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Welcome back. In the last class, we were looking at the concept of principal stress and 

then we have written that the traction vector can be written as 

𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗 

n is the normal vector to the surface on which you are trying to find the traction. 

Certain textbooks in the mechanics literature also refer to this traction vector as stress 

vector. 

If the stress vector or traction vector is parallel to the normal unit vector, then the traction 

can be written as 

𝒕 = 𝝈𝒏 =  𝜆𝒏 
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This can be casted as an eigenvalue problem as, 

(𝝈 − 𝜆𝑰)𝒏 = 𝟎 

similar to the  𝑨𝒙 = 𝜆𝒙 problem; such a problem is called an eigenvalue problem. 

The solution of this equation requires that this matrix is singular which means that its 

determinant must be equal to 0 i.e., 

|𝝈 − 𝜆𝑰| = 0 

⟹ −𝜆3 + 𝐼1𝜆
2 − 𝐼2𝜆 + 𝐼3 = 0 

The roots of this characteristic equation are the eigenvalues of the system and they 

represent the principal stresses of the stress tensor.  

We now introduce a concept called stress invariants. For instance, if you take a vector 𝒗 

in 2D, which has two-units projection onto x axis and one-unit projection on to y axis. So, 

the vector 𝝊 = {
2
1
}, with respect to the x and y axes. 

Let us say that I am defining a new axis system 𝑥′and 𝑦′.  Now, 𝝊 = {√5
0

} with respect to 

𝑥′and 𝑦′, because this is the magnitude of the vector. So, you can see that the same vector 



with respect to the original coordinate system i.e., the 𝑥 − 𝑦 system is represented as 

{
2
1
} and in a new coordinate system i.e., the 𝑥′ − 𝑦′, is represented as {√5

0
}.  

So, in these two coordinate systems, we are representing the same vector; but the elements 

of the vector are different. And hence, you might think that they are two different 

quantities; but they are not, only what we have changed is the frame of reference from 

which we are looking at this vector. 

However, in both the frames of reference certain quantities do not change. What are those 

quantities? For instance, the length of the vector in both the frames of remains the same; 

so that means, the length is an invariant of your vector.  

Similarly, if you take a second order tensor, you can define invariants to second order 

tensor; that means irrespective of the frame of reference with respect to which you are 

writing your components of your stress tensor, certain quantities remain invariant, that 

means they do not change. So, for a second order tensor, you will have three invariants, 

represented as 𝐼1, 𝐼2, 𝐼3. 

(Refer Slide Time: 04:00) 

 

𝐼1 is the trace of the stress tensor which is the sum of the diagonal elements. That is what 

is called as the first invariant; that means, the trace of a tensor does not change by 

coordinate transformation. The second invariant 𝐼2 is the sum of the principal minors and 

the third invariant 𝐼3 is the determinant of the tensor. 



These three parameters do not change under coordinate transformation. This is what we 

mean by stress invariants. We will use them in the failure theories and hence we are 

introducing the concept of stress invariants. Basically, what it means is that, whether you 

work with full stress tensor or a principal stress tensor, you can write your failure theories 

in terms of these invariants 𝐼1, 𝐼2, 𝐼3 or in terms of principal stresses.  

For instance, if we take the stress tensor in principal coordinate frame, you will only have 

normal stresses and the shear stresses will be 0, and hence you will only have diagonal 

components𝜎1, 𝜎2 and 𝜎3. From this, we can see that the first invariant is sum of the 

elements on the diagonal, that is the trace of the tensor and the second invariant is the sum 

of the principal minors and the third invariant is the determinant of the stress tensor. 

Even if you express stress in a different frame of reference and then you may have full 

stress tensor; that means all the elements may be nonzero, even then for that particular 

stress tensor, these three quantities should remain the same; that is what is the meaning of 

invariant.  
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Now, the question is the following, and we try to answer this question towards the end of 

today's lecture. So, you are given two different states of stress both in the principal frame 

of reference, 



𝜎 =  [
10 0 0
0 5 0
0 0 5

]       OR      𝜎 =  [
20 0 0
0 15 0
0 0 15

] 

Which of these stress-states is likely to cause yielding first? Think about it. 

The second stress-state looks like it has higher values of the stress, so it is possible that 

this is probably going to cause yielding first. Let us see whether or not that is the right 

answer towards the end of this discussion. 
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We will now start discussing about the distortion energy theory. The microscopic yielding 

that we have discussed in the mechanical behavior module is due to relative sliding of 

atoms within the lattice structure, right? The sliding is caused by shear stress or in other 

words the plastic deformation is caused by dislocation motion, which is accompanied by 

the distortion of the shape of the part. 

That means, whenever you are having shear deformation or the sliding of atom planes one 

past the other, you have distortion of the crystal lattice or there is a shape change to the 

crystal lattice or the part.  

Due to the work done by the applied external forces, there is some energy stored in the 

material. The energy stored in the material from the distortion part just by shearing is an 

indicator of the shear stress present. That is what is causing the deformation or the plastic 

deformation. 



People were earlier thinking that the total strain energy stored in the material causes yield 

failure; that is what causing plastic deformation or the onset of plastic deformation.  

What do we mean by total strain energy? It is the area under the stress-strain curve up to 

yield point. Let us say 𝜎𝑖 is the yield point yield and corresponding strain is 𝜖𝑖; the area of 

this triangle is what we call total strain energy. However, experiments proved them wrong. 

They saw that, it is actually not the total strain energy that is responsible for distortion or 

the plastic deformation.  
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The total strain energy density for a one-dimensional case assuming linear stress-strain 

relation up to yielding is  

𝑈 =
1

2
𝜎𝜖 

If it is in full 3D, 

𝑈 =
1

2
(𝜎1𝜖1 + 𝜎2𝜖2 + 𝜎3𝜖3) 

 It is good to work in principal frame of reference, as it is much easier to write this 

expression. In 3D, the stress-strain relations can be written as, 

𝜖1 =
𝜎1

𝐸
− 𝜈 (

𝜎2

𝐸
+

𝜎3

𝐸
) 



𝜖2 =
𝜎2

𝐸
− 𝜈 (

𝜎1

𝐸
+

𝜎3

𝐸
) 

𝜖1 =
𝜎3

𝐸
− 𝜈 (

𝜎1

𝐸
+

𝜎2

𝐸
) 

We are writing in the principal frame of reference. Now, you can plug in the value formula 

for 𝜖1 into this equation for total strain energy. Then, you will be able to write the total 

strain energy 𝑈 in terms of the principal stresses 𝜎1, 𝜎2 and 𝜎3 , Poisson’s ratio 𝜈, and 

Young’s modulus 𝐸 as, 

𝑈 =
1

2𝐸
(𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 2𝜈[𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1]) 
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Let us now talk about the concept of hydrostatic loading, because that is going to be useful 

for us to understand how materials actually plastically deform under the action of total 

stress. 

It is found that a very large amount of energy can be stored in a material without failure, 

if it is hydrostatically loaded. What do you mean by hydrostatic loading? Applying 

hydrostatic state of stress means, having the normal stress in all the three directions being 

equal, i.e., if 𝜎1 = 𝜎2 = 𝜎3 =  𝜎, then such a state of stress is called a hydrostatic state of 

loading. 



If you have this kind of a loading, then the material can be loaded without actually having 

to plastically deform; that means you can store large amount of energy without failure.  

This is possible because, this uniform stress-state is exists in all the three directions i.e., 

𝑥, 𝑦 and 𝑧. Because of that, you will not have any shape change, as it is only size change; 

the size will be reducing, but the shape remains the same, because of the uniform stress in 

all the three directions.  

Materials can be hydrostatically stressed beyond ultimate strength in compression. If you 

are only applying hydrostatic stress, they can be deformed beyond ultimate strength in 

compression. We have discussed the Bridgman correction when we were discussing the 

stress-strain curves, right? 

Bridgman conducted an experiment on ice, where he has subjected solid ice to 1 Mpsi 

hydrostatic compression; the material did not fail even at such very high compressive 

loads. 

Normally, if you are not subjecting it to hydrostatic compressive loads, it is much easier 

to break the ice, right? So, the hypothesis is that the uniform stress in all directions creates 

only volume change; but no distortion; distortion means shape change. Why are we talking 

about shape change? Because the plastic deformation causes relative shearing of atom 

planes which is in turn cause shape change.  

If you are applying uniform stress in all the three directions, you cannot impart this shape 

change, but you can only impart volume change; that means size may reduce, but the shape 

becomes invariant.  

How does your Mohr circle look like for a hydrostatic state of stress? The radius of the 

Mohr circle will be zero because 𝜎1 − 𝜎2 = 𝜎3 − 𝜎2 = 𝜎1 − 𝜎3 = 0. 

So, the radii are zero and hence your Mohr circle will be a point on the 𝜎 axis, because 

hydrostatic stress is a normal state of stress. 
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The total strain energy that is stored in a material can now be decomposed into two parts; 

the hydrostatic energy and the distortion energy. The hydrostatic energy 𝑈ℎ is responsible 

for size change or volume change, and the distortion energy 𝑈𝑑 is responsible for shape 

change. 

𝑈 = 𝑈ℎ + 𝑈𝑑 

𝜎1, 𝜎2 and 𝜎3, which are the principal stresses can be written as the sum of hydrostatic part 

and a deviatoric part. 𝜎1𝑑 , 𝜎2𝑑  and 𝜎3𝑑 are called as the deviatoric stresses which are 

responsible for shape change. The hydrostatic part should be same in all the three 

directions, that is why I am writing 𝜎ℎfor all the cases.  

𝜎1 = 𝜎ℎ + 𝜎1𝑑  

𝜎2 = 𝜎ℎ + 𝜎2𝑑  

𝜎3 = 𝜎ℎ + 𝜎3𝑑  

𝜎1 + 𝜎2 + 𝜎3 = 3𝜎ℎ + (𝜎1𝑑 + 𝜎2𝑑 + 𝜎3𝑑) 

3𝜎ℎ = 𝜎1 + 𝜎2 + 𝜎3 − (𝜎1𝑑 + 𝜎2𝑑 + 𝜎3𝑑) 

If you do not have any distortion and there is only volumetric change, then the hydrostatic 

stress can be written as, 



𝜎ℎ =
(𝜎1 + 𝜎2 + 𝜎3)

3
 

[
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] =

[
 
 
 
 
 
(𝜎1 + 𝜎2 + 𝜎3)

3
0 0

0
(𝜎1 + 𝜎2 + 𝜎3)

3
0

0 0
(𝜎1 + 𝜎2 + 𝜎3)

3 ]
 
 
 
 
 

+ [

𝜎1 − 𝜎ℎ 0 0
0 𝜎2 − 𝜎ℎ 0
0 0 𝜎3 − 𝜎ℎ

]  
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We have said the total strain energy is the sum of hydrostatic energy and distortion energy, 

right? So, hydrostatic energy can be calculated using the same formula that we have 

derived here. When we are talking about hydrostatic energy, then 𝜎1 = 𝜎2 = 𝜎3. 

The hydrostatic part of energy turns out to be this simple expression, 

𝑈ℎ =
3

2

(1 − 2𝜈)

𝐸
 𝜎ℎ

2 

Here, 𝜈 is the Poisson’s ratio. Please note that we are always discussing about isotropic 

materials and hence, there are only two elastic constants 𝜈 and 𝐸; we are not discussing 

about anisotropic materials.  



Substituting 𝜎ℎ =
(𝜎1+ 𝜎2+𝜎3)

3
 in the previous equation gives hydrostatic energy in terms of 

the principal stresses 

𝑈ℎ =
(1 − 2𝜈)

6𝐸
[𝜎1

2 + 𝜎2
2 + 𝜎3

2 + 2(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1)] 

This is the expression for the hydrostatic part of the energy, when you have a stress tensor 

in principal stress space.  

The distortion energy will be the difference between the total strain energy and the 

hydrostatic part of the energy. We have already calculated the total strain energy as well 

as the hydrostatic part. The distortion energy can be expressed as, 

𝑈𝑑 = {
1

2𝐸
(𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 2𝜈[𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1])}

− {
(1 − 2𝜈)

6𝐸
[𝜎1

2 + 𝜎2
2 + 𝜎3

2 + 2(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1)]} 

Only the distortion energy is responsible for plastic deformation; the hydrostatic part is 

not responsible. Whenever we are going to assess plastic deformation, we should subtract 

this hydrostatic part of the energy and only consider the distortion part of the energy.  
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If you simplify this equation, the distortion energy is given by this simple expression, 



𝑈𝑑 =
1 + 𝜈

3𝐸
[𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 𝜎1𝜎2 − 𝜎2𝜎3 − 𝜎3𝜎1] 

This is the expression for the distortion energy for a three-dimensional state of stress. To 

check for failure, we compare the distortion energy per unit volume given by this equation, 

with the distortion energy per unit volume in a tensile test specimen at failure. When you 

are doing uniaxial tension test, that is when you are actually measuring yield strength. 

So, you measure the distortion energy that is stored until the yield point in your uniaxial 

tension specimen with the distortion energy of this three-dimensional state of stress. For a 

uniaxial tension test, you have 𝜎1 ≠ 0 and 𝜎2 = 𝜎3 = 0.  

So, in this expression if you substitute 𝜎2 = 𝜎3 = 0 and 𝜎1 = 𝜎𝑦 because that is the 

distortion energy stored at the yielding of uniaxial tension specimen, you will get 𝑈𝑑𝑦
 as, 

𝑈𝑑𝑦
=

1 + 𝜈

3𝐸
𝜎𝑦

2 

This is the distortion energy for the uniaxial tension specimen. By looking at the property 

of the uniaxial tension specimen's energy; so now, we are comparing energies. That is a 

good situation, because these two are scalars. 

When the distortion energy stored in a material due to a complex state of loading becomes 

equal to the distortion energy stored in the material subjected to uniaxial tension test at the 

yielding, that is when the material subjected to compressed state of loading also undergoes 

yielding; that is the statement of distortion energy theory. 

The material is safe as long as the distortion energy stored in the material under complex 

state of stress is less than 𝑈𝑑𝑦
. The failure happens when 𝑈𝑑 = 𝑈𝑑𝑦

, where 𝑈𝑑𝑦
 is the 

distortion energy at yield point for the uniaxial tension specimen.  

𝑈𝑑 = 𝑈𝑑𝑦
 ⇒ √𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 𝜎1𝜎2 − 𝜎2𝜎3 − 𝜎3𝜎1 ≤ 𝜎𝑦 

This is the mathematical expression for the distortion energy theory. If it is less than, then 

the material will not yield and if it is equal to, then that is when the we say that the material 

will start yielding. 



The boundary of the failure surface is represented by the expression, 

𝜎1
2 + 𝜎2

2 + 𝜎3
2 − 𝜎1𝜎2 − 𝜎2𝜎3 − 𝜎3𝜎1 = 𝜎𝑦

2 

Within that boundary the material is safe, outside the boundary or on the boundary the 

material is unsafe. 
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Let us now take a simple case of loading called pure shear. The condition for pure shear 

is, 

𝜎1 = −𝜎3 = 𝜏; 𝜎2 = 0 

For pure shear; that means when you are applying torsion, you plug that in your expression 

here. We get, 

𝜎𝑦
2 = 𝜎1

2 + 𝜎3
2 − 𝜎3𝜎1 = 3𝜎1

2 =  3𝜏max
2  

This is how the Mohr’s circle looks like for pure shear loading scenario.  

𝜎1 =
𝜎𝑦

√3
= 0.577𝜎𝑦 = 𝜏max  

During a pure shear loading, the material is going to yield when the principal stress is only 

0.577 times the yield strength of the material. 



Yield strength is measured from a uniaxial tension test. When the maximum shear stress 

in the material at any point reaches 0.577 times the yield strength of the material, that is 

when yielding happens or failure happens. Here when we say failure, it means the onset of 

plastic deformation.  

In other words, this means that the shear yield strength of a ductile material is 0.577 times 

the tensile yield strength of the material, i.e.,  

𝜎𝑦𝑠
= 0.577𝜎𝑦 

As we have already discussed, the distortion energy theory is a failure theory that is 

applicable for ductile materials that show yielding; it is not really a good theory for brittle 

materials. 

Ductile failure from distortion energy theory: Failure in case of ductile materials in static 

tensile loading is considered to be due to shear stress. 

(Refer Slide Time: 24:28) 

 

The mathematical statement of distortion energy theory is this, which basically represents 

the boundary of the failure surface. In 2D, for a plane stress case, 𝜎2 = 0, 

𝜎𝑦 = √𝜎1
2 + 𝜎3

2 − 𝜎1𝜎3 

The general form of any failure theory is given by  



𝑓(𝜎) = 0 

For the plane stress case,  

𝑓 =  √𝜎1
2 + 𝜎3

2 − 𝜎1𝜎3 − 𝜎𝑦 = 0 

For distortion energy theory, 𝑓(𝜎) can be written that way. It can also be expressed as, 

𝑓 = 𝜎1
2 + 𝜎3

2 − 𝜎1𝜎3 − 𝜎𝑦
2 = 0 

If you would plot this particular function in 𝜎1− 𝜎3 space, where 𝜎1is the x axis and 𝜎3 is 

the y axis, because you know the value of 𝜎𝑦, how does it look like? This represents the 

equation of an ellipse, which looks something like this. 
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Here, I am normalizing both 𝜎1 and 𝜎3 with 𝑆𝑦 which is the yield strength of the material. 

Failure happens in uniaxial tension when 
𝜎1

𝑆𝑦
= 1.  Please note that here, this distance is 

larger compared to this distance; that means, if we are loading in this fashion, you have 

much more room for failure to happen. 

This dashed line represents 𝜎1 = − 𝜎3 which corresponds to pure shear loading. Then, we 

will see that this point corresponds to 0.577𝑆𝑦.  
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How does the distortion energy theory equation look in a 3-dimensional space where your 

axes are 𝜎1, 𝜎2and 𝜎3? The 3D distortion energy equation describes a circular cylinder 

inclined at Euler angles 45° to the principal stress axis, and interior of that cylinder is safe 

region against yielding.  

Even here, the yellow region is safe, and the red is the boundary at which it is not safe. 

The moment the stress-state falls outside, that means it is already beyond yield stress which 

is not a good thing. 

You should ensure that whenever you are designing a component, the stress state when 

you are representing on 𝜎1− 𝜎3 plane should be within the boundary of the red curve. It 

should be always within the yellow region.  

In 2D, it looks like an ellipse and in 3D it looks like a circular cylinder inclined at Euler 

angles 45° to the principal stress axes. So, the axis of the cylinder in that case, describes 

the locus of all hydrostatic stresses extending to ±∞. 
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Ignore the hexagonal shape that is shown there, and focus on the circular cylinder; you see 

that this is the axis. Here you have 𝜎1, 𝜎2and 𝜎3 and the cylinder is inclined at a 45° angle 

with all the principal axes. 

This line that you are seeing here, represents a state of stress on which 𝜎1 = 𝜎2 = 𝜎3. As 

long as your stress-state is on that line, it will never intersect the boundary; that means that 

is the hydrostatic state of stress. 

The failure or the distortion of the material is not caused by the hydrostatic stress. This 

yield surface is called von Mises yield surface, after von Mises who is responsible for the 

distortion energy theory. The intersection of the cylinder with each of the principal axes is 

an ellipse as shown in the 2D case. 

If you cut the cylinder with respect to one of the axes, then you see that it is going to be an 

elliptical shape. That is the shape that you are seeing in the 2D case. 

In the distortion energy theory, the failure surface or the yield surface is an ellipse on 

𝜎1− 𝜎3 plane inclined at an angle 45°. In 3D, it is a circular cylinder inclined at 45° Euler 

angles to the 𝜎1, 𝜎2and 𝜎3 axes. 
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So, that is about distortion energy theory. Now, this is a question that we have started off 

with, right? Which state of stress is likely to cause yielding? This is one state of stress, this 

is another state of stress.  

If you calculate the hydrostatic part of the stress tensor and deviatoric part of the stress 

tensor, you see that the second stress tensor can be written as the sum of the first stress 

tensor and some hydrostatic part, right? 
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You can write this tensor like this. As a result, both will represent an equivalent state of 

stress corresponding to yielding, as the second state of stress is only an addition of 

hydrostatic stress to the first one. You are only adding an additional hydrostatic stress, 

which does not cause yielding and hence both the stress tensors represent the same state 

of yielding. 

If you would draw the stress-state on 𝜎1− 𝜎3 plane, both of them will show the same point, 

because it is a 3D state of stress. 
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The distortion energy theory states that, this stress which is a complex equation taking into 

account the elements of the principal stress tensor -- this value is compared with a scalar 

which is 𝜎𝑦.  

This value can be given a name called equivalent stress. This is what we call von Mises 

equivalent stress or von Mises effective stress and is defined as the uniaxial tensile stress 

that would create the same distortion energy as is created with the actual combination of 

applied stress. 

 𝜎𝑒 = √𝜎1
2 + 𝜎2

2 + 𝜎3
2 − 𝜎1𝜎2 − 𝜎2𝜎3 − 𝜎3𝜎1 



If you are doing a uniaxial tension test, what would be the stress that you would apply in 

order to have same amount of distortion energy as compared to this combined state of 

stress, so that will be this value. So, that is what we call equivalent stress. 

Basically, the equivalent stress is a scalar quantity; please keep that in mind, it is not a 

tensorial quantity, because it is a one-dimensional equivalent of your combined state of 

stress. You can write the equivalent stress both in terms of principal stresses or using your 

full stress tensor, which is 𝜎 =  [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

]. So, both the expressions are possible 

and you must have learned this in your strength of materials class or mechanics of materials 

class.  

When you are designing components, designers typically use something called factor of 

safety; that means they do not want to design their component such that under the action 

of external loads it is going to experience yield strength. They would want to design their 

component, such that the component experiences a stress lower than the yield strength of 

the material, right? Hence, they use factor of safety to ensure safety of design.  

The factor of safety for the distortion energy theory can be written as  

𝑁 =
𝜎𝑦

𝜎𝑒
 

The modified distortion energy theory statement compared to the previous long 

mathematical expression can be written as 

𝜎𝑦

𝑁
= 𝜎𝑒 

If the equivalent stress reaches the value 
𝜎𝑦

𝑁
, when you are taking factor of safety into 

consideration that is when failure happens; otherwise the failure does not happen. 
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Let us now look at the deviatoric part of the stress tensor, that is also called stress deviator. 

So, the stress tensor 𝜎𝑖𝑗 can be written as a sum of hydrostatic component and deviatoric 

component.  

𝜎𝑖𝑗 = 𝑠𝑖𝑗 +
𝜎𝑘𝑘 

3
𝛿𝑖𝑗 

The deviatoric stress tensor is usually represented with the symbol 𝑠. So, the full stress 

tensor sigma can be written as the sum of deviatoric stress tensor and hydrostatic stress 

tensor.  

Please note that  

𝜎ℎ =
𝜎1 + 𝜎2 + 𝜎3

3
=

𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

3
 

Both are the same as the trace of stress tensor which is the sum of the diagonal elements, 

is invariant.  

The deviatoric stress can be written as 𝜎11 −  𝜋;  I am calling that as 𝜋. 
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Now, let me try to write the invariants of the stress deviator. 

|𝑠𝑖𝑗 − 𝜆𝛿𝑖𝑗| =  𝜆3 − 𝐽1𝜆
2 − 𝐽2𝜆 − 𝐽3 = 0 

This is the characteristic equation written in terms of the invariants of the stress deviator, 

which are represented by 𝐽1, 𝐽2 and 𝐽3.  𝐼1, 𝐼2 and 𝐼3 are the invariants of the full stress 

tensor. 

𝐽1 is the trace of the stress deviator. What is the trace of the stress deviator? We can clearly 

see, because it is a stress deviator; it will only cause distortion, no volume change and the 

diagonal elements actually represents the volume change. So, first invariant 𝐽1 is always 

0. 

𝐽2 which is the second invariant of the stress deviator is given by this expression. 

𝐽2 =
1

6
[(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 − 𝜎11)

2] + 𝜎12
2 + 𝜎23

2 + 𝜎31
2 =

1

3
𝐼1
2 − 𝐼2  

While 𝐼2 is the sum of the principal minors of the full stress tensor, 𝐽2 is the negative of 

the sum of the principal minors of deviatoric stress tensor. 

𝐽3 = det(𝑠𝑖𝑗) =
2

27
𝐼1
3 −

1

3
𝐼1𝐼2 + 𝐼3 



So, 𝑠𝑘𝑘 = 0 means, the volumetric part is 0; which actually means that the stress deviator 

is in state of pure shear, because it is only creating distortion. So, now, the equivalent stress 

or von Mises stress; this is also called von Mises stress also be written using this expression 

as  

𝜎𝑒 = √3𝐽2 = √
1

2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]  

So, if you know the second invariant of that stress deviator; then you can calculate the 

equivalent stress right away.  
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If you now look at this 𝜎𝑖𝑗; from that you can calculate the mean stress or hydrostatic stress 

to be 
21

3
, from that I can calculate my stress deviator, right? The stress deviator is basically 

this. The principal stresses for the full stress tensor are, 

𝜎1 = 16, 𝜎2 = 4, 𝜎3 = 1  

The principal stresses for the stress deviator are, 

𝑠1 = −6; 𝑠2 = −3; 𝑠3 = 9 

Note that the trace of the deviatoric matrix in the principal frame of reference is 𝑠1 + 𝑠2 +

𝑠3 = 0. 



And you can see that  

𝐽1 = 0; 𝐽2 = 63; 𝐽3 = 162 

𝜎𝑒 = √3𝐽2 = √3 ∗ 63 =  √189 

Now, if you know the principal stresses, you can find out principal directions, right? 

The eigenvectors will be the principal directions; if you know the eigenvalues, you can 

always find the eigenvectors. So, the eigen vectors will be the corresponding principal 

directions for the eigenvalues or the principal stresses.  

And if you would use the principal directions to transform 𝜎 and 𝑠 − − let us say you are 

constructing a matrix Q and let us say the principal directions are 𝒗𝟏, 𝒗𝟐 and 𝒗𝟑 

corresponding to 𝜎1, 𝜎2 and 𝜎3 respectively. Then, do the transformations 𝑄𝑇𝜎𝑄 and 

𝑄𝑇𝑠𝑄, and see what you will get, ok? 
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Let us do this problem by applying distortion energy theory and try to understand. So, the 

stress analysis of a spacecraft structure gives the state of stress as shown in this figure. If 

the part is made from an aluminum alloy, whose yield strength is 500 MPa. The question 

is, will this stress state cause the material to yield? If not, what is the factor of safety? It is 

extremely important to write 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦 with proper signs.  
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This is our equivalent stress. It is good to write in the 𝑥, 𝑦, 𝑧 frame of reference rather than 

writing in the principal frame of reference; here we are given 𝑥, 𝑦, 𝑧 data and not the 

principal data, because you have a shear stress component here. So, that is not a principal 

state of stress.  

I am writing this in this way. x axis is in this direction, y axis is in this direction. So, z axis 

should be in this direction, positive z in that direction.  

When you are writing 𝜎𝑧 , it should be -50 MPa because it is compressive, normally this is 

the direction of your axis, it is going in the negative direction, it should be compressive. 

So, that is why we are taking it to be negative. 

If the shear stress is positive, then that should have been like that; but here your shear stress 

is negative, because it is in the negative z direction. And hence 𝜏𝑦𝑧 = −30 MPa. This is 

important, if you do not take the signs correctly, you will get a different equivalent stress; 

that is extremely important to realize.  

So, you are getting the equivalent stress by this calculation to be 224 MPa and 𝜎𝑦 =

500 MPa. Since this value is less than 𝜎𝑦, the component is safe; and the factor of safety 

is yield strength divided by the equivalent stress, i.e., 

𝑁 =
𝜎𝑦

𝜎𝑒
=

500

224
≈ 2.23 


