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Lecture - 10
Kinematic Simulation of Wheeled Mobile Robots Part 1

Welcome back to Wheeled Mobile Robots. So, this is lecture 10, where we are going to
talk about more you can say kinematic simulation aspect. So, last class we have seen last
two classes, we have seen like design of maneuverability, based on that we have derived

the generalized wheel model.

Based on the generalized wheel model, we have actually like got the final equation in the
form of you can say angular velocity that you would be taking as a velocity input
command. So, based on that what we are trying to do in this particular lecture; we would

be doing a kinematic simulation on MATLAB.

Before that | will show you like what are the example we have seen, from that we will
extract the equation and we will start incorporating in the MATLAB directly. So, let us

actually like go the slide one by one.
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The presentation for this talk have been prepared from a wide
range of sources including books, websites/ pages, research articles,
etc. These slides and this presentation are intended for purely
educational purposes only.

So, we will actually like come back to the content of this particular slide or you can say

lecture.
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LECTURE 10: KINEMATIC SIMULATION OF WHEELED MOBILE ROBOTS

Kinematic Model
Wheel Model
Differential wheel drive

B Omni-directional wheel drive

Mecanum wheel drive

So, we would be recalling what is kinematic model we derived and based on the
generalized wheel model, what we have obtained and we will take three example in this
particular lecture. So, where we would be starting with a differential wheel drive as a prime
most; because that is the simplest one and many of our you can say industrial wheeled

mobile robot in the configuration of differential wheel.

And similarly if you see any shop floor or you can say warehouses; so now this Omni
directional and Mecanum wheel drive mobile robots are coming in a very you can say
bright way. So, in that sense we will try to cover these three and in the next lecture, this is

the same thing we will extend as a part 2.

There we would see something like a specific configuration. For example, independent
steerable wheel if we bring it; so how that would be coming into a picture or synchro drive
or unicycle like that some specific example which is a special case that we will brought

into a part 2.

But the part 1 would be a conventional one, which we have already derived in the
generalize wheel model lecture. So, where if you refer lecture 8, then you can actually like

find these all the you can say kinematic model ready.
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The known mobile robot kinematic model, as:

i=1()

Based on wheel configuration
L) 0
1) - is the vector of time derivatives of generalized coordinates.

J (1) - is the Jacobian matrix which maps the input velocity commands to derivatives
of generalized coordinates.

¢ - is the vector of velocity input commands.
W - is the wheel input or configuration matrix.
w - is the vector of wheel angular velocities.

So, in that sense what we are trying to recap. So, recapping is in the sense, we are actually
like known what this, what you call kinematic model and based on this kinematic model,
this is what you call the input; that input you can write in the form of you call, so W x w.
So, where this w what you call actually like angular velocity; now this W what we derived

based on so called the generalized wheel model.

(Refer Slide Time: 02:41)
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w; - Angular velocity of the it" wheel.
a; - Radius of the it" wheel.

f; - Angle between the vehicle frame (B) to the wheel frame (c;).
dy; and d,; are the position coordinates of c; with reference to B.
0i - Angle between roller axis to the x; axis.

u: Forward velocity of the mobile robot w.r.t. frame B.

v: Lateral velocity of the mobile robot w.r.t. frame B.
r: Angular velocity of the mobile robot w.r.t. frame B.
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So, in that sense what we are actually trying to recall the generalized wheel model. So, if
| actually like know there is a powered wheel, where the angular velocity is w; so i wheel

angular velocity | can obtain based on this particular equation.

So, this is not the case in this particular lecture; this particular lecture what we have derived
in the lecture 8. So, few of the examples we have seen; we will extract the equation and
we will try to incorporate in a MATLAB simulation code and then we will show how this

can be done.
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Wheel 1

So, for that we will take the first one. So, here actually like you can see that this is a wheel
1, where you would be having a you can say linear velocity here, another linear velocity

here. So, where here you can see that this is w1 and here actually like wa.

So, these two we are actually like trying to derive based on the you call generalized wheel
model, where we can actually like see w1 and w2 and we can actually like get the what you
call the relation &. So, the & I can write in other way around; so, the & which we used to

write in the, so this way; so the £ = W x w.

So, now we will actually like find this. So, based on the equation; so obviously you know
like this is the distance which we call actually like d and this is also d, but this is in the

opposite direction. So, | am putting - d. In that sense, you can see the dx1 would be 0;



because the wheel frame what we can actually like see here. So, | am just drawing, this is

what the wheel frame, this is c2 and this is what you call the c:.

So, now this is Xc1 and Xc2 you can see. So, now, in that sense what one can see. So, the
distance dx1 and dy1 easily you can get it. So, this is the first wheel. So, that is actually like
this and dxz and dy2 you can actually like get it again based on this. Since there is a no

passive; you can say there is no passive roller, so you can say that ¢1 and ¢2 are 0.

In the sense what one can see based on this equation, you can substitute everything and
then you can get it. Further you can see that the B frame and the c1 and c2 are actually like

a parallel frames; in that sense the 01, which is | call 6B1 and 6B2 are 0.
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No passive rollers
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Wheel 1

So, if that is the case, what would be the final equation which we obtained? So, these are
we have actually like derived based on this. So, this is the final equation we obtained. So,
this equation now we extracted. So, based on this, we will actually try to do a what you

call kinematic simulation.

So, now we will actually like move to the MATLAB screen and we will try to incorporate
this. So, now, if | vary this w1 and w2; so what will happen to your what you call 5. So,
that is actually like with respect to time; this is what we are trying to do as a kinematic

simulation here. So, what we actually like know, this 1 we can write as J(¥ x §).



But now, this sorry this & is actually like rewritten as, so W X w. So, in the sense this we

will actually like write it. So, now, we will substitute this w vector, whereas earlier we

Uu

vl we have given; but right now we will take the configuration which
r

have taken directly

IS given as to us, so which is w1 and w2. So, now, we will try to see that here in the
MATLAB screen. So, let me go.
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%% Kinematic simulation of a land-based mobile robot

1

2 clear all; clc; close all;
3

4 %% Simulation parameters

5 dt = 0.1; % Step size

6 ts = 10; % Sim ime
1 t = 0:dt:ts; % Time span

8

9 %% Initial conditions

10- x0 = 0.5;

11- y0 = 0.5;

12— psi0 = pi/4;

13

etal = [x0;y0;psi0];

T
R
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So, you can see now. So, this is a MATLAB code which we have taken since last two

classes; in the sense lecture 5 and 6, we have used this.

(Refer Slide Time: 06:24)



25 inputs

26 u=0.3; % x- axis velocit r.t B frame
27 v =10; % y- axis velocity t B frame
28 r = 0.2; % z- axis angular velocity w.r.t B frame
29
30
31
32
43 %% Desired states (Generalized coordinates)
34- eta d = [2-2%cos(0.1*t(i)); 2*sin(0.1*t(i)); 0.1*t(i)];
35~ eta_d dot = [2%0.1*sin(0.1*t(i)); 2*0.1*cos(0.1*t(i)); 0.1;];
36 %% Vector of velocity input commands
37— zeta(:,i) = inv(J _psi) * eta_d dot;
@ e(:,i) = eta d - eta(:,i);
i W
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So, now, what we are actually like trying to change. So, we are trying to change now, there

IS no desired. So, there is no actually like input. So, what we are trying to do?
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ki = =
30 velocity input commands
31! zeta(:,1i) = [u;v;r];
32
33 %% Desired states (Generalized coordinates)
34— eta d = [2-2%cos(0.1*t(i)); 2*sin(0.1*t(i)); 0.1*t(i)];
N eta_d dot = [2*0.1*sin(0.1*t(i)); 2*0.1*cos(0.1*t(i)); 0.1;];
@ %% Vector of velocity input commands

utrs w1 ot
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So, I am actually like saving it this is in a different file, so that for my reference; I am just
taking it this is v. So, I just put w. So, now what | am trying to do? | am actually taking

out all those things, ok.
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26 u = ; % x- axis velocity w.r.t B frame
21 v =0; % y- axis velocity w.r.t B frame
28 ; r = 0.2; % z- axis angular velocity w.r.t B frame
29
30 velocity input commands
31 zeta(:,1i) = W*omega;
32 1
33
34
35— e(:,i) = eta d - eta(:,i);
36 Time derivative of generalized coordinates
37= eta dot(:,i) = J psi * zeta(:,i);
g%? %% Position propagation using Euler method
s - W s
B P tpenmetoseach o n CAREBEUE R & Nl S i

So, now | am actually like saying this & is actually like written as W x w, ok. So, 1 will

write. So, w vector, ok. So, this is what | am calling &, ok. So, in the sense, this is what my

3
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19~ | for i = 1:length(t) E
20— psi = eta(3,1i); % current orientation in rad.

21 Jacobian matrix

22 J_psi = [cos(psi),-sin(psi),0;

23 sin(psi), cos(psi),0;

24 0,0,1];

25 O

26 u X- axis velocity w.r.t B frame

217 v ¥ y- axis velocity w.r.t B frame

28 & ¢ . z- axis angular velocity w.r.t B frame

29 .

30 velocity input commands

31 zeta(:,1i) = W*omega;
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So, now, the & is obtained; but the & is obtained based on the wheel angular velocity, so

that is what our input.
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Comment

16— eta(:,1) = etal;
17

18 %% Loop starts here

19 for i = 1:length(t)

20 psi = eta(3,i): current orientation in rad.
21 Jacobian matrix

22 J psi = [cos(psi),-sin(psi),0;

23 sin(psi), cos(psi),0;

24 0,0,11;

25 %% inputs

26— omega_1 = 0.1;

217 omega 2 = 0.1;

28

?i) elocity input commands

3 zeta(:,1i) = W*omega;
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So, in the sense | can write that as, so w1. So, which is actually like your first wheel, in the
sense you can see in the top side; when you look at from the x y plane this is left wheel.
So, | am taking that is 0.1 radian per second is the speed. So, this I call a left wheel angular

velocity, ok.

So, then | am taking w2. So, which is actually like, for simplicity | am taking both are
equal. So, we will see how that will work. So, right wheel angular velocity; you see so far

what we have taken, we have taken a small patch, in the sense you have actually like seen

u
vl which is in the form of body fixed velocity that, directly you have given into 7,
r

equation, where there is no geometry involved, right.

But now what happened? If you look at the equation what we have seen here; you can see
that this is having a geometry, where a is coming into a picture and as well as d is coming
into a picture, right. So, if you look at that, so then what you have to see; so you have to

actually like use that. So, in the sense what | am trying to bring it.
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m %%

%% Kinematic simulation of a land-based mobile robot

1
2 clear all; clc; close all;
3
4 %% Simulation parameters
5 dt = 0.1; z
6 ts = 10;
1 t = 0:dt:ts; % Time span
Q
9 %% Vehicle (mobile robot) parameters (physical)
10— a = 0.05; % radius of the wheel (fixed
11- d =10.1; % distance bety am e e me (a a
12
13 %% Initial conditions
&5 x0 = 0.5;
i y) =0 &
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So, | am bringing it that as, so vehicle parameter. So, although it is a mobile robot, it is a
vehicle that is what we can write. Some people may offend, so | am just putting at that is
a mobile robot parameters. So, this is actually like a physical. So, these are the physical

parameter; here the one is a, which is nothing but the radius of the wheel.

| assume that the diameter of the wheel is 10 centimeter; so the radius would be 0.05 meter,
in the sense 5 centimeter. So, this is radius of the wheel, it is a fixed wheel, right. So, I am
just giving a additional information here itself. So, then what you have, there is a I; not |
here, because the length we are not using here and the you call W matrix, the d which is

actually like distance between vehicle frame to the wheel.

So, now, we have taken two wheels, both are actually like symmetrically arranged with
respect to your B frame; in the sense 2 d we have taken as a distance between two wheels.
So, d I am extracting from there. | assume that this is something like 20 centimeter as the
with vehicle; so obviously in that sense it is actually like 10 centimeter, it is look like very
small, right.

So, still 1 will actually like use it; later on we will see how this will come. So, this is
distance between you can say wheel frame to you can say vehicle frame, ok. So, that means
actually like the distance between c to b and we are assuming that di and d2 are same; this

is on the you can say y axis, | will just along y axis I will put it that is the right one, along



y axis, right. So, now, what we have actually like seen; so we have seen that, a and d we
have given. So, now, we will come back here. So, this is actually like depend on W.

(Refer Slide Time: 10:34)

25 Jacobian matrix

26 J psi = [cos(psi),-sin(psi),0;
217 sin(psi), cos(psi),0;
28 0,0,1];
29 %% inputs
30 omega_1 = 0.1; ar velocity
31 omega 2 = 0.1; ular
32
38 %% Wheel configuration matrix
34
355 W= [a/2,a/2;
36 0,0;
37 -a/(2*d), a/(2*d)];
‘g velocity lnput commandas
|‘Q 7etals i) = Wkamera:
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So, | am writing that W matrix. So, which is | am writing as wheel configuration matrix.
So, wheel configuration matrix which I am calling W and you know like what is W. So, if
you do not know; you can actually like recall this equation what we extracted. So, now, |
am actually like going back to that.

So, now, you can see that this would be. So, a by 2 right comma a by 2 this is the first row;
in the sense x axis velocity would be just mean of two angular velocity multiply with
radius. Then what you have, actually like your y axis is 0 based on the fixed wheel
configuration and then you have actually like minus or plus based on what way you are
actually like taking it.

So, if you look it at this particular case; so where you have actually like taken the left
wheel is your wheel 1. So, in the sense the left wheel alone is having a, you can say angular
velocity; you assume that the second wheel is not having anything. Then what one can

actually like see it. So, this would actually try to rotate in a clockwise.

So, in the sense what we have seen, the size actually like positive direction is counter

clockwise; but this is rotating in the opposite side that is why you can see the r velocity



component is coming as minus a by 2 d, ok. So, I just I am giving that you can say
background. So, now, this is what you got it. So, now, you can see this is a by 2 d, right.
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82 %% Animation (mobile robot motion animation)
83 1=0.4; f tl X
84 w=0.2;
85 Mobile robot coordinate:
86 mr_co = [-1/2,1/2,1/2,-1/2,-1/2;
87 “W/2,-w/2,w/2,w/2,-w/2;]);
88 figure
89— | for i = l:length(t) % animation starts here
90 psi = eta(3,1i);
91— R psi = [cos(psi),-sin(psi);
92 sin(psi), clos(psi);]; rotation matrix
93— v_pos = R psi*mr_co;
94— fill(v_pos(l,:)+eta(l,i),v_pos(2,:)+eta(2,i),'q")
?2)* hold on, grid on
! < ayic(f-1 2 -1 31) awis smare
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So, this is what your W matrix. So, right now we just incorporate what is W and w and
now we are trying to play this, ok. So, now, | will actually like take the same thing
animation. So here, | have to change; because the width what | have taken is actually like
0.2 and the length I am actually like assuming it is 0.4, it is just you can say twice of the
width. So, now, what else you need; here actually like there is no desired. So, I will actually
like remove it that desired thing, ok.
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89— | for i = 1:length(t) animation starts here
90— psi = eta(3,1);
91— R psi = [cos(psi),-sin(psi);
92 sin(psi), cos(psi);]; % rotation matrix
958 v_pos = R psi*mr_co;
94— fill(v_pos(1,:)+eta(l,i),v_pos(2,:)+eta(2,i),'q")
958 hold on, grid on
96— axis([-1 3 -1 3]), axis square
97— plot(eta(l,1:i),eta(2,1:i),'b-");
98— legend('MR', 'Path')
99— set (gca, 'fontsize',24)
100- xlabel('x, [m]'); ylabel('y,[m]');
1@* pause (0.1);
I} < hnld nff v
urs o ne @
& P ipeneetosach o n CEAREEUE X 4 Dl A& o0 0
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70 % ylabel('\psi, [rad]"); &
71
72—  figure
738 plot(t, eta(l,1:i),"r=");
74=  hold on
75— plot(t, eta(2,1:i),'b--");
76— plot(t, eta(3,1:i),'m-.");
77—  legend('x,[m]','y, [m]',"\psi, [rad]');
78— set(gca,'fontsize',24)
79— xlabel('t,[s]'):
80—  ylabel('\eta, [units]');
81
82 %% Animation (mobile robot motion animation)
@* 1 =10.4; % length of the mobile robot
I = w =102 % width nf the mnhile rahnt -
urs o ne @
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So, now, if I run, this will give; you can see the x position, y position and angular value
and then this animation code will actually like run it, right.
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97— plot(eta(l,1:i),eta(2,1:1),"o-"); b
98— legend('MR', 'Path')

99= set (gca, 'fontsize',24)

100- xlabel ('x, [m]'); ylabel('y,[m]');:

101- pause (0.1);

102- hold off

103- ‘“end % animation ends here

104

105- figure

106- plot(t,e)

107- legend('x e,[m]','y e, [m]',"\psi_e, [rad]');
108— set(gca, 'fontsize',24)

109-  xlabel('t,[s]');

lggj' ylabel('\eta_e,[dnits]');
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So, now this error will not be there. So, this is the previous code where you have taken a
inverse differential kinematics; in the sense this particular stuff also I will remove it.

(Refer Slide Time: 12:56)

o %1 - CUserseyap\ Desiop\NPTEL WhR\onematic_model_moble 0001 wm* - 0

355 W= [a/2,a/2;

36 0,0;

37 -a/(2*d), a/(2*d)];

38 velocity input commands

39— zeta(:,1) = Wromega;

40 :

41 ; Time derivative of generalized coordinates

do= eta dot(:,i) = J psi * zeta(:,i);

43

44 %% Position propagation using Euler method

45— eta(:,it+l) = eta(:,i) + dt * eta_dot(:,i); % state update

(Generalized coordinates)
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So, now, what we are trying to do? We are trying to give w 1 and w 2.
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30— omega 1 = 0.1; Ieft wheel angular velocity

3= omega 2 = 0.1; % right wheel angular velocity

32

33 omega = [omega_l;omega 2];

34 %% Wheel configuration matrix

35

36— W= [a/2,a/2;

37 0,0;

38 -a/(2*d), a/(2*d)];

39 % s velocity input commands

40— zeta(:,1) = Wromega;

41

42 Time derivative of generalized coordinates

E;)* eta dot(:,i) = J psi * zeta(:,i);
(S >

s - TR
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And we are trying to see how that would be incorporated as a &, which is W x w and we

are trying to run, ok.
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So, we will see whether this is having error free. So, far it shows no error; so obviously it
is running. So, we can see; yeah, it is having a error, because we did not what mention
what is w, right. So, what is w? w is actually like vector of w1 and w2. So, I will write it

that. So, w is actually like vector of w1 and wz, right. So, now, these two are actually like



incorporated in the sense you can actually like cross check. Now, w is given and W is

given, and you are recalculating &.

It is very very simple. So, you may feel it actually like it is just addition, but we will
actually like try to do the inverse, then inverse kinematic simulation; then you will actually
like see that, why this wheel configuration matrix is important, ok. So, right now we will
actually like run it. So, | hope there is no error again; because we have taken the old code,
right. So, that is why | was actually like bit of concern on the error side.
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42 Time derivat] =1 3

13- eta dot(:,i) 5 A0 1 23

14 x,[m]

45 %% Position propagation using Euler method

46— eta(:,i+l) = eta(:,i) + dt * eta dot(:,i); state update

47 (Generalized coordinates)

48

@9* end

)
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So, now, it actually like moved. So, now, what we have given; we have actually like given
w1 and w2 = 0.1 radian/second and it is actually like trying to, you can see it tries supposed

to go in a forward direction.
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Already the vehicle is actually like inclined in what you call 45°. So, it is actually like
trying to move in a forward direction; you can see like the vehicle is actually like very
slowly moving, because we have given one second as the delay, ok. So, now, | will actually

like go back, ok.
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So, I will go back and change that delay, so that | can actually like make it.
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;fim&mmﬂurv_ﬁos = R psi*mr_co; s
92— fill(v_pos(l,:)+eta(l,i),v_pos(2,:)+eta(2,i),'q")
93- hold on, grid on
94— axis([-1 3 -1 3]), axis square
95— plot(eta(l,1:i),eta(2,1:i),'b-");
96— legend ('MR', 'Path')
97= set (gca, 'fontsize',24)
98— xlabel ('x, [m]'); ylabel('y, [m]');
99= pause (0.01) ;
100 hold off
101- ‘“end % animation ends here
102
103
1
= 3
urs o FORCK]
B P ypeheeioseac o nCASBIEVE X 4 [ BN  )

(Refer Slide Time: 15:07)

bile o0

T6="set (gca, 'tontsize", 24) =
77— xlabel('t,[s]'):
78—  ylabel('\eta, [units]');

79
80 %% Animation (mobile robot motion animation)
81- 1 =0.4; % length of the mobile robot
82— w=0.2; % width of the mobile robot
83 Mobile robot coordinates
84— mr_co = [-1/2,1/2,1/2,-1/2,-1/2;
85 -W/2,-w/2,w/2,w/2,~w/[2;]);
86— figure
87— [ for i = 1:5:length(t) animation starts here
88— psi = eta(3,1i);
N R psi = [cos(psi),-sin(psi);
' g%? sin(psi), cos(psi);]; % rotation matrix
urs o T
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So, I will try to see this is five step size. So, | am just increasing the speed, ok. So, now, |
am just seeing that this is 0.1 and this is also 0.1; in the sense both tangential velocity are

equal, in the sense the vehicle will go forward.
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7= t = 0:dtits; ¥ Time span w

8

9 %% Vehicle (mobile robot) parameters (physical)

10— a = 0.05; % radius of the wheel (fixed)

11- d=0.1; % distance between wheel frame to vehicle frame (along y-axis)
12

13 %% Initial conditions

14- x0 = 0.5;

15- y0 = 0.5;

16— psi0 = pi/4;

i)

18— etal = [x0;y0;psi0];

19

- eta(:,1) = etal;
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But if you look at the initial condition it is actually like ©t/4; in the sense it is looking in a

45 °line. So, it will move in a, you can say diagonal way.
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So, that is what you can actually like see it. So, now, so the vehicle is actually like; you
can see this is the starting point, it is actually like moved diagonally, ok. So, now, you can

actually like increase the what you call time.
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1 %% Kinematic simulation of a land-based mobile robot
2 clear all; clc; close all;
3
4 %% Simulation parameters
5 dt = 0.1; % Step size
6— ts = 100; % Simulation time
7 t = 0:dt:ts; % Time span
8
9 %% Vehicle (mobile robot) parameters (physical)
10— a = 0.05; radius of the wheel (fixed)
11- d = 0.1; % distance between wheel frame to vehicle frame (along y-axis)
12
1) %% Initial conditions
Q)* x0 = 0.5;
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And you can actually like even find that. So, the how that is actually like happening;
because it moved very small distance, right.
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9 %% Vehicle (mObll TOPUT)  parameters (pnysIcary
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So, now, you can actually like see, you can wait; because my you can say screen resolution
is actually like a very poor, it is showing although I make it a magnified this thing, it is
showing as a small screen, ok. But you can see by even in the small screen, you can see
that this green patch is actually like moving it. So, now, you can see it is a full size has

come. So, it moved probably 0.5 to 0.52; now it is one by one, right. So, that is what it

moved.
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25 Jacobian matrix

26— J_psi = [cos(psi),-sin(psi),0;

27 sin(psi), cos(psi),0;

28 0,0,1];

29 %% inputs

30— omega 1 = 0.5; % left wheel angular velocity

31 omega 2 = 0; % right wheel angular velocity

32

335 omega = [omegal 1;omega 2];

34 %% Wheel configuration matrix

35

36— W= [a/2,a/2;

37 0,0;

@ -a/(2*d), a/(2*d)];
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So, now, in order to get more you can say beneficial, so I will just increase this and | am
actually like giving a difference; in the sense the left wheel is actually like having 0.5

radian/second, whereas the right wheel is actually like giving 0.
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29 %% inputs 0f
30- omega 1 = 0.5;7 y

=10 -1
31 omega 2 = 0; % 40 1 2 3
32

x,[m]
33— omega = [omega-rromeyga~zTy
34 %% Wheel configuration matrix
35
36— W= [a/2,a/2;
31 0,0;
® -a/(2*d), a/(2*d)];
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So, now if you are actually like running what one can actually like see it; it would actually
try to rotate, you can see, right.
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So, it is actually try to rotate and as well as try to move forward; but it is actually like
having one side, so it is actually trying to make a loop and loop. So, it will actually like go

in this. So, now, this is one of the turning radius you can find for this particular given thing.

So, now, you can actually like feel it why this is so small. So, now the play is coming. So,
what that; | already told in the introduction class. So, what | said, how to select the wheel
configuration, right. So, that we have known, but how to select the wheel size that is

important, right.

Now, what we have given is the radius of the wheel is very small and the width of the
vehicle also like very small 10; 10 centimeter is actually like, it is actually like small right,
it is something like a toy. But you see the wheel size, wheel size is actually like 5
centimeter; in the sense you have a width, in the same size of the width you have your own

wheel.

So, it is actually like not properly you can say configured, right. So, that is why this
particular course is required. Now, you can see that, if you increase this you can say width
as per the your proposition to the you call wheel size; then you will actually like feel it
different.
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%% Simulation parameters
dt = 0.1; % Step size

ts = 100; Si in
t = 0:dt:ts; % Time span

%% Vehicle (mobile robot) parameters (physical)
a =0.2; % radius of the wheel (fixed

= 0.2; % distance betw

%% Initial conditions
x0 = 0.5;

y0 = 0.5;
psi0 = pi/4;

atal = IvN:vN:nsiNl:
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Similarly, when you want faster speed in the sense go faster; so definitely you know like

the a is the playing role, because the w is actually like you would be giving 1 radian or 2

radian based on the motor. But what actually like go in to generate the traction or you call

tangential velocity; that would be coming based on what you call a dependent.
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¥

%% Simulation parameters
5 dt = 0.1; % Ste
6 ts = 100; time
7= t = 0:dt:ts;
8
9 %% Vehicle (mobile robot) parameters (physical)
10 a =0.2; % radius of the wheel (fixed)
11- d = 0.5; % distance between wheel frame to vehicle frame (along y-axis)
12
13 %% Initial conditions
14— x0 = 0.5;
15— y0 = 0.5;
16— psi0 = pi/4;
D
jfeetal = [x0:0:nsinl:
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So, now if I actually like increase this a just for understanding, you see it is actually like

20 centimeter and | am assuming that the depth is probably you can say 1 meter size, where

actually like 20 like 40 centimeter as a dia wheel, which is very close to your trolley, ok.



So, now, | am actually like putting it. So, this as you can say 2d, so that | no need to change
every time. So, now what you will actually like see, it is actually like going little faster
right and as well as you can see that visibility.
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79 i
80 %% Animation (mobile robot motion animation)

81- 1 =0.4; % length of the mobile robot

82— w = 2*d; % width of the mobile robot

83 % Mobile robot coordinates

84— mr_co = [-1/2,1/2,1/2,-1/2,-1/2;

85 -W/2,-w/2,w/2,w/2,-w/2;]);

86— figure

87— Llfor i = 1:5:1ength(t) % animation starts here

88— psi = eta(3,i);

89— R psi = [cos(psi),-sin(psi);

90 sin(psi), cos(psi);]; % rotation matrix

ik v_pos = R psi*mr _co;

@* fill(v_pos(l,:)+eta(l,i),v_pos(2,:)+eta(2,i),'q")
s hnld an _ arid on :
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80 %% Animation (mobi
81- 1 =0.4; % length 51
>

82— w=2*d; % width d \
0

83 Mobile robot coq

84— mr_co = [-1/2,1/2, :

85 -w/2,-w/2 5

86— figure e A

: x,[m]

87— [/for i = 1:5:lengthrer—s ammmecron—Svarcs-mere

88— psi = eta(3,i);

89— R psi = [cos(psi),-sin(psi);

90 sin(psi), cos(psi);]; % rotation matrix
91— v_pos = R psi*mr _co;

Q%h)* fill(v_pos(1,:)+eta(l,i),v_pos(2,:)+eta(2,i),'q")
s hnld an _ arid on :
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Because earlier what you have seen, the diameter of the wheel is actually like you can say
10 centimeter and your width of the vehicle also like you can say approximately 20
centimeter, which is actually like non comparable one. So, now, you can see like this is
one side angular velocity only given; in the sense only one wheel is actually like rotating,

the other wheel is actually like giving a resistant.

So, this is what the phenomena of fixed wheel; this is you can actually like feel it when
you are dragging probably trolley suitcase, where one wheel gets stuck, in the sense it is
actually like jammed and you are driving or you can say you are dragging. So, the other

wheel start rotating; then you can see that the suitcase is start rotating right, the same
scenario you can feel it.
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28 0,0,11;
29 %% inputs
30— omega 1 = 0.5; % left wheel angular velocity
31~ omega 2 = 0.2; % right wheel angular velocity
32
33— omega = [omega_l;omega 2];
34 %% Wheel configuration matrix
35
6= W= [a/2,a/2;
37 0,0;
38 -a/(2*d), a/(2*d)];
39 ¥ velocity input commands
40— zeta(:,1) = W*omega;
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So, now | am actually like giving a slightly a less comparison. So, now, what happened?
There would be a resultant velocity; but still you can see that the left side wheel is

dominating.
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a

¢y ([Qredries @ et feflv B ew et Took Dedicp Window Felp
ol js‘ Gicomgare v AcoTov | Commet % g 39 hij;d; ana e
v v . @mie A we@dE
~ =IMR b |
28 0,0,1 ’ i
29 %% inputs
30- omega 1 = 0.5 E 4 = .
Sl omega 2 = 0.2 > i ty
32 0 > 4
33= omega = [omega
3 ¥ Wheel confi '1_1 T
b ]
36- W= [a/2,a/2; .
37 0,0;
38 -a/(2*d), a/(2*d)];
39 velocity input commands
40— zeta(:,1) = W*omega;
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You can see earlier it was simply one small circle it make; but now it will try to make a
spiral, ok. So, now, this is what the, what you call idea behind the differential wheel model.

So, now, you got it little more clarity. So, now, we will actually like move it
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28 0,0,11; 7
29 %% inputs

30 omega 1 = -0.5; eel

31 omega 2 = 0.5; right wheel angular velocity

32

33 omega = [omega_l;omega 2];

34 %% Wheel configuration matrix

35

36- W= [a/2,a/2;

37 0,0;

38 -a/(2*d), a/(2*d)];

39 velocity input commands

40— zeta(:,1) = W*omega;
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So, just I am giving equal and opposite angular velocity; in the sense | connect both the
motor and | gave actually like same angular speed, but unknowingly actually like I put a
polarity change, just imagine. So, then what one can expect? The vehicle will rotate its

own point right; you can see that it is happening or not, right.
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It is actually like rotating about its own axis; why? Because both are actually like rotating,
it is trying to make a couple that is what you can actually like feel it.
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So, now what one can actually like see; this all the aspect of differential wheel you have
seen, anyhow now you know how to write a code. So, now, you can actually like play
further by changing w change; like changing w1, w2 and you change a and d and even

actually like you can try to change your initial condition and see how it is happening, so



that you will get something like close to the original intention of this particular course will
get it.

So, by doing this, keep on doing this what one can actually like get? So, we will get much
more exposure. So, that is what supposed to be required. So, now, we have seen the, you
can say differential wheel drive kinematic simulation by varying w1 and wz; that too like
we have seen like if you take w1 and w2 opposite direction, you have seen that it is rotating

about its point.

And if w1 is dominate, then that would take a left hand, in the sense it will rotate in a
clockwise; where the w2 is dominant, then it would actually like rotate in the
counterclockwise direction. If both are actually like equal, then the vehicle move in the
forward. At any case the vehicle will not move in the lateral direction, until you take 90°

turn and then move it.

So, in that sense what one can see, like this differential wheel drive kinematics simulation
you have we have seen. So, the next part what we will come back. So, we will take two
other example which we have we were actually like discuss in the beginning. So, the Omni
wheel, you can say Omni directional wheel drive and as well as Mecanum wheel drive, we

will see as a part 2 and part 3.

So, in that sense, so the next lecture what you can expect; something like more spice,
because it is having actually like square matrix or the rectangular matrix with actually like
more number of you can say columns. So, then you can actually like say that, lateral
direction also possible; how that is happening that we will see in the part 2 and 3, ok. With

that we will see, till then bye.



