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Let us now talk about the concept of crack resistance. Here you have two curves; the left-

hand side is the crack resistance curve also called as 𝑅-curve, for a ductile material and 

the right-hand side you have an 𝑅-curve for a brittle material. The 𝑅-curve is a material 

property, it is like the critical energy release rate. It represents the resistance offered by the 

material for the crack growth. For a brittle material, the critical energy release rate does 

not change as crack grows, it is constant. 

Let us say this is 𝑎0. If the crack length is below 𝑎0, that crack does not propagate. Let us 

say this is a loading curve which gives you energy release rate 𝐺 corresponding to an 

applied load 𝜎. 

Let us say you have another loading curve, corresponding to an applied load 𝜎2 that 

corresponds to the evolution of 𝐺. We have calculated 𝐺, you remember? The energy 

release rate 𝐺 can be calculated and let us assume that 𝐺 varies like that, for a given 𝜎2. 



For instance, you take a crack here. For this particular crack length, you have to see 

whether crack is going to catastrophically propagate or not; this is your crack resistance 

curve. The crack propagates only when 𝐺 > 𝑅, where 𝑅 is the resistance which is a 

material property. 

Here it is less than that and hence it will not propagate, 𝑅 curve is shown in red. I should 

not have chosen red colour; let me see if I can change my colour. So, let us say this is 𝑎0 

and let me draw this curve; the first black curve is corresponding to one particular load 

giving rise to that 𝐺 evolution. 

Let us say, this is load 𝜎2, that gives me another 𝐺 evolution as a function of the crack 

length. For any material and for any value of 𝐺, if the crack length is less than 𝑎0, there is 

no resistance; you do not see the red curve. So, if the crack length is less than 𝑎0, the crack 

will never propagate i.e., it is not a critical crack anymore. 

If crack length is greater than 𝑎0, then will the crack always propagate? Not necessary. If 

the applied load is so low that the 𝐺 value, say 𝐺2 is always less than 𝑅, the crack will not 

propagate. So, even here you may have an increased length of the crack say 𝑎1, but the 

crack will not catastrophically propagate. 

Student: (Refer Time: 04:00). 

Yes. Is that clear? But here the point is the resistance is not changing, the 𝑅-curve is a 

constant curve. It is typical in ductile materials due to the plasticity that is prevalent ahead 

of the crack tip, that the resistance changes as a function of crack length. 

As the crack grows, the crack tip becomes blunter. If the crack tip becomes blunt, then you 

have more resistance to crack growth. And that is why, here the red curve in this figure 

shows an increased R-curve. The crack resistance curve is increasing, that means, the 

resistance is increasing. 

Now, you see, if I am applying a load 𝜎1, up to 𝑎0 of course, there is no crack growth at 

all. But this is when the crack actually starts growing. As soon as you cross this, 

immediately the resistance is higher and hence, it will be there at 𝑎1 and then it will not 

grow.  



Now, when this is 𝜎2, you see that the crack starts growing up to 𝑎1 and then it stops, right? 

The initial crack length is 𝑎0. When you are applying load 𝜎2 and when this intersects the 

𝐺 curve, that is when 𝐺 = 𝑅, and hence crack has to propagate. 

So, the crack suddenly propagates from 𝑎0 and when the crack reaches the length 𝑎1, under 

the load 𝜎2, 𝑅 increases and hence it cannot catastrophically propagate. It starts from 

𝑎0 and grows up to 𝑎1 and stops there because beyond 𝑎1, 𝑅 > 𝐺2.  

When the 𝐺 curve becomes tangent to the 𝑅 curve, that is when you will have critical crack 

growth. Because the rate of change of 𝐺 with respect to 𝑎 becomes larger than rate of 

change of 𝑅 with respect to 𝑎 beyond that point. And that is when the crack suddenly 

propagates; that means, that is when you will have brittle fracture and the ductile material 

breaks like a brittle material beyond this point. 
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So, the conditions for unstable crack growth are  

𝐺 > 𝑅 

𝑑𝐺

𝑑𝑎
>

𝑑𝑅

𝑑𝑎
 

That is typically the case in ductile materials. For brittle materials, the 𝑅-curve does not 

change and the resistance will not increase, as the crack length increases. 

That is precisely the reason why whenever you throw a stone on a glass, the glass breaks 

all of a sudden, right? If you have a small crack, it zips through. That is because you have 

no increased 𝑅 value. But, if you have a reinforcement to the glass, for instance, typically 

the car windshields have some reinforcement within. 

They do not break like the glass that you would break on your window. The crack 

propagates up to certain distance and then it stops. Although, from the design perspective, 

you have to replace the windshield, but it is not going to break like the window glass 

breaks; that is because, there is some reinforcement which is causes the R-curve of that 

material is to increase as the crack is growing. 
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How does the stress-state ahead of a crack tip look like? You can do an elasticity course 

and derive this formula, but in this class; we are not doing that, I am only giving you the 

formula. Let us say this is the crack in an infinite body subjected to far-field stress 𝜎 and 

the crack length is 2𝑎. 

If you define a polar coordinate system at the crack tip, at any position 𝑟, 𝜃, the stresses 

𝜎11, 𝜎22 and 𝜎12, given by these equations clearly depend on the size of the crack 𝑎, far-

field applied stress 𝜎 and the state of stress changes from crack tip to the faraway. What 

happens near the crack tip? What is the value of 𝑟 near the crack tip? 

Student: (Refer Time: 09:22). 

The value of 𝑟 near the crack tip is 0 and as a result 𝜎11 → ∞. So, you would predict infinite 

stresses ahead of the crack tip. If you are predicting infinite stresses ahead of the crack tip, 

as we have discussed in the previous class, if you take a material, if you already have a 

crack you really do not need to apply a far-field stress. The material would break apart just 

by mere blowing. 

But that is not what is going to happen in the real material because real materials are not 

going to have sharp cracks. You are going to have some crack blunting. But this solution 

is for perfectly sharp crack. The moment you have plasticity, you will have a local plastic 



deformation, and then there will be local crack blunting; so, you need to take that into 

account when we are doing that. However, this is a solution assuming only linear elasticity. 
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The stresses depend on the applied stress 𝜎 and the crack size 𝑎. You can put these two 

variables together and define a new variable 𝐾1, called as the stress intensity factor, given 

by, 

𝐾1 = 𝜎√𝜋𝑎 

The SI units of this parameter are MPa√m. 𝐾1 sort of represents the vulnerability of a 

crack, i.e., how vulnerable a crack is for propagation. 

When the stress intensity factor at the crack tip reaches some critical value, that is when 

crack propagates. The condition is given by. 

𝐾1 = 𝐾1𝑐 

The subscript 1 indicates mode 1. Similarly, you will have mode 2 stress intensity factor, 

mode 3 stress intensity factor; and they will not be same as mode 1 stress intensity factor.  

The crack propagates when the above condition is met, until then crack does not propagate. 

Similar to 𝐺1𝑐, which is the critical energy release rate, 𝐾1𝑐, called as the critical stress 

intensity factor or also the fracture toughness, is a material property. 



Now, the stresses 𝜎11, 𝜎22 and 𝜎12 can be written in terms of 𝐾1. The far-field stress is 

applied perpendicular to the crack's face and hence this is mode 1 loading. The 

displacements ahead of the crack tip can also be defined in this way. How does one write 

the stress-strain relations?  

𝜖𝑥𝑥 =
𝜎𝑥𝑥

𝐸
− 𝜈 (

𝜎𝑦𝑦

𝐸
+

𝜎𝑧𝑧

𝐸
) 

You can calculate strains by knowing stresses. What will you get if you integrate strains?  

Student: (Refer Time: 13:41). 

What is strain? How do you define 𝜖𝑥𝑥?  

Student: (Refer Time: 13:47). 

For small strains, it is one-dimensional,  𝜖𝑥𝑥 =
𝑑𝑢

𝑑𝑥
, where 𝑢 is the displacement in 𝑥 

direction. Isn't it the definition of strain? This is the proper way to define strain. How will 

you get displacement? You integrate strains to get the displacements and apply boundary 

conditions, right? 
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However, the stress intensity factor that we have defined strongly depends on the 

geometry. 𝐾1 that we have defined is true only for infinite plate geometry; that means, the 



size of the crack 2𝑎 is much larger than the size of the plate. But it is not necessary to have 

that sort of a condition all the time. 

Then, you need to account for the violation of the constraints that the size of the crack 

being much smaller than the plate size. If the size of the crack is comparable to the plate 

size, then you have to add a geometric factor to the definition of 𝐾1 and that geometry 

factor is given by 𝛽, i.e., 

𝐾1 = 𝛽𝜎√𝜋𝑎 
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Here is an example problem. So, you have a wall of thickness 12 mm which has flaw size 

that is 5 mm deep. So, you have a crack 5 mm deep; you need to determine if the wall can 

support a tensile load 𝜎∞ = 172 MPa; that means whether the crack will propagate or not, 

given 𝐾1𝑐 = 24 MPa√𝑚. Normally, 𝐾1 =  𝜎√𝜋𝑎, but here the flaw is 5 mm and thickness 

is 12 mm; so, they are comparable.  

So, you cannot neglect the geometry effects. The geometry effect is given by, 

𝛽 = √sec
𝜋𝑎

2𝑡
 



The geometric factor needs to be included while calculating 𝐾1. So, the formula that we 

have is for crack length of 2𝑎, right? So, you consider the symmetry and then you will 

have to add that one. So, this is exactly similar to what the problem that we have looked 

at, when we have defined 𝐾1. 
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This is the expression for 𝐾1. Failure occurs if 𝐾1 is greater than 𝐾1𝑐. So, now we need to 

calculate 𝐾1. 172 MPa is the far-field stress, 2𝑎 is total distance, but 𝑎 is the flaw size. We 

see that 𝐾1 >  𝐾1𝑐 and hence the crack propagates. So, the wall cannot support that load. 
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We have talked about two quantities; energy release rate and stress intensity factor. So, 

there is a relation between energy release rate and stress intensity factor given by, 

𝐺1 =
𝐾1

2

𝐸
 

𝐺1 is the energy release rate, 𝐾1 is the stress intensity factor, but where did we define the 

stress intensity factor? For a given crack length; so that means, it is a local quantity. 

When we are talking about energy release rate, we are talking about the total energy of the 

entire component and hence it is a global quantity. How 𝐾 that we have defined at the 

crack is evolving, that changes the way that 𝐺 evolves. So, 𝐾 and 𝐺 are directly correlated. 

Any questions?  
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When we are talking about 𝐾1, you are talking about the crack tip. The alternative 

definition of 𝐾1 is given by, 

𝐾1 = √2𝜋𝑟𝜎22 (𝑟, 𝜃 = 0) as r ⟶ 0 

That means, we are actually looking close to the crack tip. So, we are actually evaluating 

the behaviour of the crack locally. Whereas, 𝐺 is telling you the energy; energy is the total 

quantity of the body that we are talking about. So, what is the total energy release rate? 

The energy release rate is calculated from total strain energy and the work potential; that 

is how we have defined. So, we have written 𝐺 = −
𝑑𝜋

𝑑𝑎
, where 𝜋 is the total energy of the 

component; that is why the 𝐺 is called a global quantity, 𝐾 is called a local quantity. 



(Refer Slide Time: 19:32) 

 

The purpose of this module and fracture mechanics is in no way to give you complete 

understanding of fracture mechanics, but to educate you on the two concepts: the strain 

energy release rate and stress intensity factor, and to make sure that you understand that 

the crack propagates when the stress intensity factor exceeds the fracture toughness of the 

material or energy release rate exceeds the critical energy release rate; both are equivalent. 

But if you want more knowledge about fracture mechanics, that can only be done by taking 

a serious course in that area, alright? 


