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Welcome back. In this class, we will look at certain problems involving effect of mean 

stress and estimating the life in the case when you have mean stress acting on the specimen. 

This is the problem that we are going to solve. A ductile steel sample has an ultimate 

tensile strength of 550 MPa and yield strength of 415 MPa and a corrected endurance 

limit of 150 MPa. Determine the factor of safety under the following loading conditions 

using both the Soderberg and modified Goodman lines in each case. If you remember the 

discussion on the fatigue failure in the presence of mean stress, we have different failure 

theories as in the case of static failure theories. One of them was Soderberg and another 

one was Goodman and there was another one called Gerber's parabola, right? 

In this graph, on the 𝑦-axis we plot the stress amplitude and on the 𝑥-axis, we plot the 

mean stress. Let us say on the 𝑥-axis, you identify this to be the yield strength 𝑆𝑦 and that 

to be the ultimate strength 𝑆𝑢𝑡. On the 𝑦-axis you have identified the corrected endurance 

strength 𝑆𝑒. This failure line, joining 𝑆𝑒 with 𝑆𝑢𝑡, is the Goodman line. The failure line 

joining 𝑆𝑒 with 𝑆𝑦, is the Soderberg line. Let me draw the Soderberg line with blue color 



to distinguish these two criteria. So, the blue line is the Soderberg line. So, the Soderberg 

line between S e and S y. So, the blue line is Soderberg and the black one is Goodman or 

modified Goodman; these are the failure surfaces. 

If any stress state, meaning a combination of mean stress and stress amplitude, is 

somewhere here, this is safe because it is within the failure domain. 

If the stress state is outside that, then it is not safe. This is not safe and this is safe; both 

with respect to Goodman and Soderberg. However, if the stress state is somewhere here, 

it is safe according to Goodman and unsafe according to Soderberg. 

The data that we have is the ultimate strength is 550 MPa and yield strength 𝑆𝑦 is 415 

MPa and endurance limit is 150 MPa. So, if you are looking at Soderberg criterion, the 

failure the line can be represented as, 

𝜎𝑚

𝑆𝑦
+

𝜎𝑎

𝑆𝑒
=

1

𝑁𝑠
 

where 𝑁𝑠  is the factor of safety. We now need to find out the factor of safety, given by,  

𝑁𝑠 =
𝑆𝑦𝑆𝑒

𝜎𝑚𝑆𝑒 + 𝜎𝑎𝑆𝑦
 

We know that 𝑆𝑦 = 450 MPa, 𝑆𝑒 = 150 Mpa. We do not know 𝜎𝑚 and that is what we 

need to figure out. For the loading state 1, what is 𝜎𝑚? So, this is 100 ± 90 MPa; that 

means, 𝜎𝑚 = 100 MPa and 𝜎𝑎 = 90 MPa, right? For the second problem, 𝜎𝑚 = 385 MPa 

and 𝜎𝑎 = 20 MPa. 

First, let us look at case 1. 

𝑁𝑎
𝑠 =

415 × 150

100 × 150 + 90 × 415
= 1.189 
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Let us also calculate factor of safety according to Soderberg at point b -- the numerator 

will not change because that is a material property.  

𝑁𝑏
𝑠 =

415 × 150

385 × 150 + 20 × 415
= 0.942 

The factor of safety here is less than 1; that means, according to Soderberg criterion the 

second stress state corresponds to failure because it is going out of the Soderberg line.  

Let us now look at Goodman criterion given by, 

𝜎𝑚

𝑆𝑢𝑡
+

𝜎𝑎

𝑆𝑒
=

1

𝑁
 

That is the representation of the boundary. Let us denote the factor of safety here as 𝑁𝐺 . 

We have, 

𝑁𝐺 =  
𝑆𝑒𝑆𝑢𝑡

𝜎𝑚𝑆𝑒 + 𝜎𝑎𝑆𝑢𝑡
 

𝑆𝑒 and 𝑆𝑢𝑡 will not change whether it is loading a or b.  

𝑁𝑎
𝐺 =

150 × 550

100 × 150 + 90 × 550
= 1.28 

𝑁𝑏
𝐺 =

150 × 550

385 × 150 + 20 × 550
= 1.2 



On careful observation, we see that the factors of safety according to Soderberg criterion 

are always lower than the Goodman criterion. 

According to Soderberg criterion, you would have said that the material has failed, but 

actually it did not according to Goodman criterion and we know that Goodman criterion 

is a better criterion for fatigue failure because the fracture actually means the ultimate 

strength and not really the yield strength. So, that is why the experimental results show a 

better match with the Goodman diagram compared to Soderberg diagram. 

According to Goodman, both the loading scenarios are same, although the factors of safety 

are not really high i.e., 1.28 and 1.2, respectively. So, that is how we can actually calculate 

the factor of safety for a given scenario. 
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Let us look at another problem. How do we go about calculating the life in the presence of 

mean stress? Here we will again look at three different stress states and then we will make 

a comparison in the end. A component that is made of steel with tensile strength 555 MPa 

and a corrected endurance strength 𝑆𝑒 of 250 MPa is subjected to bending loads. 

For each of the following loads determine the life of the component assuming high cycle 

fatigue and that infinite life is reached at 106 cycles. So, you have a scenario wherein you 

know the endurance strength of the material, i.e., 250 MPa, 𝑆𝑢𝑡 is 555 MPa.  



For each of these loading scenarios, what is the life of the component? That is what we 

need to figure out. If you take the case a, 𝜎𝑚 = 277.5 MPa and 𝜎𝑎 = 85 MPa. Let us now 

see the scenario of Goodman diagram. Since we are not given any criterion, we are using 

Goodman, because we know that is a better criterion. According to Goodman criteria, 

𝜎𝑚

𝑆𝑢𝑡
+

𝜎𝑎

𝑆𝑒
= 1 

Here, I am assuming factor of safety to be 1. Hence, I am not taking that factor of safety 

into account. Corresponding to this stress state, let us calculate 𝑆𝑒, given by, 

𝑆𝑒 =  
𝜎𝑎

1 −
𝜎𝑚

𝑆𝑢𝑡

 

For stress state a, 

𝑆𝑒
𝑎 =

𝜎𝑎
𝑎

1 −
𝜎𝑚

𝑎

𝑆𝑢𝑡

=
85

1 −
277.5
555

= 170 MPa 

For stress state b, 

𝑆𝑒
𝑏 =

𝜎𝑎
𝑏

1 −
𝜎𝑚

𝑏

𝑆𝑢𝑡

=
207.8

1 −
200
555

= 324 MPa 

For stress state c, 

𝑆𝑒
𝑐 =

𝜎𝑎
𝑐

1 −
𝜎𝑚

𝑐

𝑆𝑢𝑡

=
236

1 −
111
555

= 295 MPa 

For each of these stress states, we have calculated the endurance limit. 𝑆𝑒 corresponding 

to stress state a is 170 MPa, stress state b is 324 MPa, and stress state c is 295 MPa. 

Rather than calling this 𝑆𝑒, I could actually calculate the failure strength. Normally, this is 

the stress state. So, what is 𝜎𝑚? 
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𝑆𝑢𝑡 = 555 MPa, 𝜎𝑎 = 277.5 MPa, that is half way somewhere here and let us say this is 

the failure point. Then, you need to join these lines and then this corresponds to a particular 

number of cycles 𝑁𝑓
𝑎. Similarly, if 𝜎𝑚 = 200 MPa, that is somewhere here, 𝜎𝑎 is here that 

is let us say point b 207.8 MPa, then that would be the corresponding failure line. 

These points correspond to the endurance limit for the cases a, b and c. 𝑆𝑒
𝑐 = 295 MPa 

will be somewhere in between because this is 170 MPa and this is 324 MPa. 

Corresponding to these stress amplitudes, what is the life for each of these loading states? 

Since the material or the component is made of steel, we can construct the S-N diagram 

by knowing 𝑆𝑚 = 0.9𝑆𝑢𝑡 = 0.9 × 555 = 499.5 MPa, and 𝑆𝑒 = 250 MPa for that 

particular scenario. 

This is for 106 cycles. So, we have the two data points as (499.5, 103) and (250, 106). 

Now, you need to find out the material properties 𝑎 and 𝑏. Note that 𝑎 and 𝑏 values 

themselves will not change depending upon the loading scenario, as they are material 

properties. We have, 

𝑏 =
log (

𝑆𝑚

𝑆𝑒
)

log (
𝑁𝑚

𝑁𝑒
)

=
log (

499.5
250

)

log (
103

106)
= −0.1 



𝑎 =
𝑆𝑚

𝑁𝑚
𝑏 =

499.5

10−0.3
= 996.63 

Having found the values of 𝑎 and 𝑏, the stress-life relation for the system can be written 

as, 

𝑆 = 𝑎𝑁𝑏 = 996.63𝑁−0.1 

Corresponding to this particular loading scenario, the failure happens at 170 MPa, and the 

number of cycles to failure, 𝑁𝑓
𝑎 is given by, 

𝑁𝑓
𝑎 =  (

𝑆𝑎

996.63
)

−
1

0.1

= 47956816 cycles 

Since, 𝑁𝑓
𝑎 > 106 cycles, the specimen has infinite life in the first scenario. 

In the second scenario, corresponding to 𝑆𝑒 = 324 MPa, 𝑁𝑓
𝑏 = 75838 cycles, and 

corresponding to 𝑆𝑒 = 295 MPa, 𝑁𝑓
𝑐 = 196395 cycles. Out of the three stress-states, the 

first stress-state gives infinite life, second stress state gives a life of 75800 cycles, and the 

third stress state gives a little bit more, i.e., 196395 cycles.  

What we have done here is that you have a combined state of loading; that means, you 

have mean stress effect. In the presence of mean stress, how do we go about finding the 

life of the component. 

The stress-life behavior is governed by the material property which is described by the 

equation, 𝑆 = 𝑎𝑁𝑏, where 𝑎 and 𝑏 are material constants, depending on which points you 

are connecting. From the mean stress and stress amplitude information, you need to 

calculate what is 𝑆𝑒 i.e., failure corresponding to the loading and then you will be able to 

calculate the life of the component for different scenarios. That is about how we go about 

dealing with the effect of mean stress. 

Let us look at one last problem for today's discussion. It is basically the crack growth rate 

depending on the Paris law. A similar problem we have probably solved during the regular 

lectures too, but I am trying to reiterate here. 
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A component in the shape of a large sheet is fabricated from aluminum which has a fracture 

toughness of 24.2 MPa√m, and a tensile yield strength of 500 MPa. Determine the number 

of loading cycles that can be endured if the nominal stress varies from 100 MPa to one 

half of the yield strength. 

So, you have a scenario wherein the fracture toughness of the material is given as 24.2 

MPa√m. The loading as seen from the stress vs time graph, cycles from 100 MPa to one 

half of the yield strength, i.e., 250 MPa. 

I have chosen it to be sinusoidal, but it does not have to be. What is important here is that 

𝜎max = 250 MPa, and 𝜎min = 200 MPa. We are required to determine the number of 

cycles that can be endured when the stress cycles between 100 − 250 MPa, if the initial 

crack length is 0.60 mm, i.e., there is an edge crack in the specimen. 

Let us say you have this specimen with an edge crack of length 0.6 mm which is subjected 

to some sort of a bending load or which is continuously loaded between 100 − 250 MPa. 

How much is the life that is left until it actually becomes a critical crack and then the 

specimen breaks? 

This is something that we have discussed extensively that even if you have some crack to 

begin with it, you may still be able to use the specimen; that is precisely what we are trying 

to address through this problem. How many cycles of this loading can be applied on the 



specimen before it fractures? Of course, we are assuming that everything is linear elastic; 

there is no plasticity whatsoever. 

The initial crack length is 0.6 mm = 0.6 × 10−3 m. What would be the crack length at 

which it actually fails? The final crack length is the critical crack length at which it; that 

can be found using the relation, 𝐾c = 𝜎√𝜋𝑎c 

When length of the crack becomes 𝑎c , that is when, for a given 𝜎, if that becomes equal 

to fracture toughness, the system collapses. In this system the maximum stress that the 

material is experiencing is 250 MPa. The critical crack length can be found as, 

𝑎c = (
𝐾c

𝜎max√𝜋
)

2

=
1

𝜋
(

24.2

250
)

2

= 2.98 × 10−3m = 2.98 mm 

The loading can be applied on the specimen until those many cycles where the initial crack 

length of 0.6 mm reaches a critical length of 2.98 mm. The crack is gradually growing 

from 0.6 − 2.98 mm. Until then the structure is safe; the moment it becomes 2.98 mm, 

that is when the failure happens. So, how do we calculate this? We know that crack growth 

rate by Paris law is given by, 

d𝑎

d𝑁
= 𝐴Δ𝐾𝑚  
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Δ𝐾 = Δ𝜎√𝜋𝑎 = (250 − 100)√𝜋𝑎 = 150√𝜋𝑎 

d𝑎

d𝑁
= 𝐴Δ𝐾𝑚 = 𝐴Δ𝜎𝑚(√𝜋𝑎)

𝑚
 

Rearranging the above equation,  

∫ d𝑁
𝑁𝑓

0

= ∫
d𝑎

𝐴Δ𝜎𝑚𝜋
𝑚
2 𝑎

𝑚
2

𝑎c

𝑎i

 

In this problem, we have 𝑚 = 4, Δ𝜎 = 150, and 𝐴 = 5 × 10−11 in the consistent units.  
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∴ 𝑁𝑓 =
1

5 × 10−11 × 2504 × 𝜋2
 ∫

d𝑎

𝑎2

𝑎c

𝑎i

=  −𝛽 {
1

2.98
−

1

0.6
}  

You can calculate the value of 𝛽 and then you find out 𝑁𝑓 = 5328 cycles; that means, 

even if you have an initial crack of length 0.6 mm, you will still be able to retain the 

functionality until the cycle number of cycles are about 5328; until then the specimen will 

be safe.  

So, with that I will stop here and in the next class, we will look at how the fatigue problems 

are to be solved in the presence of notches. 


