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Welcome back. In today's class, we will look at the failure theories for brittle materials. 

As we have discussed in the last class, the brittle materials fail through a different 

mechanism as compared to ductile materials. For instance, some cast brittle materials have 

greater shear strength compared to tensile strength.  

Normally for ductile materials the shear strength is one-half of the tensile strength, but 

some materials, particularly cast brittle materials may have a higher shear strength than 

the tensile strength.  

For instance, in the last class we have looked at how a brittle material fails when you are 

applying uniaxial tension. It fails across the normal surface to the applied loading 

direction. When you apply a torsional load on a ductile material, it fails normal to the axis 

of application of the torque. However, if it is not mentioned that torsion is applied to break 

the ductile specimen, it is possible that it may be also be thought of as brittle material 

which has failed by applying tension, because the failure surface looks very similar to that. 



If you apply a torsion on a brittle material it fails at an angle 45°. Why does that happen? 

We know that ductile materials fail in shear, right? When you are applying torsion, the 

maximum shear stress is on this plane since torsion is a pure shear loading and the failure 

is along maximum shear plane which is normal to the axis of application of load. 

We know that brittle materials however fail due to normal strength. Although you are 

applying pure shear, as we have discussed in the context of Mohr circle, there are planes 

in the material which experience normal stress.  

The plane along which the normal stress is maximum happens to be this 45° plane and 

because the brittle materials are known to fail due to their normal strength, you will see 

the failure surface to be at an angle 45°.  

(Refer Slide Time: 03:00) 

 

Let us now see how the failure surface looks like. We have discussed about the 2 kinds of 

materials in the last class, i.e., even and odd materials. What do we mean by an even 

material? An even material has both the tensile and compressive strengths to be equal in 

magnitude.  

If the tensile strength and the compressive strength of the material are different, then such 

a material is called uneven material. And brittle materials are in general, uneven materials. 

Let us now look at the failure lines. This particular figure represents the Mohr circle for 

an even material which has same strength. So, let us say we are doing uniaxial tension test 



and uniaxial compression test; it fails at the same magnitude and hence this is the Mohr 

circle for uniaxial tension and this is the Mohr circle for uniaxial compression. The 

common tangent to these two failure surfaces is going to be the failure line. 

That is the failure line that you would take as the behavior of the material or the response 

of the system. However, if the same exercise is done for an uneven material, wherein the 

material has higher compressive strength compared to tensile strength, you see that the 

green circle is uniaxial tension Mohr circle and the orange circle here is the uniaxial 

compression Mohr circle. And if we have higher compressive strength, the radius of the 

Mohr circle is going to be higher. 

These two stress-states are extremes and any other stress-state is somewhere in between 

the pure uniaxial tension and pure uniaxial compression. The tangent joining the orange 

circle and the green circle is the failure line. For an even material, the failure line is 

independent of the normal stress; for instance, here 𝜏max which is the failure stress is 

independent of the normal stress. No matter what normal stress is applied, all of them have 

the same failure line.  

For an even material, the failure lines are independent of the normal stress. For an uneven 

material, the failure line is a straight line on the 𝜎 − 𝜏 plane which can be written similar 

to 𝑦 = 𝑚𝑥 + 𝑐 as 

𝜏 =  𝜏𝑖 + 𝜇𝜎 

The slope of the failure line is known as friction angle which is represented by 𝜇 and 𝜎 is 

the normal stress. 𝜏𝑖 is the position where he failure line intercepts the 𝜏 axis. 𝜏𝑖 and 𝜇 are 

material properties. It is to be noted that the failure line depends on the normal stress as 

shown in the above equation, unlike in the case of even material. 

Note that when we are saying uneven material, the magnitude of ultimate compressive 

strength is greater than the magnitude of ultimate tensile strength; this is typical of brittle 

materials.  

A similar response is also observed in non-continuum materials like granular materials. 

The granular materials also show a behavior very similar to what we are discussing here. 
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The left most circle is uniaxial compression, the right most yellow circle is uniaxial tension 

and the middle circle is basically a pure shear case, right? Then you can draw a common 

tangent to all these three circles. This common tangent represents the failure surface. This 

was proposed by Mohr and hence this is what is called Mohr's failure theory for brittle 

materials. 

In principle, the common tangent will not be a straight line usually, but can be 

approximated as a straight line with reasonable accuracy. That is how you represent the 

failure surface for an uneven material which was proposed by Mohr. 
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Let us now look at this failure theory; how do we go about prescribing this failure theory. 

We need to write a functional form to describe the failure theory. In the very beginning, 

we have said any failure theory can be expressed as 

𝑓(𝝈) =  𝜎𝑐 

𝝈 in the above equation is a tensor and 𝜎𝑐 is the critical stress. Basically, that is a 

description of the failure surface. 

In this figure, the leftmost dashed circle is pure compression and this is pure tension. 𝑆𝑐 is 

the compressive strength, 𝑆𝑡 is the tensile strength and in between, you may have some 

generic stress-state with principal stresses 𝜎1 and 𝜎3. 

Here, we are dealing with plane stress case and hence 𝜎2 = 0. Because this is the normal 

and then you can join the centers of the circle. The leftmost circle center 𝐶3 is joined with 

the point at which the Mohr failure line is a tangent, which is 𝐵3. 

𝐶2 is the pink circle that is actually the loading circle and which has a tangent at point 𝐵2. 

The circle corresponding to pure tension is denoted by 𝐶1. 𝑂𝐵𝑖𝐶𝑖 are similar triangle; that 

means, 𝑂𝐵1𝐶1, 𝑂𝐵2𝐶2 and 𝑂𝐵3𝐶3 are similar triangles. We can write, 

𝐵2𝐶2 − 𝐵1𝐶1

𝑂𝐶2 − 𝑂𝐶1
=

𝐵3𝐶3 − 𝐵1𝐶1

𝑂𝐶3 − 𝑂𝐶1
 



𝐵2𝐶2 is basically the radius of this circle which can be written as 
𝜎1−𝜎3

2
. 

𝐵1𝐶1 is that radius equal to 
𝑆𝑡

2
. Similarly, 𝐵3𝐶3 =

𝑆𝑐

2
. Please keep in mind that here we are 

only writing magnitude. Substituting and simplifying, we get, 

𝜎1 − 𝜎3

2 −
𝑆𝑡

2
𝑆𝑡

2 −
𝜎1 + 𝜎3

2

=  

𝑆𝑐

2 −
𝑆𝑡

2
𝑆𝑐

2 +
𝑆𝑡

2

 

⟹
𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
= 1 

This is the equation of the failure surface. Let us now assume that the principal stresses 

are given by 𝜎𝐴 and 𝜎𝐵 . For a plane stress case if 𝜎𝐴 > 𝜎𝑐, then you will have something 

like this. We will see how this failure surface will be obtained by using this equation.  
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In case 1, let us assume that 𝜎𝐴 > 𝜎𝐵 > 0. That means, the stress-state lies in the first 

quadrant.  

According to our definition in the previous expression, 𝜎1 and 𝜎3 are the maximum and 

minimum principal stresses. In this case, the maximum stress will be 𝜎𝐴 and minimum will 

be 0. Hence, 𝜎1 = 𝜎𝐴 and 𝜎3 = 0. 



Substituting these values in the equation 
𝜎1

𝑆𝑡
−

𝜎3

𝑆𝑐
≥ 1, we get  

𝜎𝐴

𝑆𝑡
≥ 1 

This is the failure surface and the failure of the material occurs when the value 
𝜎𝐴

𝑆𝑡
 is greater 

than or equal to 1.  

This is actually representing failure domain; if we want to say that it is safe, then 𝜎𝐴 < 𝑆𝑡; 

that is safe, equal to 1 is actually on boundary and greater than 𝑆𝑡 is actually outside the 

boundary; that means, that is unsafe region. 

So, 𝜎𝐴 = 𝑆𝑡 is that black line. We are always assuming that 𝜎𝐴 >  𝜎𝐵. In case 2 𝜎𝐴 > 0 >

𝜎𝐵. Then what happens? Out of these two, this will be my maximum principal stress and 

that will be my minimum principal stress.  

So, 𝜎1 = 𝜎𝐴 and 𝜎3 = 𝜎𝐵  and then our equation would be 

𝜎𝐴

𝑆𝑡
−

𝜎𝐵

𝑆𝑐
≥ 1 

Which quadrant are we talking about? Fourth quadrant, right? Here, 𝜎𝐴 > 0, 𝜎𝐵 < 0 and 

then you would draw that and that would be the line.  

And then there can be another case where in both 𝜎𝐴, 𝜎𝐵 < 0. In case 3, we have 0 < 𝜎𝐴 <

𝜎𝐵. Both the principal stresses are negative; that means, we are in the third quadrant. What 

is the maximum principal stress? 𝜎1 = 0 and 𝜎3 = 𝜎𝐵. 

So, that gives rise to  

𝜎𝐵 ≤ 𝑆𝑐 

That means, on this side if you further reduce then that will become the failure surface. So, 

equal to −𝑆𝑐 is the boundary. So, that will be that line that pink line.  

We got three boundaries by assuming 𝜎𝐴 >  𝜎𝐵. If you assume 𝜎𝐵 >  𝜎𝐴, then the other 

three boundaries can be obtained and that is how your failure surface looks like. This is 

very similar to what you have seen for the maximum shear stress theory in principle, but 



because of the fact that it is uneven material, on the tensile side and the compressive side 

you will have asymmetry. 

It is also a hexagon, but it is not a regular hexagon in some sense, right? By drawing these 

boundaries, the green region represents the safe region. So, if the stress-state is within this 

green region, then the material is safe.  
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Let us now compare all the theories that we have discussed for brittle materials. The failure 

of brittle materials can also be represented by maximum normal stress theory which is also 

sometimes used. For an even material 𝜎𝑢𝑡 = 𝜎𝑢𝑐. Hence, it is a square and is symmetric 

about the 𝜎1 − 𝜎3 plane; that is the failure surface for maximum normal stress theory of an 

even material.  
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For an uneven material 𝜎𝑢𝑡  ≠ 𝜎𝑢𝑐. The inner square is for even material and the outer 

square is for uneven material because only on the compressive side your strength is 

changing tensile strength is the same. So, please note that this theory is valid only in the 

first and third quadrants as it does not account for interdependence of normal and shear 

stresses.  
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The Coulomb-Mohr theory brings in the interdependence of shear and normal stresses. 

And please note the similarity of the shape with maximum shear stress theory for ductile 



materials. The only difference is that asymmetry due to uneven material and ultimate 

strength as opposite to yield in ductile materials. 

In ductile materials, the shape is the same, but here you are not using ultimate strength, 

but you are using yield strength. For brittle materials we are using ultimate strength as 

there is no yielding whatsoever that we can define for brittle materials; there is no plastic 

deformation. So, this is what we call Coulomb-Mohr theory and that is mostly used. This 

theory is much better than your normal stress theory for these materials.  
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People later actually looked at the experimental data and they have modified the failure 

theory a little bit, called this as modified Mohr-Coulomb theory wherein, instead of 

connecting this line and this point, you actually connect the 𝜎𝑢𝑡  and this is what we call 

modified Mohr-Coulomb theory. This has actually been modified from the Mohr-Coulomb 

theory by looking at the experimental data.  

After looking at the experimental data, it turned out that the modified Mohr-Coulomb is a 

better way to compute the failure or estimate the failure for a given material. So, it is a 

better theory compared to Coulomb-Mohr theory. 
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The Modified Coulomb-Mohr Theory is the most preferred failure theory for uneven brittle 

materials and if 𝜎1 > 𝜎3 and 𝜎2 = 0, then the stress-state lies in first and fourth quadrant 

only. 
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Here, we are seeing experimental data for gray cast iron plotted on all the four theories; 

actually 4 theories that we have shown in the previous slide, right? Here, you have 

maximum normal stress theory (uneven materials), Coulomb-Mohr theory and modified 

Mohr-Coulomb theory. The solid lines are modified Mohr-Coulomb theory. Note that, in 



the first quadrant all these theories are equivalent; the first quadrant and third quadrant, 

the maximum normal stress theory, Mohr-Coulomb theory, modified Mohr-Coulomb 

theory are equivalent; they differ only in second and fourth quadrant. 

Failure in the first quadrant matches with maximum normal stress theory, as we can see 

the failure data points are same as the maximum normal stress theory because the failure 

surfaces themselves are the same. However, if you come to the fourth quadrant, the 

experimental data matches better with modified Mohr-Coulomb theory compared to pure 

Coulomb-Mohr theory, right? So, fourth quadrant actually does not match with maximum 

normal stress theory first question and also it falls outside the Mohr-Coulomb line. 

That is the reason why people have actually looked at these experiments and they have 

improved the theory saying that modified Mohr-Coulomb is a better approximation. And 

please note that all these theories are only our abstractions and our attempt to describe the 

failure in a mathematical form.  

There are several assumptions behind deriving these mathematical forms and hence, it is 

often necessary to actually correct for these theories after looking at the experimental data 

and that is how this modified Mohr-Coulomb theory has been developed.  
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We have looked at modified Mohr-Coulomb theory and so let us say we are looking at 

first and fourth quadrant and we have 3 different kinds of stress-states. Let us say you have 



stress state A, stress state B, stress state C and how do you go about calculating the factors 

of safety for these things.  

Normally, for instance for this, the factor of safety would be 
𝑂𝐴′

𝑂𝐴
. You just compute the 

distance and then you can calculate. So, similarly for this it is 
𝑂𝐵′

𝑂𝐵
 and for this it should be 

𝑂𝐶′

𝑂𝐶
.  

Note that the equations of the lines are little different in each of these regions; the 

boundaries that it is hitting are little different and hence you need to be little bit careful in 

estimating their factors of safety. There is another way to do that is because this is a similar 

triangle, you could actually say that 
𝑂𝐴′

𝑂𝐴
=

𝑆𝑢𝑡

𝜎1
. 

The same could actually have been done for 𝑂𝐵′. However, when you come to 𝑂𝐶′, it will 

not work in a such a nice fashion. 

The factor of safety for point C can be derived by using by knowing the equation of this 

line. This is for modified theory. For unmodified theory, this is the equation which is not 

actually very much preferred. You should always try to restrict yourselves to modified 

Mohr-Coulomb theory because that matches much better with the experimental data at 

least in fourth quadrant. 
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In the case of ductile failure, we have a very nice way of calculating factor of safety; what 

was that? Irrespective of the complexity of the stress-state may be, we have been 

calculating something called equivalent stress or von-Mises stress.  

Then, the factor of safety was defined as the yield strength of the material divided by the 

von-Mises stress or equivalent stress; that means for a 3-dimensional state of stress, 

equivalent stress or von-Mises stress is actually a 1-dimensional representation; an 

equivalent 1-dimensional representation. Similarly, can we also do a similar kind of a 1-

dimensional representation?  

Can we write an equivalent stress or an effective stress from a complex 3-dimensional 

state of stress even for brittle material or modified Mohr theory? Norman E Dowling 

proposed an approach to do this. He came up with the definition of an effective stress for 

modified Mohr theory that accounts for all stress-states similar to ductile von-Mises case.  

How did he calculate? His prescription is, you calculate 𝐶1, 𝐶2, 𝐶3 by knowing 

𝜎1, 𝜎2, 𝜎3, 𝑆𝑢𝑡 and 𝑆𝑢𝑐. From there, you calculate effective stress as 

𝜎̃ = Max(𝐶1, 𝐶2, 𝐶3, 𝜎1, 𝜎2, 𝜎3) 
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The factor of safety is defined as  

𝑁 =
𝜎𝑢𝑡

𝜎̃
 



Please keep that in mind to use 𝜎𝑢𝑡  and not 𝜎𝑢𝑐. Let us look at one example problem and 

see how do we go about calculating the factor of safety using modified Mohr-Coulomb.  

This is the stress-state at a given point and 𝑆𝑢𝑐 = −16400 MPa, 𝑆𝑢𝑡 = 5250 MPa and we 

need to calculate factor of safety. So, how do we go about doing that? So, from the given 

stress state we can always calculate our principal stresses.  
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The principal stresses turn out to be 2400 MPa, 0 MPa, -600 MPa; that means, this is in 

the fourth quadrant. If you are in the first quadrant, you actually do not need to do such a 

complicated calculation because in the first quadrant your maximum normal stress theory 

itself will work.  

Here, you are in the fourth quadrant. So, you need to account for modified Mohr-Coulomb 

theory. So, we have calculated 𝐶1, 𝐶2, 𝐶3 using the formula and that comes out to be 1631.7 

MPa, 192.1 MPa and 1823.8 MPa. 

Then, you find out the maximum value of  𝐶1, 𝐶2, 𝐶3, 𝜎1, 𝜎2, 𝜎3.That turns out to be 2,400 

MPa. Now, 

𝑁 =
𝜎𝑢𝑡

𝜎̃
=

5250

2400
= 2.1875 

That is how one would go about calculating the factor of safety for a given component. 


