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While addressing this question, we will come across this concept of equilibrium 

concentration of vacancies or equilibrium number of vacancies in a crystal lattice. Why do 

crystals create vacancies? The creation of vacancies or point defects in crystals is due to 

the competition between the energy minimization and the probability. We will see what 

probability are we talking about. This competition is what creates the vacancies. 

When you are creating a vacancy, there is an energy associated with this vacancy creation, 

which is called vacancy formation energy. For instance, let us assume that the given crystal 

for which we are actually trying to understand whether there are going to be any vacancies 

or not under equilibrium, is in equilibrium with vacuum. If you want to relocate an atom 

from one of its lattice sites from the bulk, what do you need to do? If you want to relocate, 

you need to break the bonds and then move the atom from the bulk to the surface, and 

hence there is an energy associated with that. 

So, the relocation of atom from its lattice site to an external surface creates a local 

distortion in the crystal lattice, because suddenly this one atom is missing as you have 



 

 

broken the bonds, and these atoms find freedom to deform because there is no constraint 

here. As a result, the local movement of these atoms creates distortion in the crystal 

structure, and that is going to increase the internal energy of the system. The energy 

associated with moving an atom from its crystalline site to the surface where it is not 

having any interactions with other atoms is called vacancy formation energy. 

The vacancy formation energy is a property of the material. For every material you will 

have some vacancy formation energy, because it depends on the bond strength of these 

materials. The complete segregation of atoms and vacuum is not possible. Since the atoms 

and vacuum are in equilibrium, you cannot segregate them. 

The competition between the vacancy formation energy and the probability (we will talk 

about in a minute), determines the equilibrium vacancy concentration. And this is the 

expression: 

𝑁𝑉 = 𝑁 exp (−
𝐸𝑓

𝑘𝑇
) 

where 𝑁𝑉  is the number of vacancies in a crystal lattice, N is the number of lattice sites, 𝐸𝑓 

is the vacancy formation energy, T is the absolute temperature in Kelvin, and k is the 

Boltzmann's constant. We need to derive this equation. 
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Let us now assume there are 𝑁𝑉 number of vacancies and 𝑁𝑎 number of atoms in the 

crystal lattice. There are total 𝑁𝑉 + 𝑁𝑎 number of lattice positions available. Out of all 

these lattice positions, 𝑁𝑎 number of sites are occupied by atoms and 𝑁𝑉 number of sites 

are not occupied by atoms i.e., 𝑁𝑉 number of vacancies, 𝑁𝑎 number of atoms are there.  

In general, the number of vacancies should be much smaller than the number of atom sites. 

If you have a very few atoms, then you cannot call this as a material; you rather call it as 

defects, not everything is free space, right? So, the assumption is that  

𝑁𝑉

𝑁𝑎
≪ 1 

Whenever you remove one atom from the bulk of the crystal lattice, then the vacancy 

formation energy is 𝐸𝑓. That is the amount of energy by which the internal energy of the 

system increases whenever you remove an atom. If you have 𝑁𝑉 vacancies, the total 

internal energy of the crystal would have been 𝑁𝑉 × 𝐸𝑓. If the base internal energy is made 

0, then the total energy would be 𝑁𝑉 × 𝐸𝑓 because each vacancy is created by providing a 

vacancy formation energy of 𝐸𝑓.  

𝐸𝑓 must be positive. What happens if it is negative? You keep on forming vacancies and 

then eventually you will not have anything, you will have only nothing, you will have only 

vacuum. So, the crystals allow vacancies to increase the entropy of a perfect crystal. 

Entropy is nothing but a measure of disorder of the system. 

So, the crystals allow the formation of vacancies, because it will increase the entropy. A 

perfect crystal is perfectly ordered and its entropy is 0. So, we have this expression for 

entropy 

𝑆 = 𝑘 log𝑒(𝑤) 

where, 𝑆 is the entropy, 𝑘 is the Boltzmann's constant and 𝑤 is the number of ways we can 

arrange 𝑁𝑉 vacancies in 𝑁𝑉 + 𝑁𝑎 lattice sites. There are only 𝑁𝑎 positions occupied by 

atoms, and 𝑁𝑉 + 𝑁𝑎 are the total positions available. 



 

 

So, 𝑤 is the number of ways that we can arrange the number of 𝑁𝑉 vacancies in this total 

number of 𝑁𝑉 + 𝑁𝑎 sites, or I will also call 𝑁 =  𝑁𝑉 + 𝑁𝑎. 𝑁 is the total number of lattice 

sites. So, that probability can be written as  

𝑤 =
(𝑁𝑉 + 𝑁𝑎)!

𝑁𝑉! 𝑁𝑎!
 

We know how to define Helmholtz free energy 𝐻 of a system.  

𝐻 = 𝑈 − 𝑇𝑆 

where, 𝑈 is the internal energy, 𝑆 is the entropy, and 𝑇 is the absolute temperature. When 

you want to seek equilibrium in the presence of vacancies, what you need to do? You need 

to find the stationery value of this Helmholtz free energy, i.e., 

𝑑𝐻

𝑑𝑁𝑉
= 0 

 That is the condition that needs to be employed in order to find equilibrium in the presence 

of vacancies. 

(Refer Slide Time: 07:46) 

 

So, he is Boltzmann. This concept of entropy as a disorder was put forward by Boltzmann. 

I think you must have studied this in your thermodynamics class, right? 



 

 

Student: (Refer Time: 08:06). 

Alright. 
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𝑆 = 𝑘 ln 𝑤 

𝑤 =
(𝑁𝑉 + 𝑁𝑎)!

𝑁𝑉! 𝑁𝑎!
 

ln 𝑤 = ln  [(𝑁𝑉 + 𝑁𝑎) !] − ln  (𝑁𝑉 !) − ln  (𝑁𝑎 !)  

(Refer Slide Time: 08:51) 

 



 

 

For large values of x,  

ln(𝑥!) ~ 𝑥 ln 𝑥 − 𝑥 

The number of atom sites 𝑁𝑎 and vacancies 𝑁𝑉 are usually going to be much larger than 

1, and hence, the Stirling’s approximation makes a reasonable sense. Employing these 

approximations, we get 

𝑆 = 𝑘[(𝑁𝑎 + 𝑁𝑉) ln(𝑁𝑎 + 𝑁𝑉) − 𝑁𝑉 ln 𝑁𝑉 − 𝑁𝑎 ln 𝑁𝑎] 

(Refer Slide Time: 10:12) 

 

𝐻 = 𝑈 − 𝑇𝑆 

     =  𝐸𝑓𝑁𝑉 −  𝑘𝑇[(𝑁𝑎 + 𝑁𝑉) ln(𝑁𝑎 + 𝑁𝑉) − 𝑁𝑉 ln 𝑁𝑉 − 𝑁𝑎 ln 𝑁𝑎] 

𝑑𝐻

𝑑𝑁𝑉
= 0 ⟹  

𝑁𝑉

𝑁𝑉 + 𝑁𝑎
= exp {−

𝐸𝑓

𝑘𝑇
} 

This will tell you the equilibrium concentration of vacancies in a material, where if you 

know the vacancy formation energy of the material, you will be able to calculate the 

number of vacancies at a given temperature because it depends on the temperature. As you 

increase the temperature what happens? 

Student: (Refer Time: 11:21). 

As you increase the temperature this entire quantity will? 

Student: (Refer Time: 11:34). 



 

 

Decrease; as a result, 𝑁𝑉 will increase. You can create vacancies by thermal activation, 

nicely described by this simple formula. 

Let us try to calculate the number of vacancies in a material. 

(Refer Slide Time: 11:54) 

 

So, the formula is 

𝑁𝑉 = 𝑁 exp {−
𝐸𝑓

𝑘𝑇
} 

What is the Boltzmann constant? 1.38 × 10−30J K-1 or 8.6 × 10−5eV K-1. Please note 

down that part and then try to calculate that. 

We are trying to calculate the number of vacancies in a copper crystal at 1000° C. At 1000° 

C, the energy of vacancy formation is given to be 0.9 eV/atom; the atomic weight and 

density for copper at the above temperature is 63.5 g/mol and 8.4 g/cm3 respectively. Do 

you want to try this? First of all, you should know how many lattice sites are going to be 

there i.e., N. Can you calculate N? 

You know the atomic weight, the density as well as the volume i.e., cubic meter of copper. 

If you have a cubic meter of copper and if you know Avogadro's number, then you can 

actually plug that in. The number of atomic sites is 𝑁𝑎; that is Avogadro's number, rho is 

the density, divided by atomic weight of copper in the consistent units.  



 

 

And you find that to be 8 × 1028atoms per cubic meter. We are asked to find per cubic 

meter, right? So, in 1 cubic meter of copper, you will have 8 × 1028 atoms. How many 

vacancies will be there at 1000° C? So, you just have to plug in; you are given 𝐸𝑓, you 

know 𝑘, and you know 𝑇 and you know 𝑁, then plug in. How many vacancies are there? 

2.2 × 1025. 

So, yes, there are vacancies everywhere, right? That is because it is almost close to? What 

is the melting temperature of copper? So, you please go back and check why there are so 

many vacancies. What will be the number of vacancies at room temperature, let us say 30° 

C? Can you calculate quickly using this formula? Is the density going to change as a 

function of temperature? 

Student: (Refer Time: 15:24). 

The density of a material changes as a function of temperature or not? But we do not have 

the information. So, use the same information as density and then just for the sake of 

understanding, can you tell me how many vacancies will be there if your temperature is 

30° C, the room temperature in Chennai is little higher, right?  

Student: 8.6 × 1013 (Refer Time: 16.10). 

Significantly reduced right? 1025 to 1013 vacancies. So, the temperature plays a 

significant role in creating the number of vacancies. If you would calculate the percentage 

of vacancies here and percentage of vacancies with respect to the number of atom sites, 

you will realize that. So, even at room temperature, you will have some vacancies. When 

will you have zero vacancies?  

Student: (Refer Time: 16:45). 

Absolute zero. And now can you see why you cannot have a perfect crystal, right? Your 

thermodynamics prohibits you to go to absolute 0. So, no matter what you do, you cannot 

bring a material to 0 K, and hence you cannot have a material without few point defects. 

You will always have some point defects. As you increase the temperature, the 

concentration of vacancies keeps on increasing in a material. 


