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Welcome back to this session on problem solving for Fatigue Design or Fatigue Failure of 

Materials. So far, we have looked at the situation wherein the loading is one-dimensional - we 

have looked at the stress amplitude and mean stress for a one given one stress component, 

primarily the normal stress component; that is sort of a uniaxial loading scenario.  

In general, the machine components are subjected to a multiaxial state of loading. In those 

scenarios how do we actually go about dealing with the problems? So, we have discussed this 

during the lectures, but now we will see a couple of problems which deal with multiaxial 

loading. 

Here, we have a steel bar that has the properties - endurance strength 250 MPa, yield strength 

410 MPa and ultimate strength 500 MPa. It is subjected to a steady torsional stress of 50 MPa, 

a steady axial stress of 70 MPa and an alternating bending stress of 80 MPa.  



Here we can see that the bar is subjected to a multiaxial loading because you have a shear stress 

as well as normal stress due to axial load and a bending load. The plane in which the normal 

stress due to bending acts is not given. Hence, we assume that the normal stresses caused by 

bending as well as the axial stress are in the same direction. In that sense, it becomes a two-

dimensional problem.  

Basically, we are dealing with a multiaxial loading scenario wherein you have a steady 

torsional stress, 𝜏𝑥𝑦. Because we are saying steady, it is time invariant. So, we take this as the 

mean load. The mean load is sort of a static load. So, it does not change.  

The torsional stress has a steady component of 50 MPa and the alternating component is 0 

which means it is a static load. And then, we have steady axial stress. The axial stress is denoted 

as 𝜎𝑥𝑥. It can be assumed that the axial stress caused by the axial and bending loads are in 

different directions; both of them being normal. 

Here I am assuming them to be in the same direction. The steady stress is the mean stress that 

is 70 MPa and the alternating stress is 80 MPa. These are the two things that we have in this 

kind of a loading scenario, i.e., you have a mean stress and an alternating stress. Now, I will 

drop the subscript 𝑥𝑦 and 𝑥𝑥 because there are only two components.  

The mean shear component denoted by 𝜏𝑚 = 50. I am not writing the units because they are 

all consistent units and 𝜏𝑚 = 0, 𝜎𝑚 = 70, 𝜎𝑎 = 80. We know how to deal with the problems 

when the given state of loading is one-dimensional in nature.  

We will now try to convert this multiaxial state of loading into an equivalent one-dimensional 

stress that we have learned during our static failure case. We can write a multiaxial state of 

loading into an equivalent one-dimensional quantity called equivalent stress or von-Mises 

stress. 

Similarly, now we will try to find out the von-Mises stress equivalent of these two components. 

So, I need to find out the equivalent mean stress - it is actually computed using the same 

formula. The regular formula for finding equivalent stress is given by, 

𝜎𝑚
𝑒 =  √𝜎𝑚

2 + 3𝜏𝑚
2 = √702 + 3 × 502 = 111.36 MPa 



Here, I am trying to find out equivalent mean stress; 𝜎𝑚
𝑒  is called the equivalent mean stress. If 

you would calculate that, the equivalent mean stress comes out to be 111.36 MPa.  

Similarly, I can calculate equivalent alternating stress or equivalent stress amplitude, given by 

𝜎𝑎
𝑒 =  √𝜎𝑎

2 + 3𝜏𝑎
2 = √802 + 3 × 0 = 80 MPa 

In this case 𝜏𝑎 = 0, and hence this is equal to 80 MPa.  

There are other approaches to solve these multiaxial fatigue problems in different textbooks. 

However, this is one of the simpler approaches which has an analogy between what we have 

done in the static failure theories. 

Hence, we are adopting this particular approach. There are slight variations in computing mean 

stress and so on, but we will not discuss that in this class. In this class, we will follow the 

procedure wherein we find the equivalent stress from the multiaxial state of stress.  

Having found this multiaxial state of stress, given these material properties, you need to find 

the factor of safety according to modified Goodman criterion. So, what is modified Goodman 

criterion? 

The Goodman diagram is shown here. 𝜎𝑚 is on the 𝑥-axis and 𝜎𝑎 is on the 𝑦-axis. 𝑆𝑢𝑡 and 𝑆𝑒 

are marked as shown. The modified Goodman says that, 

𝜎𝑚

𝑆𝑢𝑡
+

𝜎𝑎

𝑆𝑒
=

1

𝑁
  

Since we are dealing with the multiaxial fatigue problems, 𝜎𝑚 with 𝜎𝑚
𝑒  because it is one-

dimensional scenario and 𝜎𝑎 with 𝜎𝑎
𝑒 . 

𝜎𝑚
𝑒

𝑆𝑢𝑡
+

𝜎𝑎
𝑒

𝑆𝑒
=

1

𝑁
 

In the above expression, 𝑁 is the factor of safety and is given by, 

𝑁 =
𝑆𝑒𝑆𝑢𝑡

𝜎𝑚
𝑒 𝑆𝑒 + 𝜎𝑎

𝑒𝑆𝑢𝑡
=

250 × 500

111.36 × 250 + 80 × 500
= 1.843 



The factor of safety in this particular scenario according to modified Goodman criterion is 

1.843. However, you note that you are also given the yield strength of the material. That is 

additional data that has been provided and need not be used in this particular problem.  

Several times when you are dealing with design problems, you may have additional data and 

you should know that you need to discard that additional data when it is not needed. Sometimes 

when we are dealing with the design problems, you may have missing data.  

That means, some data is not being given to you. Then you need to assume such missing data. 

In this particular scenario, we only have some additional data and then we need to discard that; 

we do not have to use that. Whenever there is missing data, you need to make an appropriate 

assumption for the missing data, ok? I think I hope this is clear - how do we go about solving 

a multiaxial fatigue problem.  
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We have seen the case of stress concentration factor being used in the static failure theories. In 

the fatigue failure theory, you have something called a fatigue stress concentration factor, right? 

The fact that the loading is dynamic in this scenario, you need to deal with fatigue stress 

concentration factor.  

Here is a problem - it is of course, given as a one-dimensional problem. But the idea of this 

problem is to see how we can apply stress concentration factor in the case of fatigue loading - 



that is the objective of this problem. The problem can be considered as fatigue stress 

concentration factor; that is the idea to show this example.  

Consider a steel shaft in bending with an ultimate strength of 690 MPa, with a fillet radius of 

3 mm connecting 32 diameter with a 38 diameter. You have a steel shaft which is having 32 

mm diameter and it is connected to a 38 mm diameter using a fillet. 

A 32 mm shaft connected to a 38 mm part. Let us say this is 32 mm and that is 38 mm and it 

is connected with a fillet; that fillet radius is 3 mm. You do not actually connect like this; you 

will have a fillet. The fillet radius, 𝑟 = 3 mm is shown here.  

Now, the question is - what would be the factor of safety against failure for life 𝑁 greater than 

one million cycles at a reversing stress of 200 MPa? The shaft is subjected to a reversing stress 

of 200 MPa. How do we go about finding the factor of safety using the known information?  

Let us look at two methods. In method 1 we know 𝑆𝑢𝑡 = 690 MPa, and 𝑆𝑒
′ = 0.5𝑆𝑢𝑡 = 345 

MPa. 

One way to do that is to calculate the notched endurance strength/notched endurance limit 

𝑆𝑒 from the unnotched endurance strength 𝑆𝑒′. 

𝑆𝑒 =
𝑆𝑒

′

𝐾𝑓
 

In the above equation, 𝐾𝑓 is the fatigue stress concentration factor. How do we go about 

calculating 𝐾𝑓? 

𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1) 

Here, 𝐾𝑡 is the theoretical stress concentration factor and 𝑞 is the notch sensitivity. The shaft 

is subjected to pure bending as the loading is given as reversing bending stress.  

It is subjected to 𝑀 and you have inner diameter 𝑑, outer diameter 𝐷 and this is 𝑟. By knowing 

𝑑/𝐷 and 𝑟/𝐷, one can get 𝐾𝑡 from the charts. 

In order to calculate fatigue stress concentration factor, you need to know 𝑞.  



𝑞 =
1

(1 + √
𝑎
𝑟)

 

In the above expression, √𝑎 is known as Neuber’s constant which depends on the ultimate 

strength tensile strength of the material for steel.  

For the given dimensions, we know that 𝑑 = 32 mm, 𝐷 = 38 mm and 𝑟 = 3 mm. From the 

stress concentration factor charts available in various design data handbooks, you can see that 

for the choice of 𝑟/𝐷 and 𝑑/𝐷 , you will find that 𝐾𝑡 = 1.65. 

You can look at the charts and find out this value as we have done in the class. By knowing the 

ultimate strength of the material to be 690 MPa you can find the Neuber's constant - that is one 

way.  

Otherwise, by knowing the 𝑟/𝑑 value, you can look at the chart and directly get the 𝑞 value. In 

the former case, plug in the value of Neuber’s constant and radius of the fillet and then from 

that you can calculate 𝑞.  

For this given data √𝑎 = 0.85. 𝑞 can then be calculated from the previous equation and is 

found to be 0.65. 

∴ 𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1) = 1 + 0.65(1.65 − 1) = 1.423 

∴ 𝑆𝑒 =
𝑆𝑒

′

𝐾𝑓
=

345

1.423
= 242.4 MPa 

The notched endurance strength of the material is 242.4 MPa. Now, we need to find out the 

factor of safety. 
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In the S-N diagram, this is 106 cycles. The endurance strength of the material is 242.4 MPa. 

This is the failure stress at 106 cycles. The factor of safety is, 

𝑁 =
𝑆𝑒

𝜎𝑎
=

242.4

200
= 1.212 

This is one way to solve the problem, wherein, by using the notch, you are correcting for the 

endurance strength of the notch. There is another way to solve this problem, i.e., method 2, 

wherein, instead of taking the effect of notch on the material property, we will bring in the 

effect of notch on the stress concentration. 

The far-field stress that is applied, 𝜎�̃� is 200 MPa. The actual stress experienced by the material 

point, 𝜎𝑎 will be fatigue stress concentration factor times far-field stress. Fatigue stress 

concentration factor was 1.423. 

𝜎𝑎 = 𝐾𝑓𝜎�̃� = 1.423 × 200 = 284.6 MPa 

𝑁 =
𝑆𝑒′

𝜎𝑎
=

345

284.6
= 1.212 

The uncorrected endurance strength is used and not the notched endurance strength while 

calculating the factor of safety, as the effect of notch has been taken into the applied stress. So, 

you do not do this double counting.  



Because the effect of notch has been taken into the applied stress, you do not have to take that 

into the account of endurance strength of the material. The factor of safety is 1.212.  

Whether you take approach 1 or approach 2, you will get the same factor of safety. In one case 

you are accounting for the effect of notch in the material property itself; that means, you are 

modifying the material property while keeping the far-field stress as the stress which being 

applied. Another way to do it is to account for the stress concentration through the applied 

stress.  

So, you have some far-field applied stress, but the actual stress experienced by the material is 

much higher. This is a better way to approach the problem. You have a material property and 

for that material property, you have an increased stress and then this is how you calculate the 

factor of safety. 

This is how we are going to account for factors of safety. Please note that here, the stress 

concentration factor is given only in bending. In general, for a multiaxial loading scenario, you 

may have fatigue stress concentration factor for bending and fatigue stress concentration factor 

for torsion or shear.  

In such scenarios, you need to account for them separately. You need to be very careful when 

we dealing with multiaxial loading with stress concentration factor as you have to multiply the 

appropriate stress concentration factor with the corresponding type of stress - that is very 

important to realize. Let us now look at the next problem.  
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A rotating shaft is made of 42 × 4 mm AISI 1018 cold-drawn steel tubing and has a 6 mm 

diameter hole drilled transversely through it. Let us draw a schematic of the shaft. This shaft is 

hollow - it has dimensions 42 × 4 mm; that means, the outer diameter is 42 mm.  

The inner diameter is denoted by 𝑑, 4 mm is the wall thickness. 42 × 4  means that 𝐷 = 42 mm 

and the wall thickness is 4 mm. Hence, 𝑑 = 𝐷 − 2 ∗ 4 = 34 mm.  

There is a hole drilled in the transverse direction and the diameter of the hole is 6 mm. This is 

a little bit more involved problem; we need to be very careful in understanding this problem. 

We need to estimate the factor of safety guarding against fatigue and static failures, i.e., 

estimate the factor of safety guarding against fatigue and static failures using modified 

Goodman criteria for the following loading conditions.  

In loading condition A, the shaft is subjected to a completely reversed torque of 120 N-m, in 

phase with a completely reversed bending moment of 150 N-m. 

In the load case A, torque 𝑇 = 120 N-m; completely reversed means alternative torque, and 

mean torque is 0. Similarly, the bending moment is completely reversed; that means, only 

alternating stress is present, and there is no mean component. 

𝑀𝑚 = 0 as only the alternating component is present. The fact that there is a hole in the shaft, 

there is going to be a stress concentration factor and hence you need to worry about the fatigue 

stress concentration factor in this particular scenario. 



We need to compute the fatigue stress concentration factor and the stresses experienced by this 

system. I will just show you how these tables look like.  
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You have a shaft as shown here with the applied bending moment. The outer diameter is 𝐷 and 

the inner diameter is 𝑑. The transversely drawn hole is shown here, whose outer diameter is 𝑎. 

Now, there are a couple of things. Here you are actually looking at the stress concentration 

factor and there is another parameter, 𝐴.  

The parameter 𝐴 as a function of 𝑑/𝐷 and 𝑎/𝐷 is shown here in this table. 𝑎/𝐷 is the ratio of 

the transverse hole diameter to the major diameter of the shaft. 𝑑/𝐷 is the ratio of the minor 

diameter of the shaft to the major diameter of the shaft. For different values of 𝑑/𝐷 - 0.9, 0.6 

and 0 you have these values and you need to you need to compute these two parameters 𝐴 and 

𝐾𝑡.  

Actually, we only need the stress concentration factor 𝐾𝑡, but we are also getting another 

parameter 𝐴. Because of the fact that there is a hole, the amount of cross-sectional area 

available near the hole is not the same. Hence, the nominal bending stress should not be 

calculated based on the total area.  

You should take into account the presence of this transverse hole. Normally, the bending stress 

is 𝑀𝑦/𝐼, where 𝑀/𝐼 is called as section modulus, 𝑍. 



In this particular scenario, when you have a transversely drilled hole, 𝜎 will be a function of 

𝑍net as the area available and section modulus change.  

𝑍net =
𝜋𝐴

32𝐷
(𝐷4 − 𝑑4) 

Usually, the section modulus is given by, 

𝑍 =
𝜋

32𝐷
(𝐷4 − 𝑑4) 

However, due to the presence of the transversely drilled hole, the section modulus must be 

multiplied by the parameter 𝐴 to obtain 𝑍net. One needs to take into account of the factor 𝐴 

based on the values of small 𝑎/𝐷 and 𝑑/𝐷 - that is for bending. 
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The shear stress under torsional loading is given by, 

𝜏 =
𝑇𝑟

𝐽
=

𝑇𝐷

2𝐽
 

𝐽 =
𝜋(𝐷4 − 𝑑4)

32
 

However, due to the presence of the transverse hole drilled into the system, the polar moment 

of inertia, 𝐽 needs to be modified to obtain 𝐽net, 



𝐽net =
𝜋𝐴(𝐷4 − 𝑑4)

32
 

The factor 𝐴 for torsion and also 𝐾𝑡𝑠 have to be obtained from this table depending on 𝑎/𝐷 and 

𝑑/𝐷 values. 

𝐾𝑡𝑠 is the shear stress concentration factor. Previously that is normal stress concentration factor; 

this is shear stress concentration factor, they are two different things. If the value of 𝑑/𝐷 value 

is not exactly 0.8 or 0.9, you need to interpolate between the values that you read from this 

table. That is what one needs to do when we are going to calculate the stress concentration 

factors for this scenario.  

We found that for the hollow shaft scenario given here, in the case of bending, 
𝑑

𝐷
=

34

42
= 0.81, 

and 
𝑎

𝐷
=

6

42
= 0.143. These values are not directly available in the table. So, you need to 

interpolate from the available data. In this case we find that 𝐴 = 0.798 and the bending stress 

concentration factor, 𝐾𝑡 = 2.366. 

Similarly, for a torsional load, we get, 𝐴 = 0.89 and 𝐾𝑡𝑠 = 1.75. Before we apply the stress 

concentration factors, we need to find out the bending stress that is applied. 
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In order to calculate the bending stress, given by 𝜎 = 𝑀/𝑍net, we need to find 𝑍net. In order 

to make it clear, let us denote the parameter 𝐴 in the case of bending and shear as 𝐴𝑏 and 𝐴𝑠, 

respectively.  

𝑍net =
𝜋𝐴𝑏

32𝐷
(𝐷4 − 𝑑4) =

𝜋 × 0.798(424 − 344)

32 × 42
= 3.31 × 103 mm3  

Similarly, for shear, we first need to calculate 𝐽net. 

𝐽net =
𝜋𝐴𝑠

32
(𝐷4 − 𝑑4) =

𝜋 × 0.89(424 − 344)

32
= 155 × 103 mm4 

Please keep that in mind that the units are different for 𝑍net and 𝐽net. 

The diameter of the hole that is drilled is 6 mm; that implies radius of the hole is equal to 3 

mm, which is the notch radius. Why are we worried about it? From these tables, we only got 

the theoretical stress concentration factors, but for solving this problem, we need fatigue stress 

concentration factors.  

In order to find the fatigue stress concentration factor, we need to find the notch sensitivity 

factor, 𝑞. So, 𝑞 in bending corresponding to a hole radius 3 mm and the given diameters of the 

components, can be found from the tables. The notch sensitivity factor for bending, 𝑞𝑏 = 0.78 

and notch sensitivity factor for torsion in this particular scenario, 𝑞𝑡 = 0.96.  

When you do not write anything, that means, it is bending. The fatigue stress concentration 

factors in bending, 𝐾𝑓 and shear, 𝐾𝑓𝑠 are calculated as, 

𝐾𝑓 = 1 + 𝑞𝑏(𝐾𝑡 − 1) = 1 + 0.78(2.366 − 1) = 2.07 

𝐾𝑓𝑠 =  1 + 𝑞𝑠(𝐾𝑡𝑠 − 1) = 1 + 0.96(1.75 − 1) = 1.72 

Having calculated the fatigue stress concentration factors, you can now calculate the stresses. 



(Refer Slide Time: 38:42) 

 

The bending stress amplitude is given by, 

𝜎𝑎 =
𝐾𝑓𝑀

𝑍𝑛𝑒𝑡
=

2.07 × 150 × 103

3.31 × 103
= 93.8 MPa 

Please note that the length dimension for various quantities is taken in mm in the above 

expression and hence, the necessary conversions are made. In the bending scenario, there is no 

mean stress. 

The stress amplitude in shear is given by, 

𝜏𝑎 =
𝐾𝑓𝑠𝑇𝐷

2𝐽net
=

1.72 × 120 ×  103 × 42

2 × 155 × 103
= 27.96 MPa 

Now, you have a multiaxial state of loading and in this case of multiaxial state of loading what 

you will do? Note that there is no mean stress here. So, you are only calculating equivalent 

stress amplitude given by, 

𝜎𝑎
𝑒 = √𝜎𝑎

2 + 3𝜏𝑎
2 = √93.82 + 3 × 27.962 = 105.6 MPa 

In this problem, the material is specified as AISI 1018 steel. The ultimate strength of this 

material can be found in the tables. In exams these values will be given, but for practice, you 

should be able to look at the tables and obtain these numbers. The ultimate strength, 𝑆𝑢𝑡 = 450 

MPa and yield strength is 350 MPa.  



The factor of safety is endurance strength divided by alternating stress. 

𝑁 =
𝑆𝑒

𝜎𝑎
𝑒  

You know 𝜎𝑎
𝑒, but you need to calculate the endurance strength. We know that 𝑆𝑒

′ = 0.5𝑆𝑢𝑡 =

225 MPa. Please carefully look at the problem statement. The problem statement says that it 

is a cold drawn steel and the shaft diameter is 42 mm.  

Hence, you need to account for correction factors as the shaft diameter is not 8 mm; if it is 

greater than 8 mm you need to account for the size correction factor, 𝐶size. Similarly, depending 

upon the process, you also need to apply the surface finish correction factors.  

Hence, you cannot right away use 𝑆𝑒′; you have to use 𝑆𝑒 after applying the correction factors, 

namely the size correction factor and the surface finish correction factor. Since no other 

information is available, we assume the other correction factors to be 1. In the exam we will 

give you these correction factors or we will provide you the formulae required.  

𝐶size = 1.189𝑑−0.097 = 1.189 × 42−0.097 = 0.827 

In the above expression 𝑑 does not necessarily mean the inner diameter of the shaft. In fact, 

the outer diameter value should be used. The surface correction factor is given as, 

𝐶surf = 𝐴𝑆𝑢𝑡
𝑏 = 4.51 × 450−0.265 = 0.893 

In the above expression, the parameters 𝐴 and 𝐵 for the cold rolled sheet, when 𝑆𝑢𝑡 is given in 

MPa can be found from the tables - 𝐴 = 4.51, and 𝐵 = −0.265. 
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Substituting the values of 𝐶size and 𝐶surf in the expression below, the corrected endurance 

strength can be found. 

𝑆𝑒 = 𝐶size𝐶surf𝑆𝑒 = 0.827 × 0.893 × 225 = 166.2 MPa 
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The factor of safety in fatigue is, 

𝑁 =
𝑆𝑒

𝜎𝑎
𝑒 =

166.2

105.6
= 1.57 

Now, you are also asked to find out the static factor of safety. The first cycle yield factor, 𝑁𝑦 

is given by, 

𝑁𝑦 =
Yield strength

𝜎𝑎
𝑒 =

350

105.6
= 3.5 

Basically, this means that in the first cycle, the material is subjected to this particular stress 

amplitude 105.6 MPa and the yield strength of the material is 350 MPa. The specimen is not 

reaching the yield strength of the material in the first cycle and hence, there will not be localized 

yielding.  

So, there will not be any localized plastic deformation and the threat to failure is from fatigue 

because the yielding factor of safety is much larger.  

If at all the specimen fails, it will fail under fatigue before it reaches yielding - it will reach its 

life based on this loading. So, first it will fail in fatigue. Alright, that is for the first case of 

loading. 
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Let us now look at case B. In case B, the shaft is subjected to a pulsating torque fluctuating 

from 20 − 160 N-m and a steady bending moment of 150 N-m. The mean torque and 

alternating torque are found as, 

𝑇𝑚 =
160 + 20

2
= 90 Nm 

𝑇𝑎 =
160 − 20

2
= 70 Nm 

The bending moment is steady, i.e., it is not changing with time. The mean bending moment, 

𝑀𝑚 = 150 Nm 

The shear stress amplitude is given by, 

𝜏𝑎 = 𝐾𝑓𝑠

𝑇𝑎𝐷

2 𝐽net
= 1.72 ×

70 × 42 × 103

2 × 155 × 103
= 16.3 MPa 

The mean shear stress is given by, 

𝜏𝑚 = 𝐾𝑓𝑠

𝑇𝑚𝐷

2 𝐽net
= 1.72 ×

90 × 42 × 103

2 × 155 × 103
= 20.97 MPa 



Since, the applied bending moment is steady, there is no alternating component to the normal 

stress; it is zero. The mean normal stress is given by, 

𝜎𝑚 = 𝐾𝑓

𝑀𝑚

𝑍𝑛𝑒𝑡
= 2.07 ×

150 × 103

3.31 × 103
= 93.8 MPa 

Now, we have 𝜏𝑚, 𝜏𝑎 and 𝜎𝑚; it is a multiaxial state of loading and hence you need to calculate 

equivalent stress. The mean equivalent stress can be found as, 

𝜎𝑚
𝑒 = √𝜎𝑚

2 + 3𝜏𝑚
2 = √93.82 + 3 × 20.972 = 100.6 MPa 

The alternating equivalent stress can be found as, 

𝜎𝑎
𝑒 =  √𝜎𝑎

2 + 3𝜏𝑎
2 = √02 + 3 × 16.32 = 28.2 MPa 

(Refer Slide Time: 54:11) 

 

What we now have is that 𝜎𝑚
𝑒 = 100.6 MPa and 𝜎𝑎

𝑒 = 28.2 MPa. We are asked to find the 

factor of safety. Due to the effect of mean stress, we need to use either Goodman criterion or 

Soderberg criterion or Gerber's parabola. According to Goodman, 

𝑁 =
𝑆𝑒𝑆𝑢𝑡

𝜎𝑚
𝑒 𝑆𝑒 + 𝜎𝑎

𝑒𝑆𝑢𝑡
=

166.2 × 450

100.6 × 166.2 + 28.2 × 450
= 2.54  



Let us do some analysis here so that we can comment on the static failure. Let us draw the  

𝜎𝑚 − 𝜎𝑎 plots to scale. 𝜎𝑚 is on the 𝑥-axis and 𝜎𝑎 is on the 𝑦-axis. Each division on the 𝑥 and 

𝑦 axes in this plot corresponds to 25 units. 

Now, how do we go about drawing the Goodman line? First let us identify 𝑆𝑒 on the 𝑦-axis 

which is 166.2 MPa, and 𝑆𝑢𝑡 on the 𝑥-axis, which is 450 MPa. The Goodman line connects 

these two points.  

Now, there is something called yield line. We have not paid attention to this when we were 

discussing in the class, but now I think this will be really helpful. Yield line is the line 

connecting the values equal to the yield strength both on mean stress line and stress amplitude 

line. What is the yield strength of the material? 

The yield strength is 350 MPa. The yield line is shown in blue color here. Let us now look at 

the two states of stress. In case A, the material did not experience any mean stress, but only 

alternating stress.  

The alternating stress in case A is 105.6 MPa and is marked as a black point on the 𝑦-axis and 

numbered as point 1. O1 will be your load line. If we are continuing in this load line, you are 

hitting the Goodman line first; that means, if at all it is failing under this loading it will only 

fail due to fatigue, i.e., fatigue failure will occur first. 

In the second case, the mean stress is 100.6 MPa and the alternating stress is 28.2 MPa. This 

data point is numbered 2 on the graph and is also marked in black color. Let me draw a line 

joining those two points - that is my load line.  

Now again if you actually move along this line, the failure due to fatigue happens here and here 

it is hitting the yield line. Even in this case, the material is expected to fail under fatigue. So, 

according to Goodman criterion the material is susceptible to failure under fatigue.  

Let us draw the Gerber's parabola, which is another failure criterion with another color just to 

make it distinct. So, the Gerber's parabola would look something like this. If the failure criterion 

Gerber's parabola rather than Goodman, you would see that the failure is happening at this 

point instead.  



So, along this line, but the failure according to Gerber's parabola happens at this point and let 

us say you do not have the Goodman criterion. Then this loading line is hitting the yield line 

first and then hitting the Gerber's parabola.  

In this scenario, it is possible that the material might experience failure from notch yield; in the 

first cycle of loading, the material might actually experience notch yielding because first this 

yield line is hit rather than the Gerber's parabola.  

However, if you are using Goodman criterion, you would see that it is hitting the Goodman 

line first and hence you would not expect notch yielding whereas, when you are talking about 

Gerber's criterion, you move would expect notch yield. We know that Gerber's parabola is a 

better approximation to the failure of the material compared to Goodman criterion. But 

Goodman criterion is simpler to apply and hence we are using Goodman's criterion.  

That is how you can use this yield line to make comments on the static failure in scenarios 

where the material is subjected to dynamic load; that means, whether there is going to be a 

yielding or not in this scenario.  

According to Goodman criterion, the failure may first come from fatigue. However, according 

to the Gerber's criterion, failure may first come from first cycle notch yielding because it is 

hitting the yield line first. If at all it goes along that direction, it will first rather show notch 

yielding rather than complete failure according to Gerber's criterion.  

In this class, we have first looked at the multiaxial loading scenario without any notch. Then 

we have looked at the situation of one-dimensional loading, but in the presence of notch i.e., 

how do we take into effect of the notch or stress concentration factor.  

Finally, we accounted for the presence of a notch in a multiaxial loading scenario. We are also 

able to add another complexity to explain about the notch yielding; whether the notch yielding 

will be prevalent in the material or not.  

I hope these three problems have given you some understanding of how do we go about solving 

multiaxial fatigue problems and also how do we go taking into consideration of the presence 

of notches in the material.  

With that, I will stop and thank you very much. 


