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CFD modeling aspects – Fundamentals

Let us get started. Welcome back in this session, we look at basics of CFD modeling aspects

required for simulating combustion and propulsion systems.

(Refer Slide Time: 00:28)

I just, this is a slide that we looked at yesterday just as a recap. I thought is the good slides to

start with. So, from the analysis that we did yesterday the takeaway is that the premixed flame

behavior is governed by the same equations under all conditions of pressure. That is reaction

rate place the central role in determining premix flame behavior under all conditions, but the

behavior of non-premix flames is a strong function of several parameters including dimensions



of fuel and oxidizer supply source and pressure. I would like you to recall the ethylene flame

case that we discussed in some detail yesterday.

So, the behavior of the flame will be close to an ideal diffusion flame; that means, controlled

purely by mixing and reactions being close to being infinitely fast and therefore, the dynamics

will be independent of pressure. This we formally expressed as a condition where the diameter

of a fuel jet is much larger than the distance that the fuel and the oxidizer can mix in the

limited reaction time that is available be much much greater than the diffusion distance.

And on the other hand, it is possible that under conditions of low pressure or the dimension of

the fuel issuing orifice being very small significant premixing can happen, and this is expressed

as the characteristic dimension becoming comparable to the diffusion distance. And the

diffusion distance itself is limited by the reaction time, keep that in mind, t r is reaction time as

we discussed yesterday.

So, the dynamics will be close to premixed flames when d is comparable to square root d t r or

alpha t r. For simplicity I am assuming that Lewis number is 1, and hence the strong function

of pressure, ok. These are two ways and the application of this idea to modeling of composite

solid propellants is something that we discussed earlier. But there are also other ways in which

the mixing time can be made similar or of the same order as the reaction time. Without

changing the dimension, without changing the pressure we look at one such case which has

relevance for modeling.

So, it is also possible to change the structure of the non-premix flame without changing the

pressure or dimensions. It is done in the following way the fixed pressure and dimension by

simply increasing the rate of transport of reactants to the reaction zone. Remember that for the

ethylene flame it so turns out that the rate at which the reactants were transferred to the flame

is much slower than the rate of the reaction. So, by simply increasing the rate at which you

transport reactants to reaction zone you can make the mixing time and the reaction time

comparable, ok.



So, by increasing the rate of transport of reactants to the reaction zone, the reaction time can

become comparable to the mixing time. This way of modifying the flame structure is referred

to as stretching which was also something that we looked at earlier, ok.

(Refer Slide Time: 03:41)

I will show you a simple example of this in the next slide, stretched non-premix flames and

extinction. What do you see here is the cylinder that you see is a porous cylinder issuing fuel.

In this case diluted methane, and there is air flowing from bottom to up. The air is flowing past

the porous cylinder is showing fuel and the flame is established in the boundary layer around

the porous cylinder.

The rate of transport of reactant to the flame. So, under the conditions which is marked as 50

second in which I will explain in a minute what it is. Under these conditions the reactions are

simply controlled by mixing rate of transport of reactants to the flame zone, and this rate is



increased by increasing the air velocity. So, as you go from left to right the length of the arrow

is increasing indicative of the air flow rate going, increasing air flow rate we go from low

values to high values and there is a critical air flow rate at which the flame cannot remain in

the stagnation point anymore. It actually gets extinct from the boundary layer and goes to the

bake. This happens at a very specific value of the air flow rate.

And the quantity that is used to use to characterize this aspect of extinction is called strain

rate, it is called extinction strain rate and a good measure of it is simply the velocity of the

oxidizer divided by the diameter of the cylinder. Note that it has dimensions of second inverse,

ok.

So, this is the inverse of this quantity is the timescale for mixing, ok. So, when the air velocity

is low the strain rate is low, and therefore, the time for mixing is high, and as you

progressively increase the airflow rate, there comes a point at which the rate of mixing has

increased to a level which has brought down the mixing time, so that it is comparable to the

reaction time. The rate of reaction is not sufficient to consume all the reactants it is being

supplied to the reaction zone and therefore, the flame quenches. And it moves to a point

where it can continue to burn, so it actually moves to a bake.

This is an important. So, the reason why I am showing this is this is a non-premixed situation

where we have created condition under which the mixing time becomes equal to the reaction

time. So, one of the one of the uses of this kind of a configuration or extinction strain rate that

is measured using this configuration is at the point of extinction the rate of transport of fuel

and oxidizer to the flame zone is equal to the reaction time which can be used to construct

chemical kinetic mechanisms

Student: Sir.

Yeah.



Student: When you are increasing the airflow rate whether you are changing the (Refer Time:

06:31).

Ok. That is a good question. So, what can be done is that we can also increase the fuel flow

rate, the strain rate will still increase, but in this case the fuel flow rate is maintained

constantly. The condition that is used here is that as long as the flame is sufficiently away from

the cylinder, it is not strongly interacting with the cylinder. And it is also the reason that the

strain rate is mostly controlled by the oxidizer velocity as long as the flame is sufficiently away

from the cylinder.

(Refer Slide Time: 07:03)

So, the structure of the flame that is what I mean by that is the profiles of concentration and

temperature across the flame under conditions of predominantly mixing control dynamics is



determined by local stoichiometry. Let us see what the statement means. Let us follow

through the mathematics and then see what it implies in terms of the actual behaviour.

If the mass fractions or the concentration of the fuels let us say is a function of only a variable

which we call which we will call beta which is a measure of the stoichiometry measure of the

local stoichiometry. The mass fractions is a function, the mass fraction is a function of only

beta and let us say the temperature, the local temperature is also only a function of beta. Beta

is some measure of stoichiometry which I will define precisely later, but let us follow through

the analysis and see what it means. If this assumption is true, then the species conservation and

the energy equation can be transformed to a coordinate, ok, transform to a beta coordinate

and for simplicity we will consider the 1-D steady conditions, instead of just working through

the equations I will probably write the equations.

(Refer Slide Time: 08:17)



We will consider 1-D and steady. So, the species equation, it is rho mu, this is species

equation. This is 1-D and steady, steady, so rho u is constant. What we are trying to do is we

are trying to see what if this is true what it implies, ok. So, we will convert from the

coordinates of space to beta coordinates. So, we will have rho u d by d beta of Y i, ok. Let us

follow through rho u dX minus ok. I think now we have; we will leave it as such. So, this is

the form of the equation that I have in the slide.

Student: (Refer Time: 11:58).

Sorry.

Student: (Refer Time: 12:01).

In the second line, yeah.

Student: Second term.

Second term, yeah.

Student: (Refer Time: 12:10).

This term, this term.

Student: Yeah.

I have a d by d beta and the d beta by dX at the end. Is that ok? It is ok. Is the algebra, ok? I

think, I think it is ok. So, I have a b by d beta here and d beta dX here and the dY dX is

written as dY i d beta d beta dX, ok. So, this is the form in which I have the equation written

here with some rearrangement. What we see here is dY i by d beta multiplied by this term



minus rho D d beta dX square d square Y by d beta square equals omega dot i. That is if you

rearrange the equation that I have written in the final expression you will get this.

(Refer Slide Time: 13:13)

So, if beta is defined in such a way that it satisfies convection diffusion equation exactly like

the one that is satisfied by species conservation, species concentration, but without the

reaction term on the right hand side, then the previous equation the previous page will suggest

that the reaction rate can be written in this form, ok. That is the reaction rate can be estimated

from just the local stoichiometry and equilibrium considerations, ok.



(Refer Slide Time: 13:55)

So, one simple way that we can define beta, in a general situation it is different, but the

simplest way to define beta is like this. I am again starting from the species conservation

equation and I am writing it for the fuel mass fraction the omega dot F.

Now, I am reading same equation for the oxidizer, ok. Remember, yesterday we looked at this

example we have 1 gram of fuel reacting with nu grams of oxidizer producing 1 plus nu grams

of products. And if this is the only reaction that is allowed and this is a irreversible reaction, if

you assume that this is an irreversible reaction then the rate at which the fuel is consumed must

be 1 by nu times the rate at which the oxidizer is consumed that should be equal to 1 plus 1

over nu times the rate at which the products are formed, ok. So, if 1 gram of fuel disappears

nu grams of oxidizer must disappear the smelting in the formation of one plus nu grams of

products, ok.



So, now that the omega dot F and omega dot o are connected by this equation and we have

omega dot F and omega dot oxidizer on the right hand side. Calling it oxidizer, so let me also

call it here oxidizer, ok. So, the equation itself suggests simple way to get a scalar for which

the right hand side will be 0. So, all we need to do is multiply the second equation by 1 by nu,

multiply this is the first equation and the second equation. Multiply the second equation by 1

by nu and subtract it from the first equation, the right hand side will become omega dot F

minus omega dot ox divided by nu which is 0 from this condition, ok.

So, we will have the resulting equation will be, from here you can clearly see that omega dot F

is equal to 1 by nu omega dot ox and therefore, this is equal to 0, ok. Just by the simple

rearrangement we have in in fact, we have been able to identify a scalar like beta which can

satisfy a convection diffusion equation without a source term, ok. And beta is also, so beta is

what is called a conserved scalar, something is called a conserved scalar if it is governed by a

convection diffusion equation without a source term, in the transport equation.

Now, we can immediately see that we can define several betas. For example, instead of using

the transport equation for oxidizer, I could have used the transport equation for products and

divided that equation by negative 1 by 1 plus nu and added subtracted from the first equation I

would have got another beta. So, I have 1 beta which is Y F minus Y ox by nu, let us called

beta 1. I could have also gotten another beta which is Y F plus Y P 1 plus nu, ok.

We can do one more thing which is you can also have the energy equation which we saw

yesterday and combine it with linearly combined with either the fuel equation oxidizer

equation or reproduct equation and get another beta which is a linear function of mass fraction

of the fuel and temperature. The only thing that you need to keep in mind is that when I am

subtracting these equations I am assuming that the D, rho D for all these species are the same,

ok. And when we subtract one of these equations from the energy equation, we also have to

assume that the Lewis number is 1, ok. These assumptions may look restrictive, but they are

not an identifying a scalar and using it in the analysis of non-premix flames is a powerful tool

that is available for both laminar diffusion flames and turbulent diffusion flames.



So, what we have done so far is that we started with the assumption that a scalar of this sort

exists. And what it means? It means that the reaction rate can be written as negative rho D d

beta dX squared d squared Y i by d beta squared you have done that and we have also shown

that starting from the species conservation equation and the energy conservation equation. We

can actually identify such scalars, ok.

In a more general situation where Lewis number is not 1 and the system is not adiabatic a

good definition for a conserved scalar is the element mass fraction of one of the species that is

involved in question. There is rearrangement of molecules that happened, but the total number

of elements of carbon hydrogen oxygen and nitrogen are conserved. So, the element mass

fraction is a conserved scalar, it is a general conserved scalar, So, element mass fraction

through the conservation of atom numbers is a good conserved scalar to work with in general

situations.

If this is true, then the equations indicate that the all indicate that all the conserved scalars

must satisfy the same convection diffusion equation. Of course, I have not explained what it

means, but I will. In fact, at the same boundary conditions once normalized that is the profiles

of conserved scalars calculated from experimental concentration should collapse onto a single

curve.



(Refer Slide Time: 20:48)

So, what is meant by that is that if your beta 1 is Y F minus Y ox by nu. So, beta 1 in the fuel

boundary will be let us say there is pure fuel entering from the fuel boundary, then beta F will

be 1, beta 1 of F will be 1 and beta 1 in the oxidizer boundary will be minus 1 by nu, ok.

Similarly, beta 2 which is Y F plus Y P by 1 plus nu will be beta 1 of F will be again 1. There

are no, there is no oxidizer or product in the fuel inlet, sorry this is beta 2, beta 2 in the

oxidizer boundary will also will be 0, ok.

So, one problem that this is both beta 1 and beta 2 satisfy the same equation which is actually

this, both the betas satisfy this equation, but the solutions need not be the same because the

boundary conditions are different, ok. So, one way to take care of this problem is to

normalize. So, the normalization is done in the following way.



Student: (Refer Time: 22:09) oxidizer (Refer Time: 22:10).

There is no fuel, there is no oxidizer in the oxidizer boundary. There is no fuel, there is no

product in the oxidizer boundary, yeah.

Let me see if this normalization is correct. We will just check. If I define a scalar like this then

the value of Z at the fuel boundary would be 1, a definition, ok. And the value of Z in the

oxidizer boundary will be 0, ok; is that clear. Say I put fuel here the numerator and the

denominator are the same if I put oxidizer here the numerator is 0 denominator is the same,

ok.

Similarly, I can define Z like this with the other scalar instead of writing the whole thing. I will

write beta 2 minus beta 2 in the oxidizer boundary divided by beta 2 in the fuel boundary

minus beta 2 in the oxidizer boundary. If I define it like this then Z defined using beta 2 in the

fuel boundary will be 1 and in the oxidizer boundary will be 0, ok. Just by this normalization,

we have not only shown that these scalars are governed by the same transport equations, but

the transport equations also have the same boundary conditions and therefore, beta 1 or Z 1

and Z 2 will have the same solution, ok.

So, this is the reason, this is the this is what is summarized in the last paragraph in this slide. If

this is true then the equations indicate that all conserved scalars must must satisfy the same

convection diffusion equation, in fact, when normalized with the same boundary conditions,

ok. That is the profiles of conserved scalars calculated from experimental concentration data

should collapse onto a single curve because they are all the same solutions to the same

equation with a same boundary condition. That is what is I shown here this is from a paper by

Bilger, ok.



(Refer Slide Time: 24:42)

What is shown here is plot of data of measurements of species concentration and temperature

from a flame of this kind made along the radial direction intersecting the stagnation point, ok.

That is what is shown here. So, the dimensional dimensionless distance normal to the cylinder

which is just the distance from the cylinder normalized by the radius of the cylinder and on the

Y axis what is shown is a normalized element mass fraction which we just saw is a conserved

scalar, ok.

So, data for all the elements are shown, the X is for carbon the triangles are showing

hydrogen, the O is for oxygen, and the squares are nitrogen, ok. And it is clear that for most

of the zones all the element mass fractions collapse onto the same curve and therefore, the

approximation that mixing and local stoichiometry controls the structure of the flame is a very



good approximation. Another important thing to note here is that right at the point where the

flame is located the value of the conserved scalar, is 0.055, ok.

How did we get this 0.055? Z C is the element concentration of carbon, which is according to

the normalized formula will be defined by this equation, ok. So, Z C is 1 in the fuel stream

because all the carbon elements are in fuel form. Z C equals 0 in the oxidizer stream because it

is there are no carbon elements in the oxidizer stream and Z C at stoichiometry is nothing but

Z C minus Z C 2 minus divided by Z C 1 minus Z C 2 which you can calculate from the

stoichiometric expression for methane which we saw yesterday.

This will simply be the element mass fraction in the fuel stream minus element mass fraction in

the oxidizer stream divided by; I am sorry the element mass fraction for the stoichiometric

mixture minus the element mass fraction for the oxidizer stream, divided by the element mass

fraction for the fuel minus the element mass fraction for the oxidizer. So, it will be you can

work this out for this stoichiometric equation and it will turn out to be 16 over 292 which is

0.005.

So, this confirms that the flame is indeed located around the stoichiometric value of Z C. This

is an experimental verification or the statement that was made earlier that the diffusion flame

always locates itself at a point where the fuel and oxidizer are mixed in stoichiometric

proportion.

So, as expected conserved scalars based on other elements and enthalpy with the assumption

that the Lewis number is 1, also collapse onto the same curve establishing the validity of this

approach. So, what it means is that this also means that the reactions are much much faster

than mixing and therefore, the flame is thin, ok.



(Refer Slide Time: 27:47)

Again, more comparison are shown for other variables, I just want to emphasize the following

that the lines indicate the calculations made we assuming that everything is mixing controlled

and equilibrium is achieved and the dots show the data points. It is not just that this is

correctly predicting the major species. As you can see on the right hand side it also predicts

some of minor species fairly accurately, ok. So, this is with heptane as fuel taken from Bilger

1977.

Note that even minus species calculated assume assuming equilibrium, is not far from the

expectation of the mass fraction being a function of only the conserved scalar, ok. So, this the

reason why I am describing this in some detail is that the this forms the basis for the important

model that is used for simulating turbulent diffusion flames.



So, this approach known widely as the mixture fraction model forms the basis for the flamelet

model of turbulent diffusion flames. The advantage is that in this approach the pre calculated

or pre tabulated values of mass fractions and temperature as a function of the conserved scalar

can be calculated a priori and tabulated, and during the calculation you solve only for the flow

and look up this table to get the species concentration and temperature which is a result of the

chemical reaction, ok.

So, the flow and the reaction problem can be separated simplifying the calculation

significantly, ok. Just want to emphasize this that that extinction and reignition requires special

treatment. These are cases where everything is not mixing control there is chemistry role also.

Of course, methods have been developed to deal with this in within the flamelet framework.

So, another example with heptane as fuel is shown in these two plots. What I would like to I

would like to draw your attention to the fact that it is not just the major species that seem to

agree well with the predictions of this model, the minus species also a reasonably good

agreement, ok. 

And this approach called the mixture fraction approach forms the basis for the flamelet model

of turbulent diffusion flame and then this approach the pre calculated or pre tabulated values

of mass fractions and temperatures is a function of a conserved scalars are used along with

either an assumed or calculated probability density function. We will see what it means later. 

The implication is that the flow and the reaction problem can be separately dealt with and that

offers a lot of simplification in simulating flows and reacting flows, in complex geometries.



(Refer Slide Time: 30:48)

Questions. So, one question was about the assumption of unity Lewis number. So, that

assumption is required when we are combining the transport equations to get a scalar that has

both the mass fraction and temperature. So, this is the energy equation and the mass fraction

equation for fuel is this, ok. This is the fuel equation I do not need the negative sign here it

will be automatically taken care of.

Now, if I need to combine these two equations. I need to assume that rho D and K by Cp are

equal. If I have to subtract one equation from the other, I need to assume that rho D and K by

Cp are equal which implies that Lewis number is 1, ok.

Student: (Refer Time: 31:50).



Yeah, it will be if you normalize the scalar like we did for the other cases the it will be 0 at one

boundary and 1 at the other boundary, ok. That will happen for this combination of scalars

also. So, let us call this beta 3 this will be I think I need to multiply or divide this equation by

C p by delta H c and subtract from the other equation. If you normalize it one boundary it will

be 0 the other boundary to be 1. Any other questions? Yeah.

Student: (Refer Time: 32:27) from the (Refer Time: 32:29) beta.

See, I will show you in just a minute. Anyway, we are discussing that in some detail, but I will

quickly tell you. So, you have one equation for the conserved scalar. This is the equation that

you will solve for getting the conserved scalar as a function of space, Z equals 1, Z equals 0 at

oxidizer boundary, Z equals 1 at the fuel boundary, ok. And the definition of Z is. As you can

see from this equation that Z and Y F are linearly related, right. 

So, this will how this is how the solution for Z versus F will look Z is 0, Z is 1, ok. And this is

a fuel boundary, so the mass fraction of the fuel here will be 1, ok. This is the oxidizer

boundary, here the mass fraction for the oxidizer will be 1, ok. And the flame will sit exactly at

the point where the value of Z is equal to the stoichiometry which we saw for methane here is

0.055. And now between these two limits Z is linearly related to F, Y F, ok.

And also remember that we are assuming that the reactions are infinitely fast; that means, there

is no oxidizer on the right side of Z equals Z st. There is no fuel on the left side of Z equals Z

st. So, the oxidizer mass fraction here is 0. The fuel mass fraction here is 0 and then the rest of

the domain it should change linearly with Z. So, this is how Y F will change with Z. This is

how Y ox will change with Z, ok.

On the right side of Z equals Z st there is no oxidizer, ok. So, all this term will drop out and

there is no fuel on the other side. Using this fact you can deduce that this will be a linear

function of, ok. Temperature will look like this. By manipulating the scalar you can also show

that this temperature is equal to the adiabatic fuel, ok. And this is how you calculate the mass

fractions and temperature from the conserved scalars, ok.



We will see this again when we discuss the turbulent diffusion fuel, ok.


