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Welcome to this course on foundations of computation materials modeling. So last class we

had a brief introduction as to what we will be studying in this course. Just to have a short

recap of that,  this  course is divided in three modules.  The first  part  will  be dealing with

constructing  crystal  structures  on  which  you  can  perform  some  sort  of  analysis  on  the

computer. The second part will essentially be statistical mechanics, where we will learn some

foundations  that  is  require  for  us  to  understand  some  elements  of  molecular  dynamics

simulations. 

And the third part will deal with molecular dynamics simulations using labs. So the first part

deals with constructing these crystals on the computer so that some analysis can be done. So

in order to do that we need some fundamentals and we will start with the describing what

exactly  crystals  are.  So crystal  is  essentially  something which is an anisotropic,  which is

homogeneous and processing some sort of three dimensional periodic ordering of atoms, ions

or molecules.

It is important to understand that in general a single crystal is anisotropic which means it does

not possess the same kind of properties in all the directions or it does not possess the same

properties in all the directions. So these crystals turn out to be having specific planes and take

regular  geometric  shapes.  For  example,  if  you take  diamond crystal,  then  it  will  have  a



specific  cleavage,  planes that  will  naturally  appear when you are handling this  particular

material.

They  have  different  properties  in  different  directions,  which  essentially  means  show

anisotropy.  For  instance,  if  you  take  Al2OSiO4,  the  hardness  of  this  particular  material

happens to be different in different directions. So if you perform a scratch in one specific

direction  and  then  do  the  same  thing  in  another  different  directions  the  forces  that  are

required to perform the scratches on this particular material differs with direction. So that is

what I mean by the word hardness here.

And then  you can  look  at  various  other  properties  also.  For  instance,  if  you  talk  about

gypsum, it has different thermal conductivities in different directions.  So depending upon

what direction the heat is traveling, it has a different resistance to heat flow. And then all

crystals will show some sort of a sharp melting point that is associated when you are actually

changing the face of the material.

So these are some of the properties that a crystal will generally possess but it is important for

us to understand that they are generally anisotropic not isotropic. So a single crystal copper is

an anisotropic material, it becomes isotopic only because of the fact that when you take a dog

bones  sample  for  performing  a  tensile  test,  you  will  generally  measure  only  isotopic

properties, although it is copper. And that is because various grains that are present in the

copper material are oriented in random ways and all of these grains together give you a on an

average anisotropic property.

But if you take each and every grain per se, they will have different mechanical properties,

thermal properties also in different directions.
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So before we start looking at how to construct crystals and understand some nomenclature

related to crystallography which will help us construct complicated crystal structures, we start

with the concept of a lattice. So lattice concept is associated with understanding how points

can be arranged in three dimensional space. This is because you know when you are talking

about arrangement of atoms or ions or molecules, they all are a reflection of how actually

points are actually arranged in three dimensional space.

So a point or a space lattice is a three dimensional periodic arrangement of points. So when

we say points here, at this point, we are only referring to a purely mathematical concept,

which means that it is an imaginary point in space and there is nothing placed at that point So

it  is important  for us to hold on to this  idea that there are only imaginary points and no

specific object that is being placed at that point or around that point.

So for example, you can have a set of points which are just forming a one dimensional lattice,

so you can take this point and then repeat it with a certain repeat value, say say this, the

distance is probably a0, obviously, the direction in which you repeat it has to be given with

respect to some coordinate system And it is repeated in three dimensional space and there is

nothing in between these points and this is a lattice point that we are mentioning.

This is a one dimensional lattice or a line lattice, So to speak. We also can have space lattices.

So in plane lattices you have these points repeating themselves in a certain pattern and they

form a two dimensional array of lattice points. So you again repeat the lattice point in one

direction and then repeat the entire thing in another direction. For example, in this case you



have first formed this lattice and then probably repeated it in the other direction going this

way.

Consequently, you have two different lattice vectors that is associated with generating this

lattice, the a vector and the b vector and there is naturally an included angle that occurs when

you perform these, when you generate these space lattices. So this is the space lattice and as

you all might be aware, something like this that is joining all these lattice points is called a

unit  cell  and repeating that  particular  unit  cell  along these lattice vectors will  essentially

generate the entire plane lattice for you.

(Refer Slide Time 6:53)

In a similar manner,  we can look at what is referred to as space lattices.  Space lattice is

nothing but three dimensional periodic arrangement of lattice points. So in this simple figure,

we have several lattice points, which are first being say repeated in the a direction and this

entire line is then being repeated in the b direction to form this plane lattice and this entire

plane lattice is then repeated in the c direction or you know, for clarity we could probably

take this one and then say that this entire plane lattice is being repeated in the c direction to

create a three dimensional space lattice,

This parallelopiped that is now naturally forming here could be a unit cell that is associated

with this space lattice. And these vectors, a vector, b vector and c vector about which the

repetition is actually taking place are called as lattice vectors and the dimensions of the unit

cell, any parameter that is characterizing the unit cell, shape and size, say for example, this is



a0, this value is b0 and this value is c0, together with included angles that may be related,

characterize the lattice parameters

And it is a good question to ask as to how do we, what is the nomenclature or what is the

convention that is followed in order to name these angles. So it is very simple. There is a very

simple  way to  remember  these  things.  So  you have  three  angles  that  are  generally  used

whenever we talk about the unit cell parameters or lattice parameters, alpha, beta and gamma.

So alpha is the angle that is formed by the two vectors which is opposite to that of a. So a

alpha can be related.

So this is alpha. Anything that is opposite to the b vector is basically beta and the angle that is

opposite to the c vector is basically gamma. So this will be alpha and this would be beta and

that is what is indicated in these lines. So angle between a and b is gamma angle, between b

and c is alpha angle, between c and a is basically beta. And then again as we just looked at

this  plane  lattice,  repeating  that  particular  unit  cell  in  three  dimensions  along the  lattice

vectors, what is most important is you have to repeat these unit cells along the specific lattice

vectors that is forming the unit cell itself will actually generate the entire space lattice for

you.

So we are going to be using these simple concepts in order to generate complicated crystal

structures in this course. It is a good idea to understand these things clearly.

(Refer Slide Time 10:07)

And then the final thing that is important when it comes to space lattices or plane lattices is to

understand that  the unit  cell  that  you are essentially  choosing is  not  unique.  In  order  to



demonstrate that, let us look at this plane lattice. So you have an arrangement of lattice points

in this direction. This has been repeated in some other direction, to result in the formation of

the space lattice. Now, we might as well choose this very convenient looking, rectangular

unit cell formed by a prime and b prime and repeat this entire thing in three dimensions.

So  one  of  the  most  important  things  we  need  to  understand  is  that  this  space  lattice  is

repeating itself in two directions. It is going to infinite lengths in both, the x direction as well

as in the y direction. We have drawn only some portion of it, but when I say lattice, it means

it is extending to infinity in both directions.

So consequently when you want to generate this infinite lattice, you may choose a small unit

cell which looks simple like that what is formed by a prime and b prime and you may repeat

this in X and the Y, not in the in the along the a prime and b prime vectors in order to

generate  this  lattice  or  you may also choose  this  complicated  looking unit  cell  which  is

comprised now of vectors a double prime and b double prime, forming this slightly more

complicated, weirdly shaped the unit cell.

And this also may now be repeated along a double prime to generate another unit cell here.

So you may just take this one and move it along a double prime and b double prime in order

to generate other unit cells. So this is another unit cell, this is another thing that is formed by

repeating this in both the directions or you may also choose something like this and the idea

is you may choose to translate it along the b vector and the a vector.

So what is important for us to understand is that you could either choose a simple unit cell or

you could choose more complicated unit cells and the total number of unit cells that you can

actually develop from this set of lattice points is infinity. So basically, there is no unique way

by which you can actually choose either the lattice vectors or the unit cell in order to generate

the entire space lattice or the plane lattice.

So these unit cells are generally chosen based on convenience and other considerations, such

as the kind of symmetry that the unit cell has and the kind of symmetry that is present in the

underlying lattice that you are trying to generate. So we will study those things as time goes

on,  but  it  is  important  for  us  to  understand  that  the  lattice  vectors  and  the  unit  cell

consequently are not a unique choice
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So any point in the lattice maybe brought into coincidence with itself with another point by

performing translations along the A, B and C directions. So this must be quite clear. So you

are able to bring a lattice into coinciding this lattice point with another point by moving along

the lattice vectors. So these points are all points which are equivalent by translation.

So there is really no big difference for a being that is being present in this lattice point, or in

this lattice point, everything is the same. Like I mentioned, this is easy to imagine if you think

of it for a second and accept that this is actually a two dimensional infinite plane of lattice

parts. So there is no big difference between this point and this point, they are all equivalent

by translation.

(Refer Slide Time 14:26)



So with that, we have introduced what is referred to as a lattice. So in summary, we need to

remember that when we talk only about a lattice,  it  is  only imaginary set  of points.  The

second point is - a vector, b vector, c vector or lattice vectors with which you generate the

entire lattice. The choice a vector, b vector, c vector or the unit cell is not unique

(Refer Slide Time 15:36)

Then we come into  the  subject  of  Bravais  lattice.  So  Bravais  lattice  so  just  like  what  I

mentioned a couple of minutes back, if a beam, some beam is actually sitting on this point, it

will not know whether it  is sitting on this point or this point,  because since the lattice is

extending to infinity, it will not be able to make out the difference between this lattice point

and  this  lattice  point  because  the  environment  around  this  point  is  essentially  the  same

whether it is sitting here or sitting here.

Such lattices which look exactly the same from any lattice point are referred to as Bravais

lattices they are referred to as Bravais lattices.  So consequently,  using Bravais lattices to

construct crystal structure is extremely useful. So the next question that we ask now is how

many unique ways can we actually arrange a set of points in 3d space such that no matter

from which point you look, it always appear the same.

So the answer to that question is 14 ways. In three dimensional space, you can arrange a set

of points in three dimensional space in such a way that if you sit on any one point, it looks

exactly the same always, is about 14 ways and in two dimension it happens to be 5 different

ways or they are called us plane Bravais lattices and then this is a mathematical manner in

which you can talk about this Bravais lattices.



If you want to represent this actually mathematically, this is the way to do it. So if you have a

bunch of vectors, A vector, if you have a bunch of vectors A, B and C, and if you have

different sets of integer n1, n2 and n3, it is possible for you to obtain the positions of the

lattice vector using this expression right here, So this is what we are going to be using several

times at least in the first part of this course in order to generate crystal structures as well, the

same idea.

(Refer Slide Time 17:51)

Let us take for example, the generation of a simple cubic lattice, which is a Bravais lattice. So

if you take the Bravais lattice which is simple cubic, simple cubic in the sense, there is one

lattice point inside the cube. There are, you must have studied in your basic material science

that you have one, at every corner of the cube you have one lattice point, but that corner is

being shared by 8 other cubes. So consequently you have 1 by 8 and 8 which gives you 1

lattice point per cube.

So but if you want to generate this using a computer program, So you choose your a vector as

a0 times I hat, b vector as a0 times J had and c vector also as a0 times k hat and any lattice

point in the simple cubic structure is simply n1 a0 i plus n2 a0  j into n3 a0  k. n1, n2, n3 are

different sets of integers.
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So without wasting too much time, I would like to introduce you to the actual MATLAB

program that will actually generate this lattice. So I am sure you some of you at least might

be familiar  with MATLAB and if  you are not,  you can learn it  very easily.  So this is  a

MATLAB script for generating a simple cubic Bravais lattice.  So this  is,  the first line is

basically the function definition.

And you have three sets of integers each running from 0 to 1. So consequently, what will be

generated out of this is just one unit cell of simple cubic lattice. V 100, 010, 001 are the three

lattice  vectors  with  a0  being  1,  so  I  have  just  chosen  the  lattice  constant  to  be  1.  For

convenience, you can have anything there. Atom equal to 1 is just a counter and then there

are three counters which run over the length of these vectors.

So you can modify the total number of unit cells that you want to create in the y direction and

the z direction by just changing this one to some other number and this, the other one to some

other number and so on and so forth. So each one the, first line, the second line and the third

line basically capture the x coordinate the y coordinate and the z coordinate of each and every

lattice point.

And this atom is just a counter. Consequently, we want to print the complete unit cell that we

have generated. So the last command, plot 3 x y z, which will be a column vector of Xs,

column vector of Ys and Zs will be used to actually print out the lattice, the simple cubic

lattice. Now, whenever you are working with computational materials modelling, you do not

use MATLAB to visualize these lattice structures.



There are several codes, programs which can read in files, read in coordinate files in different

forms and show you the crystal structure. So usually that is very convenient. One such file

format that is read by several codes is called as the XYZ format, which is one of the simplest

format and there is a small function which I am calling here, which will actually take us a

character called name, name is equal to s and it will take the corresponding x coordinates, y

coordinates and z coordinates and it is going to give you the, it is going to write it out, write

out the XYZ file for this simple cubic structure.

(Refer Slide Time 21:33)

So this is the corresponding code which talks about this XYZ file.
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So I would like to show you the MATLAB script and what happens when it runs. So this is

the Generate lead is exactly the same file that we talked about, so if you run it, you get a

simple cubic lattice and you can actually rotate it and see, it is precisely that, it is precisely

that. We are going to use this for our learning purposes, we do not professionally when we

are doing research, this is not the kind of visualization we use.
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But it is possible for us to write out the XYZ file and take a look at. This is how the XYZ

format looks. So in the first line, you have the total number of atoms that you are printing out.

The total  number  of  atoms in the unit  cell  is  however,  only one but  when you want  to

visualize the unit cells with all the spheres, you want to print the coordinates out, so the total

number of atoms is 8 and the second line is basically some sort of a string, which is used to

tell you something about the crystal structure.

The first column is a symbol that is used to identify what type of atom it is. And the second,

third  and the  fourth columns  are basically  the X,  Y,  Z coordinates.  So this  is  what  this

programme does.
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Now, off and on not all not all the unit cells that we deal with are cubic. You will encounter

triclinic or monoclinic unit cells as well. So when you have a cubic structure, calculation of

the volume or the distances between the points is pretty simple. However, when you have

other non cubic structures,  calculation of the volume and the calculation of the distances

between points can be a little bit cumbersome, but if you do some vector algebra you can

understand or you can convince yourself that the expression for calculating the volume is

given by the expression number 6 here and the distances between two points, x1, y1, z1; x2,

y2, z2 are given by the formula seven.

Here x1, y1, z1; x2, y2, z2 are basically the fractional coordinates between those two points.

They  are  not  the  actual  Cartesian  coordinates.  So  it  is  very  easy  to  verify  that  the  first

expression six is straightforward if you substitute alpha equal to 90, beta equal to 90 and

gamma equal to 90, you talk about a orthogonal unit cell and the product of ABC is basically

going to be your volume.

Now that is not the case if you have non cubic structures. So that is why I have just given this

expression here, but it is not very hard for you to prove this yourself.
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Now, let us start looking at the various Bravais lattices.

Professor- Student Begins

Professor: How many Bravais lattices are there? There are…

Student: 14.

Professor: What is that? 14 Bravais lattices are there.

Professor- Student conversation ends.

Now, these are extremely important because all of our crystal structures are based off these

14 Bravais lattices. So the first Bravais lattice as you know, Bravais lattice 1, 2 and 3 as they

call it,  they all will have A, B, C equal being equal and the angles between them are 90

degrees. In these Bravais lattices you have three different types- one is called primitive. We

will come to the definition of primitive in just a bit.

The other one is called body centered, where you have two lattice points per unit cell and the

third one is basically the face centered where you have four lattice points per unit cell. And

there is a representation that is generally used when we talk about this Bravais lattice. P is for

primitive, I is for body centered and F is for face centered. Remember, these symbols are

going to be used again when we talk about symmetry.

So this P, this I and this F are representing primitive, body centered and face centered Bravais

lattices.
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Lattices 4 and 5 have slightly lower symmetry, they are tetragonal, So A is equal to B so A

and B are equal, C is not equal to A and B, and the angles between them are of course, 90

degrees and in this particular type of Bravais lattice you can either have a primitive or you

can have a body centered lattice.  The question now is why is there no both I and F in a

tetragonal lattice. This is a tetragonal lattice, why is there no face centered tetragonal lattice?

(Refer Slide Time 26:23)

So the answer for that is if you take a look at, this is this particular figure here shows you the

tetragonal lattice and you have one body centered here and a body centered atom for each of

these. So this is actually the tetragonal lattice right here, and you have one body centered



atom here. Similarly for the next one you have one here, here and here. These are the body

centers.

However, if you actually really look at it carefully and take a look at it, so you will once

again be generating only a tetragonal face if you look at this, if you look at this tetragonal

system that  is  drawn,  you  will  find  that  the  same  atoms  are  forming  the  first  centered

tetragonal. So from a body centered tetragonal, we are able to regenerate the face centred

tetragonal. So there is no point in counting them twice because they are basically the same

lattice.

Consequently,  you  either  talk  about  a  body  centered  tetragonal  or  a  face  tetragonal  the

convention is to talk about the body centered tetragonal as the Bravais lattice

(Refer Slide Time 27:42)

In  this  manner,  if  you  actually  looked  at  other  things  that  are  not  listed  here,  you  can

convince yourself that they all turn out to be one of these 14 somehow, and we have some

convention so that we understand when we talk about crystal structures, what we are, to stick

to one particular  convention  we talk  about  one type  of Bravais  lattice  for one particular

system. So next one is the orthorhombic Bravais lattice.

In this you can have primitive, I, F and something called as C. So you have a centered latest.

So at least at you will have at opposite phases you will have one lattice point that is going to

be 6, 7, 8 and 9. So you have like 4 different versions of the orthorhombic Bravais lattice.
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Then you have the monoclinic lattices where you have a none of them none of the sides are

equal, but you will have one lattice vector being perpendicular to the other two, So one of the

angles will not be equal to 90 degrees, the beta is not equal to 90 degrees and in this what is

possible is P and C.

(Refer Slide Time 28:51)

The 12th one is basically hexagonal. So there is going to be an angle gamma of 120 degrees,

whereas the angle beta and alpha are both 90 degrees. In this the only thing that is possible is

primitive. Anything else you do, it becomes one of the others.
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13th one is the rhombohedral, where you have A equal to B equal to C, and the included

angle, alpha equal to beta equal to gamma. However, none of them are 90 degrees. The last

one is basically the triclinic lattice where none of the sides are equal, and none of the angles

are basically equal.

(Refer Slide Time 29:35)

So these are the various Bravais lattices. There are 14 Bravais lattices. One of the interesting

things that we see about Bravais lattices is its history. So the enumeration of all these lattices

were actually done by someone called Moritz Ludwig Frankenheim in the year 1842. He



came up with actually 15 different Bravais lattices. He counted, he only did the major work,

He came up with the 15 ones.

He counted one of them two times and then Bravais came in, Auguste Bravais came in in

1845 and he has corrected this 15 to 14. But you do not call them Frankenheim lattices, you

still call them Bravais lattices. So that is an interesting history that comes out when you are

studying these Bravais lattices.

(Refer Slide Time 30:25)



Now, one of the things that we now get into is the definition of a primitive lattice 2. So you

have been seeing these Bravais lattices and several times you saw a P, You saw P several

times. What was unique about that P? What was unique about that unit cell?

Professor- Student conversation begins.

Professor: What is that?

Student: You have atoms only at the corners.

Professor: You have atoms only at the corners.

Professor- Student conversation ends.

What  that  means is,  you have only one lattice  point per  unit  cell.  So the definition of a

primitive lattice is that you have only one lattice point per unit cell,  all other lattices, the

centered lattices, the face center lattices or the body centered lattices have more than one

lattice per unit cell

(Refer Slide Time 31:17)

The question now arises, is it possible for us to construct or have primitive unit cells for all

the Bravais lattices that we talked about? The answer is yes, So I will show you an example

with FCC structures. So FCC, so this is an FCC structure In general how do you generate an

FCC structure? You have A, you have your B lattice vector and your C lattice vector and you

have one lattice point at all  the corners and then these red points right here, are the face



centers and you have FCC lattice and that contains how many points how many lattice points

per unit cell?

Student: 4.

4 lattice points per unit cell. Now, you look at the other unit cell that is drawn here in the blue

color. So this point C is joined to the C dash, this I this N and then you have all these atoms

and then these lines have joined and you see that, if you have just that as a unit cell, the total

number of lattice points in that unit cell is only one. That can also be used as a unit cell, you

can construct it and repeat it in three directions and generate your FCC lattice. It is still FCC,

The problem is your A is, the lattice vectors, a prime, b prime and c prime are not orthogonal.

They have some weird included angle between them. However, your A, B and C that you

used previously are all orthogonal, they are equal in length. And last but not the least, if you

drew  it  using  the  non-primitive  lattices,  you  are  able  to  maintain  the  symmetry  of  the

underlying lattice.

That means, if you rotate say for example, if you rotate this structure about a line suppose,

you rotated the structure about this line by 90 degrees, the crystal structure would exactly

coincide with itself, so this structure possesses some sort of symmetry. However, that is not

apparent if you use the other unit cell. So in order to preserve the underlying symmetry of the

lattice, we choose unit cells which are convenient.

Because once you know the symmetry of the underlying crystal structure from the unit cell

itself then the kind of symmetry that is demonstrated by or the kind of symmetry shown by

various properties of these materials also become apparent, so there is a reason why you want

to choose these unit cells extremely carefully, But then it will become obvious as we go as to

what unit cell must be chosen for what lattice based on the symmetry underlying the lattice.

So the primitive and non-primitive lattice vectors, so for FCC, the primitive lattice vectors are

obviously these a0 by 2 i plus jb, a0 by 2 i plus K and a0 by 2 k plus. However, the non-

primitive lattice vectors is just ai, sorry this would be a0 I, a0 j and a0 k,
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Now, we talked about lattice.  What did I tell you about lattices? Lattice is nothing but a

collection of imaginary points in space.

At this point, we have not yet put something. You know, we do not have an atom or an ion

yet. It is just an imaginary mathematical construct. Now, at each point, if you start putting

some motif, some molecule, then that basically becomes a crystal that is of interest to us. So

this is a simple cubic lattice, it is extending to infinity in all the directions and this is some

arbitrary motif, so this should be motif.

And at each point I am putting that motif. What you should observe is, this lattice which is a

collection of these points alone had some symmetry associated with it. For example, it had a

4 fold symmetry  about  this  point.  But  the  second I  put  this  motif  at  these  points,  some

symmetry get lost, get lost, but the property of the crystal is actually going to depend on how

these motif are basically arranged around the lattice points or at the lattice points, so to speak.

That is the reason why we need to start looking at these symmetry associated with these

crystal structures. Do you have any questions at this point?

Professor-student conversation begins

Professor: Yes?

Student: Is there any difference between the points motif and basis



Professor: Yes. I will say yes, motif is probably the molecule that you use to put at every

lattice point and basis is something slightly different which we will come to in a couple of

slides. Sometimes they are used interchangeably also but I want to keep a clear distinction.

Motif is this molecule that we will place and basis are points that we will choose so as to

construct a crystal structure based on non-primitive lattice vectors

Student: So if instead of a molecule, I put items or items, they will also be called as motif.

Professor: You can call them as motif, yes, no problem. As long as we understand what it

means is not a problem.

Professor-student conversation ends.

(Refer Slide Time 37:24)

So actually trying to answer his question. So his question was is there a difference between

basis and a motif. They are used interchangeably. However, in this lecture I would like to call

motif as something that is placed around the lattice points, a molecule or the atom and basis

as something that I will choose in order to construct lattice structures out of non-primitive

basis vectors or lattice vectors, basis or lattice vectors.
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So for example, if we want to construct the FCC structure out of these lattice selectors, these

are now non-primitive lattice vectors, We saw that when we had AIB sorry AJ and AK and if

we wanted to construct the lattice vectors the total crystal structure turned out to be I mean

the unit cells turned out to be non-primitive, you had more than one lattice point to the unit

set.

However, if you want to use those non-primitive lattice vectors, we have to choose something

called as basis. Basically there are four lattice points per unit cell in the non-primitive FCC

structure. So we choose those four basis.

(Refer Slide Time 38:43)



So these are the four basis. 1, 2, 3 and 4 The ones that are circled here. 1, 2, 3 and 4. And

now, if you used these lattice vectors and constructed your crystal structure you would not be

generating a FCC lattice So we just saw a simple MATLAB program for the simple cubic

structure that was primitive. So there was no real, there was no line or anything that said

anything about the basis for the crystal structure.

(Refer Slide Time 39:33)

So now we will try to construct the FCC lattice and the general algorithm that is used in order

to construct any crystal lattice  is the following. So let us say that our crystal has NB different

basis atoms. The basis atoms is the total number of atoms per unit cell system FCC, it was

basically 4. Let the first basis fractional coordinate by 0 comma 000. That means you are

putting your origin there.

Then a position r lambda, of the lambda basis is given by this expression right here. That is it.

N1 is still the same set of integers and A, B and C are all the lattice vectors. C1 lambda, C2

lambda,  C3 lambda  are  basically  the  first  component  of  the  fractional  coordinate  of  the

lambda to basis second component and the third component. And this can go from how many

ever basis atoms you want. I put your lambda equals 0123 NB minus 1 because we have

already counted 0, 0, 0 as one of the atoms right there.
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So this is basically the structure of the code that you will use if you want to generate a crystal

structure out of non-primitive basis. So again you have N1 going from 0 to 1, 0 to 1, 0 to 1.

So I am going to generate  only one unit  cell.  V goes from 100, 010 and 001 which are

basically the three lattice vectors. Now, the base is nothing but 000; 0.5, 0.5, 0; 0.5, 0.5; 0.5,

0, 0.5, the four values, the four atoms that I basically circled in the previous, in the picture

that I showed you.

Now, in addition to the three loops that you have here, you have one additional loop that is

going over all the basis, total number of basis atoms, so this will be four, NB is basically total

number of basis atoms. And this formula here exactly replicates this expression right here. So

h equal to the first vector times N1 which is basically an integer plus the basis, B2 times the

second integer plus the basis b3 times the third integer plus the basis and the x coordinate will

nothing but the h1, y coordinate is h2 and z coordinate will be h3, and there is a increment for

the atom number.



(Refer Slide Time 42:20)



So once you run this code, you will actually be generating a, so I just ran that code right here.

This is basically FCC structure. For example, if it is hard for you to notice, but look at this.

And there is one atom right here. So one of the issues that we have here is that you find it

hard to visualize one unit cell. So we will later on teach you how you can actually visualize

just one unit cell using a MATLAB script. But otherwise, you know, it should be obvious to

you that if you do not print certain atoms with certain coordinates which is greater than the

lattice constant, then you will be able to visualize one unit cell of the FCC structure.

(Refer Slide Time 43:16)

It is basically exactly the same code that I showed you in the PowerPoint slides, so you have

the four basis atoms. nb  basically consists of the total number of basis atoms and you have in

addition to the previous loop n1, n2, n3 which we used for your primitive lattices, you have

one more loop which goes over the total number of basis atoms. So are there any questions on

this? Yes?

Student: Sir, can we change one lattice, FCC lattice assuming that non-primitive vectors ?

Professor: You can. You can print the FCC lattice using non-primitive vectors but I will

demonstrate it probably later so that we can go ahead with this and we can do that little later.

But it is possible.

All you have to do is if you want to generate with non-primitive lattice, what do you think

you should do? That is a good question. The question is, how do we can we modify this code

to generate our FCC structure with the primitive lattice? So what would you do? What were

the lattice vectors for the primitive? A naught by 2 i plus j, So what I would do is, I would



change this to 0.5 0.5. Then I would change this to 0.5 0.5. And then the other combination

0.5 0.5. 
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Now there is no basis, there is only one basis, which is my zero comma zero comma zero.

But it will never look like your FCC lattices because these are the lattice vectors, This one is

lying in the middle of the face of one cell, this one is lying in the middle of the face of the left

hand side cell so it is going to be generating the lattice along those non orthogonal lattice

vectors. So it will not look like FCC, but it has the symmetry of the cubic structure and it is in

fact FCC

This is the way you modify your MATLAB codes to generate these non with the primitive or

with the non-primitive. Generally we use non-primitive for FCC so that we want to retain the

symmetry of the cubic structure.
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So you first asked the question how many lattice points are that per unit cell. So for FCC it is

4. So let us go back to this this diagram here. So this is one of the basis, zero comma zero

comma zero will be one of the basis atoms. This will be the other basis, this will be the other

basis and this will be other basis. If you choose this and this, they are equivalent, so these are

the  four  basis  atoms  that  you  would  choose  for  constructing  your  FCC structure  using

primitive lattice vectors.

But if you want sorry if you want using primitive lattice vectors, sorry non-primitive lattice

vectors. For constructing non-primitive lattice vectors only you need 4 basis. For constructing

primitive, if you want to use primitive lattice vectors then there is only one basis which is

zero comma zero comma zero because it just contains one atom in the unit cell. Is this aspect

clear? Do you have any questions on this? Primitive versus non-primitive becomes important

Whenever you see p, in this course whenever when we are talking symmetry you should

understand that the lattice vectors that is associated with constructing this crystal structure is

going to be primitive. When you see f, that means, the face entering lattice vectors has been

used, which is basically it is no longer primitive, Similarly, for C and I.

(Refer Slide Time 47:39)

So you can in principle choose i. i will also have, so what would you do if you wanted to

construct a body centered… suppose you wanted to modify this code to construct a body

centered lattice how would you do it?

Student: two basis. 



Professor: Hmm?

Student: (0,0.5,0) 

Professor: Zero? No. The first one will be 000, the second one will be 0.5, 0.5, 0.5 and you

can use a0i, a0j, a0k as your lattice vectors. It is also possible for you to choose primitive

lattice vectors, but it is very hard to visualize that, but it is possible, I think that is one of the

assignments that I have given you.
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So one of the things that we discussed you know, previously, I just thought I will give you as

an assignment, you can take a look at this hexagonal net. So this is just like how somebody

mentioned  the  same  environment  is  not  seen  by  this  lattice  point  and  this  latest  point.

Consequently an hexagonal net is not a Bravais lattice. You all have heard of trigonal lattice,

R lattices, what is that?

Student: It is the rhombohedral one.

Professor: It is, what is that?

Student: All the lengths are different.

Professor: Two length will be same. So trigonal R has the same unit cell as the hexagonal So

a, b, c and this included angle will be 120 degrees, and this and this is going to be 90 degrees

It will look just like the hexagonal lattice, but there is something else that is going to be

different about the tribunal which we will see when we study symmetry, The triagonal R,



rhombohedral and the triagonal R are basically the same crystal structures, They generate

exactly the same lattice.
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While trigonal R is non-primitive, the one that we saw here the rhombohedral is a equal to b

equal to c, alpha equal to beta equal to gamma, but they are not 90 degrees is primitive,
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So off and on whenever we talk about rhombohedral and trigonal we generally use we can

use the hexagonal unit cell in order to generate that lattice and inside that you can show that

there is actually going to be this, the structure oh sorry, not this one, this one, this one, we can

show that we will do that when we do symmetry in crystals.
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The next assignment that I want you to take a look at is what are the non-primitive lattice

vectors to construct a BCC lattice. We just did that very quickly here. And I think I will share

the codes with you and you should be able to modify this to generate these lattice structures

and convince yourself that what you are getting is indeed a BCC. How many basis point, all

that, this is the first assignment.



The second assignment is what is the crystal structure of silicon at room temperature and

pressure, what is it?

Student: Diamond.

Professor: Diamond. So the question is how many basis atoms does it have and how will you

modify this MATLAB code to actually construct your diamond structure? With regards to

this  Bravais lattices which is I know many of you might have already seen this in some

format,  do you have any other  things or shall  we just  proceed with the next  part  of the

lecture? We can proceed.

Student: Yes.

Professor: Okay.


