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So far, we have looked at stress-life approach and now we need to look at LEFM approach 

for fatigue crack growth. So far, we have discussed how the fatigue crack grows and how 

a crack growth is happening in the material.  

Let us now look at this figure. The first one actually shows the crack length as a function 

of number of cycles and the second one shows the stress as a function of number of cycles. 

So, here let us say 𝑎𝑑 is the minimum detectable crack length distance; 𝑑 stands for 

detectable. 

In any material, if by doing an inspection, depending upon the resolution of the equipment 

that we are using, we will be able to find out a crack length of -- say for instance, 1 mm is 

the resolution, then you cannot detect a crack whose length is less than 1 mm.  

Let us say that 𝑎𝑑 is the minimum detectable crack length in the material and then, 𝑎𝑐 is 

the critical length reached from 𝑎𝑑, where brittle fracture occurs after 𝑁𝑖𝑓 cycles, 𝑓 is 

failure cycles of loading. You do not have any crack which is larger than 𝑎𝑑 in the material. 



Let us say you have a crack whose initial length is 𝑎𝑑, then you are loading, you are 

applying fatigue loading on the material, after 𝑁𝑖𝑓 cycles, the crack length reaches a critical 

value of 𝑎𝑐, that is when the material breaks as if it is a brittle fracture.  

As we have seen in the case of the fracture mechanics module, when the crack length 

reaches critical crack length, that is when the material breaks as if it is a brittle material. 

The same thing we are doing here and so, here we are having 𝑎 versus 𝑁 and the slope of 

this line is 
𝑑𝑎

𝑑𝑁
 which is the crack growth rate; 𝑎 is the crack length here and 𝑁 is the number 

of cycles. 

Let us say for this particular material, the maximum size of the crack to begin with is 𝑎𝑑 

and if this particular component is designed for service life of 𝑁̂ cycles; that means, you 

are designing this to last for 𝑁̂ cycles which are less than 𝑁𝑖𝑓 cycles. Then, you can define, 

as we have already discussed, the factor of safety in life can be written as, 

𝑋𝑁 =
𝑁𝑖𝑓

𝑁̂
 

This is something called factor of safety in life that we have already looked at, when we 

are talking about crack that is actually growing in size. 
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Initially at zero cycles, you have the initial crack length to be 𝑎𝑑, the minimum detectable 

crack length. At that time, let us assume that the strength of the material is 𝑆𝑐. Now, you 

can say that the critical strength of the material is equal to 
𝐾𝑐

𝛽√𝜋𝑎
, where 𝛽 is the geometry 

factor.  

You remember we have written 𝐾 = 𝜎√𝜋𝑎, where 𝜎 is the stress. So, when this becomes 

your critical strength of the material, then we call it as 𝜎𝑐. So, now, this 𝜎 is represented 

by 𝑆. So, 𝐾 becomes fracture toughness then.  

𝑆𝑐 =
𝐾𝑐

√𝜋𝑎
 

Now, as the crack grows, we know that the strength of the material 𝑆𝑐 decreases, as we 

can see from here.  

As the length of the crack is increasing, 𝑆𝑐 reduces because the length of the crack is in the 

denominator. This graph here shows the reduction in strength as the number of cycles are 

increasing because as the number of cycles are increasing, the crack length is increasing. 

If 𝑁̂ cycles are the prescribed life for this component, then the safety factor in stress due 

to applied cyclic load 𝑋𝑐 is given by, 

𝑋𝑐 =
𝑆𝑐

𝑆max
  

𝑆max  is the stress at which it fails and 𝑆𝑐 is the residual strength in the material.  
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Sometimes however, the safety factor suggested by 𝑋𝑁 and 𝑋𝑐 are not sufficient due to a 

combination of unexpected 𝑎𝑑. Because you are saying that 𝑎𝑑 can actually also suddenly 

change because of the cyclic loading nature and sudden unexpected loads that may be there 

or unexpected crack detection mechanisms that are available.  

And hence, 𝑎𝑑 that we have measured might as well be having some error associated with 

that and hence, 𝑋𝑁 and 𝑋𝑐 alone, sometimes the suggested values may not be sufficient for 

the design. Sometimes failure may occur even for 𝑋𝑁 < 1, for that reason. Hence, it is 

extremely important to ensure that the detectable crack size is well within the safe limits 

and hence, periodic inspections are needed to repair any cracks that are larger than 𝑎𝑑. 

The detectable crack size should not be greater than 𝑎𝑑. Several machine components, may 

start with an initial crack length 𝑎𝑑, but during the service, they may increase in size. As 

we have seen, as the number of cycles increase, the size of the crack increases; but it is 

possible that this size of the crack might not increase the way that we are expecting, it 

might increase much faster or at a much steeper rate. 



(Refer Slide Time: 07:30) 

 

We need to do periodic inspections and ensure that the crack length at the time of putting 

the system into commission should be well within 𝑎𝑑. So, if the periodic inspections are 

done for every 𝑁𝑃 cycles, let us assume, then, the length of the worst crack increase can 

be shown here.  

Let us say failure happens at 𝑁𝑖𝑓 cycles. Then, the initial crack which is 𝑎𝑑 increases up 

to here; that means, the crack length has increased from 𝑎𝑑 to some other value, greater 

than 𝑎𝑑. Then, since you have done an inspection after 𝑁𝑃 cycles, then you would see that 

the crack length is larger than the detectable crack size or expected allowed crack size. 

Then, you can repair the crack and reduce the crack size to 𝑎𝑑 again and then, you further 

continue the loading and then, again inspect after 𝑁𝑃 cycles from the first inspection and 

then, if there is any increase in crack which is expected to be there and then, you do the 

repair and so on. That means, the safety factor in life at this point of time is 
𝑁𝑖𝑓

𝑁𝑃
, because 

we have done the inspection at 𝑁𝑃 cycles. What happens after each inspection? 

You are repairing the crack and during this process as the crack length is increasing, the 

strength of the material is decreasing. But at the end of 𝑁𝑃 cycles, you are repairing the 

crack; as a result, the strength increases again and then, it continues again and so on.  

And so, the safety factor on stress during this entire process is lowest just before the 

inspection. Once the inspection is done, the safety factor on stress has increased because 



you have done the repair to the crack, the crack length has actually reduced now from, say 

𝑎𝑑 + 𝛿  to 𝑎𝑑. So, here that means, during this process, we can monitor how the crack is 

growing. 
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The rate of crack growth as a function of number of cycles denoted by 
𝑑𝑎

𝑑𝑁
, plotted against 

the stress intensity factor range Δ𝐾 = 𝐾max − 𝐾min. 

𝐾max = 𝜎max√𝜋𝑎  

Δ𝐾 = Δ𝜎√𝜋𝑎 

When you plot this on a log-log scale, a sigmoidal behavior is seen as shown here. 

The region I here is what you call crack initiation stage and this is what is called crack 

propagation stage and then, this is unstable crack growth. Region II is crack propagation 

stage and region III is unstable fracture. As for us, region II is very important because here, 

the crack is propagating in a stable manner; that means, even if the crack propagates, it is 

not going to cause any catastrophic events in the components' service life.  

If you know when stage II ends, then you can say that how many more cycles can I use or 

for how many more cycles can the component be used. This information is very important 



and one would be able to get by looking at the relation between crack growth rate i.e., 
𝑑𝑎

𝑑𝑁
 

and the stress intensity factor range. 

It is observed that 
𝑑𝑎

𝑑𝑁
 v/s Δ𝐾, when plotted on a log-log scale, the region II shows a straight 

line behaviour and this is something that was observed by Paul Paris. He gave a relation 

to 
𝑑𝑎

𝑑𝑁
 the crack growth rate to stress intensity factor range in the region II, that we will see 

the formula how it looks like.  
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Let us look carefully at the three regions. The initial steep region at low Δ𝐾 values -- so, 

it gives you a threshold Δ𝐾𝑡ℎ. In this region there is no crack growth and below Δ𝐾𝑡ℎ, there 

is no problem for the material; the cracks do not grow at all.  

In the region II which is a linear regime, is a stable crack growth regime and the final steep 

region is an unstable crack growth regime. This is below Δ𝐾𝑡ℎ, i.e., no crack. This is stable 

fatigue crack growth rate and unstable crack growth. 
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The part of the curve in Region II is a straight line on log coordinates. Paul Paris defined 

the relationship in region II as  

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾)𝑚  

𝐶 and 𝑚 are material constants. Once you know the material constants and Δ𝐾, integrate 

this equation in order to get fatigue crack growth life.  

For steels 𝑚 = 3 and for aluminum alloys, it ranges from 3 − 4, in general. For other 

materials, if you want to find out 𝑚, you can refer to the design data handbooks.  
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Region II is more interesting because that gives you information about fatigue crack 

growth in a stable manner. It allows us to calculate the remaining life of the component by 

knowing the initial crack length. However, region 1 is also interesting as it shows the 

threshold limit Δ𝐾𝑡ℎ below which there is absolutely no crack propagation.  

Usually, Δ𝐾𝑡ℎ occurs at crack propagation rates of the order 0.25 nm/cycle i.e., extremely 

low crack propagation rates and hence, we can consider there is absolutely no crack 

growth. 

Region III is called accelerated crack growth regime in which the 𝐾max of the applied load 

approaches 𝐾𝑐, the fracture toughness of the material. When 𝐾max = 𝐾𝑐, that is when the 

material breaks suddenly as if it is a brittle fracture. And hence, that regime is characterized 

as unstable crack growth regime. 
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What is the effect of mean stress on the crack growth rate? Increase in the stress ratio, 

𝑅 (=
𝜎min

𝜎max
=

𝐾min

𝐾max
 )  has a tendency to increase the crack growth rate in all the regions. 

However, the effect of increasing 𝑅 is less in region II than region I and region III. So, 

how do we incorporate the effect of stress ratio on in on Paris law? One such way is shown 

below. 

𝑑𝑎

𝑑𝑁
=

𝐶(Δ𝐾)𝑃

(1 − 𝑅)𝐾𝑐 − Δ𝐾
 

Here, the effect of stress ratio has come in. What happened as you increase the stress ratio? 

As you increase the value of stress ratio, this quantity reduces right; as a result, 
𝑑𝑎

𝑑𝑁
 

increases. As we have already seen, increasing the stress ratio has a tendency to increase 

crack growth rate. 
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How do we go about using this in the real-life design? You do a laboratory test on a 

specimen of the kind of loading that you would expect in the real-life scenario on a 

laboratory specimen and then, do this for different Δ𝑃′s. Δ𝑃 = 𝑃max − 𝑃min  as you have 

seen here.  

P is the load applied and then, you calculate 
𝑑𝑎

𝑑𝑁
 as a function of different Δ𝑃′s and then, 

from this you plot 
𝑑𝑎

𝑑𝑁
 as a function of Δ𝐾; Δ𝐾 is calculated from Δ𝑃. So, for Δ𝑃1, Δ𝑃2, Δ𝑃3 

you will get different values. 

You will get several values you will fit a straight line on a log-log scale and then, from 

there, you can calculate 𝐶 and 𝑚 for that particular material and the geometric scenarios 

and use that information now, for real life applications wherein you know what is the 

stress.  

Δ𝐾 = 𝐹Δ𝑆√𝜋𝑎 

F is like 𝛽, the geometric factor; Δ𝑆 is the stress range and 𝑎 is the crack length. Use 𝐶 and 

𝑚 that you have obtained from the laboratory test and then, use that in the real-life 

application and from there, you will be able to calculate the residual life or how much 

more crack length increase can be accommodated based on the loading scenario.  
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This is a simple example problem, wherein you have a mild steel plate which is subjected 

to constant amplitude uniaxial fatigue load to produce stresses varying from 𝜎max =

180 MPa, 𝜎min = −40 MPa. Please pay attention here, as 𝜎min is negative.  

The static properties of the steel are 𝜎0 which is the yield strength, 𝑆𝑢 is the ultimate 

strength, 𝐸 = 207 GPa is the elastic modulus,  𝐾𝑐 = 100 MPa m1/2 is the fracture 

toughness. If the plate contains an initial through thickness edge crack of 0.5mm i.e., the 

initial crack length is 0.5mm, how many fatigue cycles will be required to break the plate? 

You know this is a material and you know the loading scenario and if you have an initial 

crack length of 0.5mm, the question now is: how many fatigue cycles can be will be 

required to break the plate? That means, how many fatigue cycles can this component be 

used for before it actually breaks in other words. You assume an infinite width of the plate 

and for which 𝛽 = 1.12. 

The reason the infinite width has been given is because the geometric factor comes into 

play and the geometric factor for 𝐾 = 𝛽𝜎√𝜋𝑎, the 𝛽 = 1.12 and 𝐶 = 6.9 × 10−12.  
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We know that this is mild steel and for steel, 𝑚 = 3 in the formula 
𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾)𝑚. 𝐶 is 

now given here in consistent units.  

How do we go about calculating Δ𝐾? The initial crack length, 𝑎 = 0.5 mm. So, I am 

writing it in meters divided by 1000 and the final crack length is equal to; so, final crack 

length means crack length at which the fracture happens. Fracture happens when the stress 

intensity factor reaches the fracture toughness. 

The final crack length is given by, 

𝑎𝑓 =
1

𝜋
(

𝐾𝑐

𝛽𝜎max
)

2

= 0.078 m 

This is coming from 𝐾 = 𝛽𝜎√𝜋𝑎; when 𝐾 = 𝐾𝑐 , then this should become 𝜎max. 

Using that that equation, we have figured out that the final crack length should be 0.078 

mm; that means, the material breaks when the crack length reaches from 0.5 mm to 0.078 

meters or 0.0005 meters to 0.078 meters. 

Note that the stress cycling is happening between 180 MPa to −40 MPa. So, there is some 

mean stress in the system, i.e., 𝑅 is coming into picture. However, we will neglect that part 

in this scenario. 



However, note that 𝐾min = −40 MPa; but when you have compressive stress the crack 

growth will not happen and hence, whenever you have a compressive stress, you should 

not take that into account and hence, you can take 𝐾min = 0. The compressive stresses 

will actually be beneficial. 

But here, we are not the benefit into account, we are simply saying that since 𝐾min is 

negative, we will not take that into account and then, we will say 𝐾min = 0. So, 𝜎min =

0. Then, 

Δ𝐾 = 𝐾max − 𝐾min = 𝐾max = 𝛽𝜎max√𝜋𝑎 

We have,  

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾)𝑚 = 𝐶(𝛽𝜎max√𝜋𝑎)

𝑚
 

Now, you integrate this equation and when you are integrating, 𝑑𝑁 should be integrated 

from 0 to 𝑁𝑓; whereas, initial crack length is 𝑎𝑖 and final crack length is 𝑎𝑓 .  

We know 𝑎𝑖, 𝑎𝑓 and you can integrate this expression; 𝐶 is known, 𝛽 is known, 𝑚 is 

known, 𝜎max is known. So, that becomes something like that. And then, once you integrate 

this, you can find the definite integral and all the values are known and then, plug that in 

and then, you will be able to calculate 𝑁𝑓 = 261000 cycles.  

That means, when you have initial crack length as 0.5 mm for this given system, you can 

run the equipment for 261,000 cycles provided in between you are not doing any repairing. 

If at all you are doing periodic inspection, then you are actually repairing this system; that 

means, the crack length is brought back to 𝑎𝑑, the detectable crack size, then, your life 

might be increased further.  

Here we are not assuming any intermediate inspection and repair of the specimen or the 

component. So, this is how one would be able to calculate the remaining life of a 

component by knowing what is the initial crack size and other properties of the material 

together with the type of loading that can be applied to the system. 

So, with that, we have understood how do we go about calculating the remaining life from 

the fatigue crack growth point of view; that means, you have an initial crack and the you 



are letting the crack to grow and what is the limit up to which you can actually continue to 

use the system, right? So, with that, we sort of close this module on fatigue failure theories. 
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These are the textbooks that I have used extensively during this module. Robert L. Norton's 

Machine Design, An integrated approach and George Dieter's Mechanical Metallurgy to 

discuss some of the microstructural details of the fatigue crack growth. And Mechanical 

Behavior of Materials by Meyers and Chawla is another interesting textbook and Norman 

E. Dowling's Mechanical Behavior of Materials. 

So, with that, we will close this module on fatigue failure of materials and then we will 

meet with a new module in the next class. 

Thank you. 


