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I think in the last class we stopped here and we the question why do parts fail, enabled us 

to understand the mechanical behavior of materials and their lifecycle -- improvement of 

the lifecycle of the products in the long run.  

I am assuming that all of you are familiar with the concept of Mohr circle, right? If you 

are not, you have seen this or you have heard of this in your strength of materials class or 

mechanics of materials class; please go back and refresh your memory. 

Mohr circle is a very powerful way of representing stress state in a material graphically 

and we know how to represent the stress state at a point if the system is 2-dimensional. 

You can also represent a 3-dimensional state of stress at a point using Mohr circle. You 

probably have done for 2D state of stress, but you can also do the same thing for 3D state 

of stress. 

(Refer Slide Time: 01:35) 

 



The figure here on the left-hand side is for a plane stress case and here you can say this it 

is a 2D state and you can actually say this as 3D, wherein you have 3 principal stresses 𝜎1, 

𝜎2 and 𝜎3.  

Here on the left-hand side, this is the Mohr circle for uniaxial tension test, right? When 

you are doing uniaxial tension test, there is only one normal stress. That is your principal 

stress. Why is that your principal stress? Because in that plane, there is no shear stress that 

you are applying; you are only pulling like that, isn't it? 

The other 2 principal stresses will be 0 because it is a uniaxial loading scenario and if you 

would take that and then draw the Mohr circle, that is how it looks like. It clearly shows 

that although the applied stress is uniaxial in nature, there are planes along which you also 

may have shear stress.  

Each and every point on the Mohr’s circle boundary is representing the state of stress at 

some other planes. For instance, this plane is at an angle of 45° to the direction of 

application of the uniaxial load having a maximum shear stress. 

You have observed that during a uniaxial tension test, the failure or yielding happens along 

45° plane. That is because maximum shear stress occurs at 45° plane. What does that 

represent?  

If you have a maximum shear stress, it is probable that along that plane you will have 

initiation of plastic deformation because plastic deformation is primarily due to the slip of 

atom planes which is caused by shear stress. Now on the right-hand side, you have Mohr’s 

circle for the case of pure shear or torsion. 

When you have pure shear, if you are applying torsional loading, then you know that the 

principal stress 𝜎1 = −𝜎3. Let us say this is a plane problem, i.e., 𝜎2 = 0. 𝜎1 = −𝜎3 and 

that is when you see that these are same, but in the opposite direction and then you can 

draw the Mohr circle.  

In both the cases, whether you are applying uniaxial tension or shear, yielding happens 

only because of the shear stress. Here when we say failure, we mean plastic deformation 

i.e., yielding of the material. 



That is something that I have mentioned. In the last class, we have discussed there are 

different ways that one can define failure and as far as ductile material design is concerned, 

we will restrict the definition of failure to the yielding of the material.  

We really do not have to completely break the specimen because the moment the yielding 

happens, there is some permanent deformation set into the material and because of the 

permanent deformation the functionality for which it is designed might not be met, and 

that itself can be considered as failure.  

Whenever we are designing components made of ductile materials, the failure criterion is 

based on the yield strength of the material. But, for brittle materials there is no possible 

yielding that can be observed and usually for brittle materials you will consider permanent 

fracture or breakage as the failure of the material. 
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In a static tensile test, in general, ductile materials are limited by their shear strength and 

brittle materials are limited by their normal strength, because they fracture by normal 

strength.  

The failure mechanism is different in both these materials and hence you cannot have same 

theory explaining the failure of both the materials. One failure theory cannot explain 

failure of all kinds of materials. 



You need to have at least two classes of failure theories. One for the class of ductile 

materials and another for the class of brittle materials. That is the key thing to understand 

why we cannot have same failure theory for both ductile and brittle material because the 

mechanism themselves are different and the way that we are characterizing failure itself is 

different in both the materials.  

Before we actually go about prescribing a failure theory, we need to understand what do 

we mean by failure. So, that is what something that we have discussed. What do we mean 

by failure in the cases of ductile and brittle materials? 
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How do you consider a material to be ductile material? What is the limit? Can you say in 

black and white that this is a ductile material and this is a brittle material? Are there no 

materials which are somewhere in between? It is always possible, right? Hence, you need 

to have some quantification to classify a given material as a ductile material or a brittle 

material. So, the classification is basically percentage elongation. 

If the percentage elongation up to fracture is greater than 5%, that is when you call 

something as a ductile material. Typically, most of the ductile materials will have almost 

10%, but when you want to classify a material to be ductile, you will see the percentage 

elongation until fracture is more than 5 percent and that is when you say that this is what 

I am going to consider as a ductile material. If it is less than that, then you will consider 

that as a brittle material. 
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I think this is something that we already discussed. A component may be considered failed 

if it yields and deforms sufficiently large leading to improper functioning; that is the key.  

The definition of failure for us as engineers is not necessarily breakage of the material, but 

the moment the component ceases to deliver the function for which it is designed; that 

itself is a consideration for failure of the component for us. Sometimes, the component 

might actually fail by fracture, it is possible for instance in brittle materials. So, both are 

considered as failures, but the mechanisms are different. 

We are only talking about failure whether it is failing by slip or permanent deformation or 

breakage, but we have not paid attention to the kind of loading. Is the loading time 

independent or time dependent? As a function of time is the loading changing or not?  

As a function of time, if the applied load does not change, then such a scenario is called 

static loading scenario. If the load changes as a function of time, then such a scenario is 

called dynamic loading. So, the failure phenomenon depends on whether you have your 

load changing as a function of time or not and hence you also need to pay attention to the 

nature of the loading, whether it is static or dynamic. 

In this module i.e., the first module, we will be focusing on static failure theories; that 

means, there is no change of load as a function of time. As a function of time, if the load 

changes, then we will have to come up with a new way of deriving the failure theories and 



that we will do in the next module; that is when we will look at fatigue failure of materials. 

But, in this module we will restrict ourselves to static failure theories. 
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As we have already mentioned several times, ductile materials fail by fracture if loaded 

beyond ultimate tensile strength; until then they would not fail by fracture. But, when we 

are designing, we will not go up to there; we consider them to be failed when they yield 

under static loading. For ductile materials, it is important because the yield strength and 

ultimate strength are not the same. 

For instance, the yield strength of mild steel is about 200 - 210 MPa, whereas ultimate 

strength can be up to 350 - 400 MPa. There is a significant difference between the yield 

strength and the ultimate strength. However, for brittle materials, it is not possible to 

distinguish these 2 things. That is why we cannot use yielding as a phenomenon, whereas 

for ductile materials, yielding as the failure criterion is preferable. 
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Now, we need to establish the need for failure theory. Why do we need to come up with a 

failure theory? So, here you have 3 scenarios. You see the first case. Here, we are 

considering a material which is elastic perfectly-plastic.  

An elastic perfectly-plastic material will not have hardening; that is what we have 

discussed in the previous module when we have looked at the mechanical behavior of 

materials. This is a typical elastic perfectly-plastic material and now in the first figure -- 

this figure, we are applying uniaxial load and you observe that the material yields at 𝜎0. 

𝜎0 is the yield strength. Please note that 𝜎𝑦 is the stress applied along the Y direction, and 

not the yield strength. 𝜎0 is a material property.  

When you are loading the specimen uniaxially, you observed that the material is yielding 

at 𝜎𝑦 = 𝜎0; that means, you need to apply 𝜎𝑦 until it becomes equal to 𝜎0, and that is when 

you see that there is a flow of the material; that means, that is where the plastic deformation 

has initiated. 

Now, you do another experiment, wherein along with this load that is existing, laterally 

you apply another stress that is 𝜎𝑥, but that is compressive. You are pulling the specimen 

in this direction and at the same time, you are applying a lateral normal stress, but that is 

in compression.  



Then you see that the material starts yielding when you your applied stress is one-half of 

the yield strength in the previous case. So, let us say 𝜎0 = 200 MPa. In this case, 𝜎𝑦 =

 200 MPa is the onset of yield. Here, I am applying 𝜎𝑦 in this direction, 𝜎𝑥 in this direction, 

but this is tensile in nature, this is compressive in nature; but the values are same, i.e., 

|𝜎𝑥| =  |𝜎𝑦|. 

Then what I observe is that, the failure or the yielding starts when  𝜎𝑦 =
200

2
= 100 MPa. 

You do not need to apply as much stress as you have applied in the case of uniaxial tension, 

only half of it will cause yielding.  

You are applying this load and then you are pushing in this direction. When you are 

applying the load, because of the Poisson's effect, you have lateral contraction. Now, you 

are pushing it by an additional compressive force and hence we can say that we are helping 

the system to yield by pushing it with the external, and hence probably 𝜎𝑦 has come down. 

If you change the sense of your lateral load, instead of compressing it, if you pull it in the 

lateral direction then what do you expect to happen? Do you expect your yield strength to 

increase? To be higher than this case?  

Here it is reducing because you are pushing in the lateral direction. Now, instead of 

pushing, you are pulling in the lateral direction with the same value. Then, do you expect 

to have your strength to be same or less or more? Are you able to see what I am trying to 

convey? 

Normally, we would expect it to increase because the lateral load is accelerating the 

process of yielding; that means, at a lower stress this should postpone the yield, but it turns 

out that if you do the experiment the yield strength is almost same as the uniaxial case. It 

is not significantly depending on the lateral load. If you do the experiment, that is what 

you will observe. If you have a non-uniaxial loading in the material, to define failure is not 

obvious. 

Just by changing the direction of the loading, you are not able to make sense out of the 

nature of the failure i.e., what stress leads to failure and so on. That kind of an ambiguity 

is what brings in the need for defining a theory which can encompass all these variations 

in the loading scenarios, but still be able to give us a criterion for defining failure 



irrespective of the type of loading that you have in the system. That is why we need a 

failure theory. These 3 scenarios are similar and fourth case is even more interesting. 

In the fourth scenario, you have a hydrostatic stress; which means the direction and 

magnitude of the normal stress in all the 3 directions is the same, i.e., |𝜎𝑥𝑥| =  |𝜎𝑦𝑦| =

 |𝜎𝑧𝑧|. Such a loading scenario is called as a hydrostatic state of loading.  

This is typically what you can generate by keeping a specimen underwater. If you keep it 

underwater, then that specimen is usually subjected to a hydrostatic state of compression. 

Hypothetically, let us say this material has the same yield strength in tension and 

compression. Then, it should yield when 𝜎𝑦 =  𝜎0, shouldn’t it? 

But it turns out that if you are applying hydrostatic loading, the material will never yield. 

You can see the material is continuing.  

The plastic deformation cannot be imparted only by applying hydrostatic loading and that 

is why you do not see the flow here. Here, this will never reach 𝜎0 although you keep on 

applying load. In principle, you can go to any value and the material will still not plastically 

deform. 

Unless a failure theory takes into account this physical phenomenon, you will not be able 

to prescribe one theory which can describe the failure irrespective of the type of the load, 

right? That is what brings in the need for defining a failure theory. 
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As far as this class is concerned, we have certain assumptions when we are defining failure 

theories. The first assumption as far as static failure theories are concerned is that there are 

no cracks present in the material; it is a very important assumption. The moment there is 

a crack, then you may have other issues. Another important assumption is the material is 

isotropic and homogeneous. 

If the material is not homogeneous, the failure theory should be changing; you should be 

calculating the stress-state as a function of space, because the material itself is changing.  

We are assuming the material to be isotropic; we are not talking about yield strength in a 

particular direction unlike for single crystal material. For a single crystal material, you 

cannot make such an assumption, right? Can you or can you not? Are single crystal 

materials isotropic? 

Student: (Refer Time: 20:13). 

Are you sure? 

Student: (Refer Time: 20:19). 

We have spent lot of time discussing. 

Student: (Refer Time: 20:21). 



Single crystal materials are anisotropic by nature. Polycrystalline materials are isotropic -

- many of them, unless there is some additional processing that is done, but otherwise in 

general polycrystalline materials are isotropic, because? 

Student: Average. 

Averaging out the orientations of all the grains, eventually will result in isotropic behavior. 

Here, we are essentially talking about failures in a polycrystalline material in other words, 

because you are assuming isotropic behavior. But, in principal, you should also be able to 

derive these failure theories even for an anisotropic material. But in this class, we are 

restricting ourselves to isotropic materials. 
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How does the general form of failure theory look like? What should be the functional form 

ok? Let us say the resistance of a material to yielding is called yield strength; that is 

something that we know, and that is for ductile materials.  

If you want to design brittle materials and components made of brittle materials, then you 

need to consider ultimate strength as your failure criteria. So, the functional form of any 

failure theory for an isotropic material can be expressed as, 

𝑓(𝜎1, 𝜎2, 𝜎3) =  𝜎𝑐  (at failure) 

where 𝜎1, 𝜎2, 𝜎3 are principal stresses at a point in a material; that is important. 



You do not have same stresses everywhere, right? The stress-state in a material may 

change from position to position.  

𝜎𝑐 is a material property and for a ductile material, you will take that to be yield strength; 

for a brittle material you will take that to be ultimate tensile strength. So, you should come 

up with a functional form. What is that functional form is something that will depend on 

which theory you want. 

When we are talking about different failure theories, all these different failure theories in 

the end, are different functional forms of the left-hand side. If you have one functional 

form, you can call it as maximum normal stress theory. If you have another functional 

form, you call it as Tresca theory. If you have another functional form, von Mises theory. 

It is as simple as that. 

There is a reason why different theories have come into place because when there is no 

theory available, what would people do? They will try to come up with the simplest 

possible theory. Historically, we have been doing tension test and then we were able to see 

at some load it is failing.  

What I can say is, when the maximum principal stress reaches the yield strength of the 

material, that is when failure happens; that is actually maximum principal stress theory or 

maximum normal stress theory. Like that different people have come up with different 

theories. 
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Usually, the failure criterion is written in principal stress space. You are familiar with the 

concept of principal stress? How many of you are not familiar with the concept of principal 

stress? Good, everybody is familiar.  

So, if you know the stress-state at a point in a material, you can always find out a frame of 

reference which is oriented along the principal axis such that in that frame, your shear 

stresses will be zero; then you have only normal stresses. We will talk about it in a moment 

if you did not understand whatever I have said just now. You can express the stress-state 

at a point and then you can also find out the principal stresses; that means, in a particular 

orientation. 

Typically, the functional form of the failure theory is written in the principal stress space. 

Why is it written? There are certain reasons. A good failure criterion should result in the 

same outcome independent of the choice of your coordinate system. The failure theory 

should not be depending on the choice of your coordinate system. It should be independent 

of your choice of coordinate system. 

At a given point, if you know the stress-state, the principal stress-state is fixed, right. 

Hence, if you take the principal stress space, that automatically satisfies this criterion and 

hence failure criterions are usually written in principal stress space; but principal stress 

space is not the only choice.  



Other invariants of the stress tensor can also be possible candidates for writing a failure 

criterion. What do we mean by an invariant? We will come to it in a moment -- or maybe 

today or tomorrow. 

So, the only requirement is that it should be independent of the choice of your coordinate 

frame of reference. That is the reason why principal frame of reference is considered, or 

you can also consider your invariants of the stress tensor. You can write it in both ways.  

We will see there are failure theories which are written in terms of the invariants of the 

stress tensor. When you plot this function in principal stress space, it will be a surface -- 

3-dimensional surface and that surface is called failure surface. 

And if it is a ductile material, then it is called yield surface. If it is a brittle material, then 

we call that as fracture surface; but the function that you have plotted in principal stress 

space is basically the failure surface. As I have already mentioned, different failure theories 

are basically different choices for the mathematical form of your function f.  

The moment you recognize that, you really do not have to worry about remembering 

different failure theories. You just remember the philosophy on which they have 

prescribed that failure theory. Then, your functional form comes out automatically; you 

will be able to derive the functional form. 

Which functional form should one choose? The best way to do it is, we choose the 

whichever functional forms match with the experiments better.  

Please understand that just because a particular failure theory is representing experiments 

perfectly well for a given material, it does not necessarily mean that that failure theory is 

going to be good for several other materials. This failure theory is only a mathematical 

abstraction or mathematical representation that we are seeking in order to represent the 

behavior. 

But failure theory that you have prescribed might actually break down for some other 

cases. This is something that we should keep in mind. People have done several 

experiments and they have tested their experimental data against these failure theories, and 

then they have seen that there are certain failure theories which seem to match with a large 



fraction of experimental data, and hence they said this probably is the right failure theory 

to be used for this set of materials and so on. 
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There are different failure theories as we have discussed. Maximum normal stress theory, 

also called Rankine theory is named after Rankine who prescribed this theory. This theory 

states that when the maximum normal stress is equal to yield strength of the material, that 

is when the material fails.  

So when 𝜎1 = 𝜎0, that is when failure happens. Rather than defining the failure based on 

stress, Saint-Venant defined it based on strain and hence maximum normal strain theory 

is named after him. 

Haigh came up with another theory called total strain energy theory. The total strain energy 

is theory deals with strain energy which is a scalar, whereas the maximum normal stress 

maximum normal strain theories deal with the tensorial quantities stress and strain, 

respectively. von Mises improved the total strain energy theory by considering only a part 

of the strain energy rather than taking into account the total strain energy to define failure. 

The von Mises theory is named after him. 

Tresca came up with another theory for ductile materials. He took into account the shear 

stresses, as the plastic deformation in ductile materials occur due to slip of atom planes 

which is provided by the shear stress.  



Hence, he defined the failure theory based on the shear stress and that is what is maximum 

shear stress theory. So, you have different kinds of failure theories and we need to look at 

how one would derive these failure theories. In this class, we will be focusing on these 2 

failure theories i.e., distortion energy theory (von Mises-Hencky) and maximum shear 

stress theory (Tresca-Guest). 
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These 2 failure theories seem to agree with experimental data available in the literature 

much better than other failure theories. They actually have seen other failure theories and 



then they saw that there are some discrepancies and then they want to fix. So, 

understanding the discrepancies from these failure theories, these people have come up 

with better failure theories.  

I have already defined what these failure theories are or you go back and read some 

textbooks and then you will be able to write the statement of the failure theory. Each failure 

theory will have a statement, right? What could be the statement of the maximum normal 

strain theory? 

When the maximum normal strain in the material at a given point reaches the strain 

corresponding to the yield of the uniaxial tension test, that is when failure happens; that is 

how they have defined. Similarly, in the total strain energy theory, you measure the strain 

energy in the material; when the strain energy is equal to yield strain energy (which is 

computed as the area under the stress-strain curve up to the yield point), that is when the 

failure happens.  

Now, we need to spend some time understanding principal stresses. Did we discuss the 

concept of stress tensor in this class? No? Okay. So, you know that stress is a second order 

tensor? 

Student (Refer Time: 32:43). 

Are you familiar with the concept of second order tensor? If you are not familiar, please 

let me know, I will spend some time. 

Student: (Refer Time: 32:52). 

No, ok alright. So, what is a scalar? 

Student: (Refer Time: 33:03). 

You must have studied vectors in your 12th standard, right? What is a scalar? A physical 

quantity which has only magnitude. What is a vector? 

Student: (Refer Time: 33:16). 

A physical quantity which has magnitude and direction. A second order tensor is a quantity 

which has magnitude, direction and a plane of action. We will talk about it in a moment. 



Let us talk about stress tensor. Suppose you take an infinitesimal element, let us say these 

are the x, y and z axes. Now, if I have to represent the stress state at a point. This is an 

infinitesimal volume; that means, it is pretty small. We are only showing it as an 

infinitesimal volume. 

But it is actually stress state at a point. It is represented by normal stress described as 𝜎𝑥𝑥 

ok and this I am calling it as 𝜎𝑥𝑦 and this I am calling it as 𝜎𝑥𝑧. Similarly, on this plane 

you have one normal stress that is 𝜎𝑦𝑦 and that will be 𝜎𝑦𝑥 and that will be 𝜎𝑦𝑧. Like that, 

you can show your stress state on all the faces. If you want to describe one element of the 

stress tensor, how many indices are you using? 

Student: 2 indices. 

2 indices. If you carefully observe, the first index represents the direction of the normal to 

the plane. What is the direction of the normal to the plane? x axis. So, the first index 

represents the direction of the normal and the second index represents? 

Student: (Refer Time: 35:39). 

The direction in which it is acting. This is called normal stress component because the 

direction of that particular stress component is in the direction of the normal itself; that is 

why it is called normal stress component and this is shear because it is in the plane. So, 

the first index represents the normal; that means, it is representing the plane. This is 

basically your plane of action and the second index is representing the direction in which 

it is acting.  

Let us take velocity for instance. How many components will velocity vector have in 3D? 

3 components. If this is my velocity or let us say displacement; 𝒖 is my displacement 

vector. I can write 𝒖 = {

𝑢𝑥

𝑢𝑦

𝑢𝑧

}. What does this index represent? The direction. So, elements 

of the vector 𝒖 are the projections of this vector on each of the coordinate frames.  

That basically represents components of the displacement vector along x, y and z 

directions. But now if you come to the stress, it is a second order tensor. Every element in 

this tensor is also required to be presented with its plane of action; that is why you need to 

use 2 indices. 



The first index represents the plane of action; second index represents the direction in 

which it is acting. In order to represent the stress in some mathematical form that is 

concise, we use matrix representation i.e., 

𝜎 =  [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] 

I put 2 tildes below to represent that it is a second order tensor. One tilde to represents a 

first order tensor. So, a vector is a first order tensor 

Student: (Refer Time: 38:10). 

The order is the number of indices that are required to represent all the elements of that 

particular physical quantity. If you carefully observe, all the diagonal elements will have 

same index. Both first and second index are same; that means, it is a normal component. 

All the off-diagonal components are your shear components. Now, if I multiply this stress 

tensor with, let us say 1 0 0. What is 1 0 0? The normal. 

Student: (Refer Time: 38:51). 

The unit vector in the x direction right. What will I get? 

Student: Sigma xx. 

𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑥𝑧. This is a vector and this is what we call stress vector or traction vector. You 

probably heard of this traction vector.  

What is this telling us? If you have a stress tensor and if you are operating -- using the 

stress tensor you are operating on a vector which is actually the normal to a plane, then 

what is it giving you? It is giving you the components of that stress tensor on that plane; 

that means, the stress vector on that plane. Is that clear? If I have a stress tensor 𝝈 and I 

am operating on a vector n, then I will get some vector t. 

This vector t I am calling as traction vector. It represents the components of the stress 

tensor on this plane. This form of representation is called indicial notation, but do not 

worry about it. I do not want you to spend time on that, but all that I can write is that my 



traction vector on a plane with normal n can be obtained by operating this stress tensor on 

that normal vector. Is that clear? Is there any ambiguity there? 

What is the direction of the traction vector? It can be in any direction. What happens if the 

direction of that vector is same as the normal to the plane? Is the question clear? 

Student: Yes. 

What if that direction of t and n or under what conditions these directions be the same? 

Student: (Refer Time: 42:09). 

When 𝜎𝑥𝑦 = 𝜎𝑥𝑧 = 0; when the shear stresses are 0, right? So, if my direction of the 

resultant traction vector is in the same direction as the normal, then on that plane I will not 

have shear stresses, right? What is such a plane called? 

Principal stress plane, right? If that happens to be my principal stress plane, then I can 

write my t that is the traction is equal to? 

(Refer Slide Time: 42:52) 

 

I can describe my traction direction to be same as the direction of the normal right. I can 

write this 𝜆 is a scalar.  

𝜎𝑖𝑗𝑛𝑗 =  𝜆𝑛𝑗 



Are you familiar with this form? 

Student: (Refer Time: 43:31). 

It is an eigenvalue problem. So, what will be this magnitude by the way? 

Student: (Refer Time: 43:39). 

See if it is a unit vector in the same direction, then this will be your eigenvalue, but from 

the stress tensors perspective this is a normal stress component; that means, that is your 

principal stress, isn't it? That means, if you are given a stress tensor if you find the 

eigenvalues of that stress tensors, the eigenvalues correspond to principal stresses and the 

eigen vectors correspond to principal directions. So, that is how if you are given a stress 

tensor you can actually find out the eigenvalues and then they will be your principal 

stresses, right? 

That is how we have derived this here; that is your eigenvalues problem. And then, you 

will say that this is your eigenvalue problem, then what should you solve? What should 

you do? If this your eigenvalue problems, your n can be 0? But it is not – it is a trivial 

solution. What should be a non-trival solution? 

Student: (Refer Time: 44:47). 

This should be 0 (Refer Time: 47:48). 

Student: (Refer Time: 47:49). 

𝝈-𝜆𝑰. 

Student: (Refer Time: 47:52) 

But that is a matrix. 

Student: (Refer Time: 44:54) once. 

If that becomes 0, it is a redundant solution. This is possible for any generic n only when 

this matrix is singular, right? Because it is in the null space; that means, the determinant 

of this guy should be equal to 0. That is why we have to equate the determinant to be 0. 



When you write 𝑨𝒙 = 𝜆𝒙, several times we do not pay attention why should |𝑨 − 𝜆𝑰| =

0. 

The reason why we need to do that is because for a non-trivial solution this should be 

singular and if that has to be singular then determinant of that matrix should be equal to 0, 

right? So, with that I will stop and then we will meet in tomorrow's class and build on, ok? 


