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So far, whenever we are talking about the fatigue failure design, we are talking about mean 

stress and alternating component of the stress or stress amplitude, as if stress is a scalar 

quantity. But it is not a scalar quantity, right? You can talk about only one stress 

component when you have uniaxial loading.  

When you have multi-axial loading, the stress is a tensor and hence you will have various 

components of the stress, and they may be changing as well. The load is cycling between 

two values; as a result, the stress is cycling between two values, but the stress what we are 

talking about is a uniaxial state of stress until now.  
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When you have multi-axial loading, you need to consider all the six stress components. 

Hence, we need to see how one would actually study the failure when the component is 

subjected to a multi-axial loading and that is what we designate as Multi-Axial Fatigue. 

There are many improvised approaches, but in this class, we are focusing on a simplified 

approach based on the equivalent stress concept that we have discussed in the static failure 

theories. Typically, most of the shafts when we are designing, are subjected to bending 

and torsion.  

Bending results in normal stresses and torsion results in shear stresses. As a result, you 

have a combined state of loading. Similarly, you will have biaxial stresses due to cyclic 

pressure in tubes and pipes. You can also have a plate bending about this axis and two 

transverse axes.  

In addition to these cyclic loads, you can also have some steady load that is acting on the 

system. These are all going to contribute to multi-axial loading scenario. In such situations, 

how do we go about studying the system? 
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This is one example of a combined cyclic pressure and steady bending of a thin-walled 

tube. This is cyclic pressure and steady bending, i.e., bending moment is constant. As a 

result, you will have cyclic pressure loading. A steady bending load should be added to 

that, and as a result, the resultant system is subjected to such a variation.  

So, you have some sort of an additional stress getting added because of the steady loading. 

In addition to that combined cyclic pressure and torsion with closed ends, then you will 

have much more complicated system wherein steady torsion and bending occur. The 

pressure results in normal stress, and together with that you will have an effective cycling 

loading.  

These are two complex loading scenarios which will give you a multi-axial loading system. 

Here, you can see this is 𝜎1 and this is 𝜎2, here 𝜎𝑦, 𝜎𝑥 and 𝜏𝑥𝑦, right? If you carefully look, 

this is where we have drawn 𝜃𝑝 which represents the direction of the principal stresses.  

You can also clearly see that the principal stress direction is oscillating in this scenario. 

The direction of the principal components of the stress is changing as you are loading the 

system. Whereas, in this case, fortunately the direction of the principal stress is not 

changing. 
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Here, we are going to prescribe a methodology to deal with multi-axial fatigue, wherein 

the direction of the principal stress remains constant, however, the other stress components 

are changing or fluctuating.  

For ductile materials, you will assume that the fatigue life is controlled by cyclic amplitude 

of octahedral stress; that means, you look at the stress amplitude in all the components of 

the stresses. All those stresses are actually oscillating. 

For instance, here 𝜎1 and 𝜎2 are oscillating. What you can do is, you can calculate the 

stress amplitude, i.e., 𝜎1𝑎 and 𝜎2𝑎 and then you calculate equivalent stress amplitude from 

𝜎1𝑎 and 𝜎2𝑎. Similarly, you have the mean stress 𝜎1𝑚 and 𝜎2𝑚. From there, you have to 

calculate the equivalent mean stress. 

Let us look at how will we go about it. The equivalent stress amplitude is calculated by 

using the von-Mises stress or equivalent stress formula that we have already discussed in 

the previous modules where we have discussed about distortion energy theory. The same 

formula you will use to calculate the equivalent stress amplitude. Now, this is a scalar 

quantity as if it is a one-dimensional situation. 

While calculating the stress amplitudes, care should be taken. Amplitudes that are in phase 

are positive and those that are 180° out of phase are negative; that is the care that we need 

to take. Then, you can estimate the life using equivalent stress amplitude in S-N diagram.  



 

 

In the S-N diagram, if there is no mean stress, instead of taking 𝜎𝑎1, 𝜎𝑎2 and 𝜎3𝑎  

separately, you will calculate the equivalent stress amplitude and use 𝑆 = 𝑎𝑁𝑏 and 𝑆 is 

the equivalent 𝜎𝑎.  
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However, if we also have mean stress, its effect is to be considered. It is known that the 

effect of mean stress is proportional to hydrostatic stress. Hence, equivalent mean stress 

can be calculated as sum of the 3 mean stresses in the principal directions.  

𝜎�̃� = 𝜎𝑚1 + 𝜎𝑚2 + 𝜎𝑚3 

Thus, you can calculate the effective stress amplitude and effective mean stress. Once you 

have these two things, you can use Goodman criterion i.e., 

𝜎�̃�

𝑆𝑒
+

𝜎�̃�

𝑆𝑢𝑡
= 1 

Then, you will be able to solve the problem the same way that we have done before. 
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Here, we have a problem wherein an un-notched solid circular shaft of diameter 50 mm is 

made of steel. This is same as the previous problem. A zero-to-maximum cyclic torque, so 

that means, 𝜎𝑚𝑖𝑛 = 0, 𝜎𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥. Here we have torque, torque means you are cycling 

shear stresses.  

So, a torque of 10 kN-m is applied together with a zero-to-maximum bending moment. 

What is the stress ratio 𝑅? 𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
, this happens to be 0; zero-to-maximum bending 

moment of 7.5 kN-m, with the two cyclic loads being applied in phase at the same 

frequency. How many load cycles can be applied before fatigue failure can be expected? 
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So, you calculate 𝜏𝑥𝑦,𝑚𝑎𝑥 = 407.4 MPa because minimum is 0. We are only calculating 

the maximum values now, and this is from bending. All the other components are 0, 

because these are the only two things that are acting. Both the stresses are applied such 

that the stress ratio 𝑅 = 0.  

If the stress ratio is 0, the normal and shear stress amplitudes are given by, 

𝜏𝑥𝑦,𝑎 =
𝜏𝑥𝑦,𝑚𝑎𝑥

2
=

407.4

2
= 203.7 MPa, 𝜎𝑥,𝑎 =

611.2

2
= 305.6 MPa  

Then, you calculate the effective stress amplitude using the von-Mises stress formula by 

knowing normal stresses and shear stresses and that comes out to be 466.8 MPa. Having 

done that, the mean stress amplitude comes out to be 466.8 MPa, because 𝑅 = 0.  

When 𝑅 = 0, your stress amplitude and mean stress are same, as we have already 

discussed when we were talking about types of fatigue loading. The uncorrected endurance 

strength 𝑆𝑒
′  can be calculated as, 

𝑆𝑒
′ =

𝜎𝑎

1 −
𝜎𝑚

𝑆𝑢𝑡

= 775.79 MPa 



 

 

Corresponding to that, the number of cycles to failure, you will use 𝑆 = 𝑎𝑁𝑏, and then 

you find that we find that the number of cycles to failure is 1923 cycles, when we have a 

combined state of stress. 

The procedure is exactly the same except that instead of having one stress amplitude, you 

have two stress amplitudes; one is in shear and one is in normal. All that we need to do is 

to calculate the effective stress amplitudes, and similarly effective mean stress.  

Use that in your Goodman formula and then use the failure and from there you calculate 

the fatigue strength. From that fatigue strength, you calculate the life from the power law 

relation between stress amplitude and the number of cycles for failure. 

(Refer Slide Time: 10:47) 

 

So, until now, the kind of problems that we have dealt with are having the same stress 

amplitude, i.e., the stress amplitude is uniform. However, in real systems, you may also 

have variable amplitude; that means, during this loading, the stress amplitude might 

change as shown in this figure here.  

The stress amplitude for 𝑁1 cycles is 𝜎𝑎1, for 𝑁2 cycles is 𝜎𝑎2 and for 𝑁3 cycles is 𝜎𝑎3. If 

such a cycling is applied on the material, how does one estimate the failure in such 

systems? 



 

 

Let us look at the S-N diagram for this material. Then, let us say you are cycling the 

material at 𝜎𝑎1, the intermediate stress amplitude. The maximum stress amplitude is 𝜎𝑎3. 

The minimum stress amplitude is 𝜎𝑎2, and hence this is expected to give longer life.  

If you are running the machine at a stress amplitude 𝜎𝑎2, you can expect a life of 𝑁𝑓2. 

However, please note that at that stress amplitude I have only run the machine for 𝑁2 

cycles.  

If 𝑁2 < 𝑁𝑓2 , that means, the specimen still has some residual life. The remaining residual 

life can be written as 1 −
𝑁2

𝑁𝑓2
. 

Similarly, if I am loading the specimen at 𝜎𝑎1, at 𝑁𝑓1 cycles, it will fail. However, I have 

run this machine only for 𝑁1 cycles; that means, I have used only a partial life of the 

component at that stress amplitude. Similarly, at 𝜎𝑎3, the failure occurs at 𝑁𝑓3 cycles. 

However, I have run it only for 𝑁3 cycles assuming 𝑁3 < 𝑁𝑓3, then I have only consumed 

a part of the specimen’s life. 

As the total time should conserve, we can write, 

𝑁1

𝑁𝑓1
+

𝑁2

𝑁𝑓2
+

𝑁3

𝑁𝑓3
= 1 

This law is called Palmgren-Miner rule, wherein if you are having different stress 

amplitude and the number of cycles used refer that particular stress amplitude is 𝑁1 while 

the failure cycles correspond to 𝑁𝑓1 and so on, then you can write, 

∑
𝑁𝑗

𝑁𝑓𝑗
= 1 

The denominator is the number of cycles to failure at that particular stress amplitude. This 

is how one can deal with variable amplitude loading. 
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However, if let us say a particular sequence of loading is repeated, for instance, in this case 

you apply 𝜎𝑎1 for 𝑁1 cycles, 𝜎𝑎2 for 𝑁2 cycles, and then you will repeat the same thing; 

this is 1 repetition. The 1 repetition is with Δ𝜎3. Eventually, we have 𝑁1 cycles of 𝜎𝑎1, 𝑁2 

cycles of 𝜎𝑎2, and one cycle of 𝜎𝑎3. That particular loading scenario is repeating several 

times. The failure surface is represented as, 

𝐵𝑓 [
𝑁1

𝑁𝑓1
+

𝑁2

𝑁𝑓2
+

1

𝑁𝑓3
] = 1 

In the above equation, 𝐵𝑓 is the number of repetitions to failure. 
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You can now solve this problem. The stress history shown is repeatedly applied as a 

uniaxial stress to an un-notched member of AISI 4340 steel. Estimate the number of 

repetitions required to cause fatigue failure. So, this is one stress amplitude, and this one 

is another one.  

The yield strength, ultimate strength and true fracture strength of this material are given. 

The values of 𝐴 and 𝐵 in the equation 𝜎𝑎 = 𝐴𝑁𝐵.  

Based on that, one would be able to calculate the number of repetitions allowed. This is 

one repetition. One can calculate the number of such repetitions allowed, using the 

methodology that is described already. 
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With that, we will stop here. In the next class, we will see the effect of notches. So far, we 

have not talked about notches. What happens when you have a notch or stress riser? How 

is the fatigue life influenced by the presence of the stress riser alone, like in the same way 

that we have done for static failure theories? With that, I will close today's class, and we 

will meet in the next class. 

Thank you very much. 


