta(:,1) = zetal;

16

17 %% Robot parameters

18

19— m = 10; % mass of the vehicle

20 Iz = 0.1; % Ineratia of the vehicle

21 v
l(a uT4 it Lo |’=7
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And you can see like | modified just for a clarity. | will start with 0 initial condition. So,

now, if you here what it is giving? This F axis force and the y axis force.
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38

39 %% Input vector (forward dynamics)

40 tau(:,i) = [1;0.5;0];

41 g

42 %% Jacobain matrix

43— psi = eta(3,1);

44 J_eta = [cos(psi),-sin(psi),0;

45 sin(psi),cos(psi),0;

46 0,0,1);

47

48 zeta dot(:,1) = inv(D)*(tau(:,i) - n_v });

49— zeta(:,1tl) = zeta(:,1i) + dt*zeta_dct(:,i): % velocity update

50

SilS eta(:,i+l) = eta(:,1) + dt * (J eta*(zeta(:,i)+dt*zeta dot(:,i))); .
B P ety orBraBNEY L Em ~cdan MW

So, now the vehicle will or you can say drag in the lateral direction in a inclined way that

we can actually like explore by looking the animation.
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40 tau(:,1i) = [1; ‘;—:2_
41
42 %% Jacobain ma
43— psi = eta(3,1) o=
44 J eta = [cos(p 0 2 4
45 sin(p . x,[m]
46 0,0,1];
47
48 zeta dot(:,i) = inv(D)*(tau(:,i) - nv );
49— zeta(:,itl) = zeta(:,i) + dt*zeta dot(:,i); % velocity update
50
51 eta(:,itl) = eta(:,i) + dt * (J_eta*(zeta(:,i)+dt*zeta dot(:,1))); .
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So, now, you can actually like see the animation. So, you can see like the 1 Newton force
is acting on the body in the forward and 0.5 Newton is acting on the y direction. So, now,
the vehicle is actually like moving both a longitudinal and lateral in the sense it is

actually like moving in a inclined fashion.

So, now, the same thing you want to actually like explore little more. So, what in the
sense | will give some non zero initial condition; for example, the vehicle state already it

is actually like rotated something.
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So, then you can realize what is forward dynamics is all about. So, these are the system
states will come back. So, now I am actually like seeing that instead of you can say the
no as 0 in the angular.

So, | am saying that this is actually a 45°. So, now, if | actually see that what happened
the vehicle itself is actually like orient 45°. Now, if I actually like push the force in F you
can say Fx and Fy you can see like from that 45° again it would be inclined not actually

like from 0.
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= clear all; clc; cl E‘
=

dt = 0.1; % Step §
ts = 10; % Simulat 4

I
2
3
4
5 %% Simulation para
6
1
8
9

t = 0:dt:ts; % tim 0 2 4
x[m]

10 %% Initial conditions

11- eta0 = [0;0;pi/4]; % Initial position and orientation of the vehicle

12 zeta0 = [0;0;0]; % Initial vector of input commands

13

14 eta(:,1) = etal;

15— zeta(:,1l) = zetal;
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That you can realize from this particular simulation you can see already the vehicle is in
45¢,

(Refer Slide Time: 29:18)
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Now, we are actually like inducing the force in x direction and y direction of the body
fix. So, that is what you can realize. So, now, you can see the vehicle is actually with
respect to body whatever the motion earlier you have seen that is exist, but since it is the



system state from the generalized coordinate is modified. So, that is why you are actually

like getting you can see like plus 45° added in the vehicle.

(Refer Slide Time: 29:27)
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So, similarly you want to see what is the system state for example, body fixed velocity
how it is increased we do not have any friction right. So, that is why you can see the
velocity keep on increasing.

(Refer Slide Time: 29:50)
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And similarly system state also like keep on increasing and we assume that the ¥ is

actually like 45 constant. So, that is what you can actually like see, but when you see it

initially 45, but after all after that you can see like it is a gradually actually like

exchanging small variation right, but it supposed to be 45°throughout that you can
actually like realize at the end.

(Refer Slide Time: 30:10)
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So, now, | am actually like looking at the other round other way round. So, what the
other way round? | am actually like inducing some friction.
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41

42 %% Jacobain matrix

43 psi = eta(3,1);

44- J_eta = [cos(psi),-sin(psi),0;

45 sin(psi),cos(psi),0;

46 0,0,11;

47

48— zeta dot(:,1) = inv(D)*(tau(:,i) - n_v -0.3*zeta(:,i));

49 zeta(:,i+l) = zeta(:,i) + dt*zeta dot(:,i); % velocity update

50

51 eta(:,i+l) = eta(:,i) + dt * (J eta*(zeta(:,i)+dt*zeta dot(:,i)));
52

53

54— -end i
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So, for example, | am assuming that it is a viscous friction. So, what that means? So, the
viscous friction coefficient is known | assume that that is 0.3 and that is actually like in
each and every state there is actually like the direct relations. So, in the sense & of

actually like i. So, in the sense b v right when we write a second order system.

The same way it is equivalent it is a very close to a damping coefficient this is damping
coefficient and this is the damping overall term this is a velocity base. So, now if I
actually like heard what happened the velocity would be getting you can say streamline

that you can actually like see.
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42 %% Jacobain ma E‘

43 psi = eta(3,1i) :2

44— J_eta = [cos(p

45 sin(p
| 46 001 0@ L]

47 0 2 4

48— zeta dot(:,1) x[m] _ *zeta(:,1));

49 zeta(:,i+l) = zeta(:,i) + dt*zeta dot(:,i); % velocity update

50

51 eta(:,i+l) = eta(:,1) + dt * (J eta*(zeta(:,i)+dt*zeta dot(:,i))):
52

53

54— -end I
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So, the same scenario only think the velocity would be getting somewhat actually like
getting settle. So, earlier it was keep on increasing. So, now, you can see like some kind

of saturation you can expect at the end of you can say simulation probably.
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So, now, you can see that the system is actual like a getting curve, but if | increase the
time step you can actually like see that increasing the time step in the sense span time.
So, right now it is actually like 10 second.
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5 %% Simulation parameters
6— dt =0.1; % Step size
1 ts = 30; % Simulation time
8= t = 0:dt:ts; % time span
9
| 10 %% Initial conditions
11 eta0 = [0;0;pi/4]; % Initial position and orientation of the vehicle
12— zetal = [0;0;0]; % Initial vector of input commands
13
14— eta(:,1) = etal;
15 zeta(:,1) = zetal;
16
17 %% Robot parameters
18 v
® G i
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If | actually like increase probably 30 and I actually like pass the simulation | do not
want.
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86 %% Plotting functi t’[s]
87— figure

88 plot(t,eta(l,1:i),'r-",t,eta(2,1:i),'b-.",t,eta(3,1:i), 'k--", 'linewidtH
89— legend('x,[m]','y, [m]',"\psi, [rad]');

90 set (gca, 'fontsize',24)

91— grid on

92 xlabel ('t.[5]'):

>
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I just want to plot the you call all the system states. So, you can see like the velocity
would be getting a streamline.
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So, still it is not because the friction is actually like not really actually like is sufficient to
drag this because it is actually like one Newton and it is a frictionless surface earlier.
Now, you can see like it is not like a straight line it is curved. So, in order to check that

probably we will increase the time again.
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1C

1 %% Dynamic (forward dynamic) model of a land-based mobile robot

2

3— clear all; clc; close all;

5 %% Simulation parameters

[3 dt = 0.1; % Step size

7- ts = 10p; % Simulation time

8 t = D:dﬁ:ts; % time span

9

10 %% Initial conditions

11- eta0 = [0;0;pi/4]; % Initial position and orientation of the vehicle
1) zetal = [0;0;0]; % Initial vector of input commands
i

14 eta(:,1) = etal;
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43— psi = eta(3,1); il
44 J eta = [cos(psi),-sin(psi),0;

45 sin(psi),cos(psi),0;

46 07010

47
| 48 zeta dot(:,i) = inv(D)*(tau(:,i) - n v -0.5*zeta(:,i));

49— zeta(:,itl) = zeta(:,i) + dt*zeta dot(:,i); % velocity update

50

Si= eta(:,itl) = eta(:,i) + dt * (J_eta*(zeta(:,i)+dt*zeta_dot(:,i)));
52

53

54 end

55

56
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So, probably I will just give 100 and | will just increase the frictional coefficient
probably 0.5.
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18
\ _ .
19- m=10; % mass of 0 50 100
20 Iz = 0.1; % Ineraf| t[S]
21
22 xbc = 0; ybc = 0; % coordinates of mass center
23
24 %% State propagation
25
26 for i = 1:length(t)
'(;') U4 ik b0 OJ‘;
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Just for because the mass is here is 10 kg right. So, then one Newton is actually like very

small.
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So, now you can see like it is getting saturated right it is very closed to 1 meter per
second in v and almost 2 meter per second in you can say u. So, this is what we call
actually like forward dynamics where you know the force tau which is actually like

known to you and you deploy your actual like equation of motion and then you can

verify.
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%% Input vectoF (forward dyn’anu.cs)

tau(:,i) = [1;0.5;0.1);

%% Jacobain matrix
psi = eta(3,1);

J eta = [cos(psi),-sin(psi),0;
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For example now if | give even the angular torque. So, then you will get actually like the
angular force also like in the sense it is getting changed. So, now, that is what you can

actual like realize.
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So, what that means, actually like you can see initially it is O velocity in you can say
angular velocity with respect to body frame, but now it is actually getting approximately
0.2 radian per second. So, because of that what happened? The vehicle is actually like
start you can see rotating. So, that is why you can see x and y is actually like making a

curvy way.

So, for example, x is actually like getting increase after that you can see it is something
like a sinusoidal form. So, now, you can actually like bring the simulation part just to
give probably. So, you can actually like get a idea how it look like. So, I am just bringing

the simulation part.
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86 %% Plotting functivus

87— figure

88 plot(t,eta(l,1:i),'r-",t,eta(2,1:i),'b-.",t,eta(3,1:i), 'k--", 'linewidtH

89— legend('x,[m]','y, [m]',"\psi, [rad]');

90 set (gca, 'fontsize',24)

91- grid on

92 x1abel ('t.[51'): .
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Then you can see that vehicle is getting actually like increase. So, here | scale down or

scaled up according to the vehicle overall coordinate you can see like it started from 452,
but it is keep on increasing.

So, it is actually like properly getting a certain constant velocity in x and y. So, after that
you can see it is something like a sinusoidal form it is making a circular or you can say

very close to a circular form. So, these all the cases what we have seen as a forward



dynamic. So, now, you can change your Xnc Ybc YOu can change your vehicle mass and
you can say the a inertia and then you can actually like play all those things, but this is

what we called the forward dynamics.

So, now in the next lecture we will see how this forward dynamic force what you call T
the T =y x L. So, that we can bring and then we can actually like see how that would be
beneficial in the simulation side where you can actually like think about how to optimize
your you can say mechanical parameter how to increase your performance all those

things we can understand there ok.

So, now you can see the vehicle is actually like getting into one kind of streamline way.
So, with that I am actually like ending this particular lecture and then we can see you can

say in the next lecture. See you then bye.



