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So  we look  at  an  analytical  method  for  synthesis  of  a  function  generator.  So,  typically,
something like this. So you want to generate a 4-bar with a uniform X scale and a Y scale,
and you take  the  input  angles  to  be  proportional  to  those.  So say  this  is  with  the  three
precision points.

So this would, so from the equations for the Chebyshev's spacing, these are the design criteria
you get. Okay. So you get φ2l, what we normally refer to as φ2l, φ3l. This is ψ21, ψ31. Okay. 
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So we want to design a function generator for this. I just wanted to show you, I will have to
figure out how to do MATLAB online here, but so I just ran it offline to show you some
options. 
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So here in the first case, so I have taken φl = 0, ψ1 = 0. Okay. And I end up with the link
lengths like this. So this is R1, R2, R3, R4. You can see they are very disproportionate, 17
times. And you can also see if I do, this is the smallest link s, l, s + l = p + q. So you get the
change point. You get a Grashof neutral linkage because you chose φl = 0, ψ1 = 0, the first
precision point, right? You get a change point there. 
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So this is probably not a desirable solution. So I change my conditions a bit and accordingly
the scale will change. So I would use this equation. So here I keep φ l. I change φl to 45
degrees. I retain ψ1 as 0. Okay. 
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Then I ran my code again. Okay. And I get a much better linkage for it. Okay. So this is my,
this would be the first position A1, B1. You can see this is φl = 45. This is ψ1 = 0. This is OA,
OB. This would be A2, B2, A3, B3. 
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So  this  would  be  the  example  of  using  Freudenstein's  equation  using  a  programming
language like MATLAB to do your synthesis. I could have done this graphically also, but it's
harder to do to cycle through multiple solutions. 

Also in the graphical case if you noticed once we specified one link length, especially for
three position synthesis, I didn't really have control over the initial orientation of the output
link because of the method that  I  used.  It  has more to  do with,  you know, when I  used
inversion,  I  found that  I  couldn't  really  specify. I  had to  find the intersection  of the two
perpendicular bisectors which is a point which is not necessarily on what I want ψ1 to be.
Okay. 

So that's a solution I get, but here I am able to specify. So the geometric methods may have
limitations in terms of because of the parameters I have to specify for the construction. I may
be limited in some way. In this case I am able to specify both the precision points. There in
most cases I only worked with the two displacements, angular displacements and I specified
only one of the angles, initial angles. Okay. So that is something to keep in mind.

So we will now move on to Bloch’s synthesis, which we started yesterday. So I have, you
take a general, so if I take these vectors say R1, R2, R3 And R4, okay, and say this is my, R1 is
my fixed link, so the first equation that I had was R1  + R2 + R3 (my loop closure ) + R4 = 0
and I wrote this in complex form to get r1eiθ1 + r2eiθ2 + r3eiθ3 + r4eiθ4 = 0. I differentiated this
with respect to t because now I want to perhaps specify conditions on the derivatives of the
linkage. At a particular position, I wanted to have a certain input and output angular velocity
or a certain input and angular acceleration. 
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So I get differentiating. So we saw that I will get iω1, obviously, the first term will be 0. r1
does not change, so I get iω2r2eiθ2 + iω3r3eiθ3 + iω4r4eiθ4 = 0. Okay. i, of course, goes away, so I
can write this as ω2r2 + ω3r3 + ω4r4 = 0, right, in vector form. 



So this is one equation. This is the other equation, and then I differentiating, I differentiate it
again with respect to time. I get i(α2+iω2

2)R2 + i(α3+iω3
2)R3 + i(α4+iω4

2)R4 = 0. Again, I can
knock of the i’s. 
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Okay. So now I have a set of three equations like this. I have R2 in these three unknowns. I
want to synthesize the linkage. So R2, R3, the links are my unknowns. This is equal to 0. ω2R2

+ ω3R3 + ω4R4 = 0 and then (α2+iω2
2)R2, sorry, this is not equal to 0; this is -R1; iω3

2)R3  +
(α4+iω4

2
)R4 = 0.
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So if I specify, if I choose R1, okay, I get a set of linear equations in R2, R3 and R4. Okay.
They have complex coefficients, but nevertheless it's a set of linear equations in R2, R3 and
R4. So I can choose some R1 again and in case of angular quantities, I can scale, shouldn't be
a problem. I should be able to get a linkage to satisfy my design conditions. Okay. 

So now if I, I can write this, you know, if I write the solution in determinant form, R2 will be
equal  to  -R1 1  1,  0,  0,  1,  ω3,  α3+iω3

2,  ω4,  α4+iω4
2.  That  will  be  the  numerator  and  the

denominator  will  be  common  for  all  of  them.  It  will  just  be,  so  if  I  take  denominator
determinant D will be the determinant of 1, ω2, α2+iω2

2, 1, ω3, α3+iω3
2, 1, ω4, α4+iω4

2. This
will be my determinant. Okay. This will be D and D is also going to be a complex number
because there are complex coefficients in the determinant. 
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If I expand this, I get -R1(ω3(α4+iω4
2) - ω4(α3+iω3

2))/D. Okay. And similarly, I will get for the
other two, R2.
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Now my R1 is a free choice. So one way I can simplify my calculations is to say that R 1 is
proportional to D. So say I say let R1 = -D. D is a complex number, right? So that way I
eliminate this and I have only this to evaluate, becomes a lot easier to evaluate that. 

Similarly, I'll have for R3 and R4. I'll let you write that out because I'm going to have you do
an assignment on programming this. Okay. And then you can verify with the example that I'll
show you. So if I choose, so then it just becomes a matter of if I want my R1 to be horizontal,
okay, which is what I started off with. I would basically have to rotate it because any complex
number I can write in terms of, so if I have a complex number R, it is some re iθ where θ is the
angle  it  makes  with  the  positive  x-axis,  right?  The  magnitude  and  the  angle  in  polar
coordinates, right? So this would be just r∠θ in polar coordinates.
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I choose some R1 to match, so if I choose it to match the denominator, then my calculations
become simple. So I can find an R2, R3, R4 in this manner and then, of course, once I find the
linkage, we will do the example, which will show you what it looks like what you'll get when
you solve it this way, and then how you would get your the configuration that you desire. 
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So this is a problem. You design a 4-bar linkage. In one of its positions, you want it to satisfy
the following specifications for ω1, ω2, ω3, α1, α2, α3. Okay. So I would program. If I use
Bloch’s method, then these are my initial conditions and I end up with a linkage. This is my
solution from MATLAB and I get these vectors. So this is R1, R2, R3, R4. These are my link
lengths, which are basically the modulus of that,  those vectors. Okay. So I get these link
lengths. 
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Now let me see what my linkage looks like. So if this is my complex plane R1 is -2 point, let's
say I take the scale to be 1 equals 100 here because it's that times. So I have -2.2 + 3.08.
That's the largest link. So it would be somewhere here. That would be my R1. R2, 0.6 + 0.12,
so I have it will be in the first quadrant, much smaller. So let's say this is R2. R3 is along the
negative Y-axis and my R4  is in the third quadrant again. So let's say this is R4. R4  is smaller
than R3. 
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So now I have to form the loop with this. Okay. So this is my R1, which is the fixed link.
Okay. So my loop becomes this is R2. So I move it. That would be my R2. My R3 comes



straight down. Okay. So this is my R3 because I have to satisfy my loop closure equation.
R1+R2+R3, then, okay, this should be R4. This should be parallel to this, but yeah, so this is R4. 
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So this is my linkage. The book uses a different notation. Sorry. α2, α3, α4. The book uses 1 for
the input link and uses 4 for the fixed link. So this becomes your linkage. 
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Now if I want to have this with R1 along the real axis, then, essentially, I have to rotate this
whole linkage by clockwise by this angle. All the vectors have to be rotated by the same
angle. Otherwise, you can pretty much use it in any orientation in the plane and it will still
have the same behaviour. Okay. 
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So this is Bloch’s method of synthesis. So both Freudenstein's equation and Bloch’s method I
will  have  you code in  MATLAB so  that  given  a  set  of  conditions,  you will  be  able  to
synthesize a linkage for that. Otherwise, we will move on to the analytical synthesis of a
driver dyad.

I will do the synthesis of a non-quick return meaning time ratio equal to 1, Grashof 4-bar to
drive  a  rocker  through a  specified  angle.  So,  practically, usually, your  rocker  movement
should not exceed about 120 degrees. Okay. If you want more than that, you typically go to
like a 6-bar. It's difficult to because your transmission angles become very low. So your force
transmission is poor. So, practically, you want to keep the rocker excursion, the rocker range
to be less than 120 degrees or so. Okay. 
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So let's start off with what we are given. I have (inaudible) B2 and say I have some initial
angle not, although it looks 90, I don't want it to look 90. So let's make this B1. This is some
initial angle θ4. Okay. So I'm given R4. So I know B1 and B2. This B1, this link may actually
be the input to another 4-bar like the double-rocker that you did for the function generation in
the last example. 
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Okay. The one with the Freudenstein example, this one this is a double-rocker.
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It's a Grashof double-rocker, but it's not a crank-rocker. So you may want to attach a driver
dyad to it in which case the output of this driver dyad is basically the input to that 4-bar as
we've seen several examples before and say this angle is β. Okay. 
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So now my task is to find the other three links R1, R2 and R3 such that this linkage gives a
time ratio of 1 and I want to synthesize it analytically. Geometrically, we know, and we'll
kind  of  use  that  in  the  synthesis  in  developing the  equations,  but  if  you had to  do  this
geometrically, you would join B1, B2, extend it, pick some point on that line, then take half of
B1, B2 to be your crank, and then you have your synthesis done and then you just check for
Grashof. Okay. 



So here now we will do. So here this is the vector ROB. So I can find, this is given. I know the
location of OB in the plane. So I can find RB1 is ROB + r4eiθ4. RB2 = ROB + r4ei(θ4+β). Okay. So I
can find the location of B1. I find the location of B2.
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I need to locate my, for a non-quick return linkage, I need to locate my O2 somewhere, sorry,
OA somewhere on that line. So if I designate this vector, see I know B2; I know B1. RB2, RB1.
So I know this vector. Let me call it M. Okay. M is nothing but this is RB2. This is RB1. So RB1

+ M is RB2. So RB2 - RB1 is M. Okay. So M is RB2 - RB1. Just vector addition, right? 

So now I can say my ROA, OA will be located somewhere here on this line, which would be at
a location which is, so I can write this as ROA will be equal to RB1 or RB2 plus some constant
times M somewhere along that line and I can choose that constant typically around 2 to 3
times. Okay. 
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So K, typical values of K if you want to get a crank-rocker somewhere between 2 and 3 is a
reasonable choice. Again, it will depend on the problem, but this is just a guideline. It could
also be on the other side. So it could be plus or minus K. Okay. Good. I could very well
locate. 

Now I know that R2, what would be the magnitude of that? It would be half the magnitude of
same thing, same, you know, it's exactly as we did the geometrical synthesis. So R2 is half of
this thing. So this is half of in terms of β, I can write it as (½)r4 sin β/2. Perpendicular bisector
if I draw β/2, so this is r4. No, wait. Yeah. Is it just r4 sin β/2? This is β/2. Yeah. It's just r4 sin
β/2. Not half of that. Half of this whole thing, r4 sin β/2. 

(Refer Slide Time 27:51)



So now do I have everything I need? I found OA. Okay. I know my crank length. The only
thing left is RA. Okay. So if my OA is somewhere here, this is r2, okay, and that would be A1.
So RA1 will be, again, if I find the unit vector along that line, it will just be, yeah, R of this
minus half along that line, minus r2 along, so if I have M/|M|. That would be the unit vector
along. 
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So now I have all the parameters I need for the design. Again, you would program this and
you are also going to develop the equations for time ratio not equal to 1 following a similar
procedure because you already know how to do it graphically. It's a matter of translating that
into equations for doing this. Okay. 

So this is the analytical synthesis for a driver dyad. So it could be for a crank-rocker, stand-
alone crank-rocker or for a driver dyad for another 4-bar. So output of this becomes the input
for the other 4-bar for continuous input and your r1 will essentially be |ROB-ROA| and r3 will be
|RB1-RA1|.
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Then you check for, check Grashof. Very important. If you are designing a crank-rocker and
you  don't  check  for  Grashof,  so  this  method  is  given  in  Norton’s  book,  this  analytical
synthesis for the driver dyad. Okay.

Most of the other material I have been taking from the Denavit and Hartenberg Hartenberg
Denavit book, and most of the figures are also that I start putting in every slide because it is
freely available and that's, that’s sort of like the textbook that I'm following for this course.
For most of this course, we will be using that book. Okay. All right. 

So, again, with these methods that we've seen so far, we are only looking at it being at certain
positions; assembling the linkage at certain positions. Okay. So it is quite important that you
are able to simulate the linkage, okay, over its entire range in order to be able to determine
whether  it  is  reaching  those  positions  without  encountering  a  branch  change  or  toggle
positions. Okay. 

So because of that, let me just do the position analysis. For those of you who have not done
the position analysis using the complex number techniques since I have some time today, I'm
just going to do that very quickly. It's similar to what we did with Freudenstein's equation, but
let me just go through it so that you can program that as well. When you do the design, you
do the  analysis  of  the,  you do the  position  analysis  as  well.  Okay. Just  for  the  sake  of
completeness, I will cover that. 

Okay. So we measure the angles with respect to the x-axis. So I have this would be θ1. You
would measure it at the root of the vector θ4, θ3 and θ2. So my loop closure equation for the
way I have taken these is R2+R3 = R1+R4. In complex form, r1eiθ1 + r4eiθ4. 
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For the sake of simplicity, I can always choose my X, Y in a certain way. So let me choose it
such that θ1 = 0. Okay. 

Now the 4-bar linkage, what I am trying to do here is position analysis. What does that mean?
I want to determine for a given input, how many inputs do I need to give a 4-bar in order to
get  a  predetermined  output?  So,  okay,  when  you  are  doing  analysis,  okay,  this  is  the
difference between what we have done a lot of is synthesis. Synthesis is when you try to
determine the link lengths. 

Now what you are doing is you know the link lengths. You are given the linkage. You want to
see whether it behaves the way you want it to behave. That is analysis. So, yes, in the case of
analysis, link lengths are known. 
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What else would you know if you want to? So the 4-bar linkage has mobility equal to 1,
which means if I give it one input, then everything else becomes determined. Okay. Typically,
θ2 will be my input. 

So what I have to now find is for every θ2, I want to find out what are θ3 and θ4 because if I
know that, the link lengths are all constant; they don't change for the 4-bar, so I can basically
construct the 4-bar in every position. 

Now it's very easy to do this graphically. You can construct the 4-bar very easily when you do
it graphically because you just need the link lengths. Then from this point, you set it at this
angle θ2 an arc with length R3, another arc with length R4 and you are done if you know the
configuration  and in  fact  in  MATLAB, you can construct  it  that  way. You don't  have to
actually go through all this. You don't have to program these equations. MATLAB I think has
this circ circ command. Anybody aware of MATLAB has this circ circ command I think?
Intersection of two circles. So you can use that intersection of two arcs to actually find that
easily. So you can construct it in MATLAB by doing that as well. Okay. But here we will just
go through the analytical set of equations. 
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So we want to find θ3 and θ4 if θ2 is the input given. This, these are, this is a vector equation.
So I can only solve for two unknowns, which will be θ3 and θ4. But again, θ3 and θ4 are in
transcendental form in this equation. So it's a little bit more tedious to solve it. 

So the first thing I'll try to do is to eliminate. So I write this into real and imaginary parts and
say I want to eliminate θ3, like we did when we derived it for Freudenstein's equation. There
our purpose was different. We knew the θ2, θ4 combinations for which we were finding the
link lengths. Now we know the link lengths. We want to find if it behaves the way we want it
to. 

So I'll just take r3 cos θ3 separating into real and imaginary parts. I have taken θ1 as 0. So I
have r1 + r4 cos θ4 - r2 cos θ2. Then I have r3 sin θ3 = r4 sin θ4 - r2 sin θ2. Okay. Now if I square
and add, my only unknown will be θ4  in these two equations, right? I square and add these
equations and I get r3

2 = r1
2 + (r4 cos θ4 - r2 cos θ2)2

 + 2 r1 (r4 cos θ4 - r2 cos θ2) + r4
2 sin2 θ4 + r2

sin2 θ2 - 2 r2r4 sin θ4 sin θ2. Okay. 
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So I get r1
2, r4

2 cos2 I will get +sin2, so r4
2. Similarly, r2

2 cos2
 + r2

2
 - 2 r4 r2 cos θ4 cos θ2, cos θ2.

These two are gone. -2r2r4 sin θ4 sin θ2. Here I won't try to simplify this because θ2 is known.
Okay. So I want everything in terms of θ4. So I'll group them as r1

2+r4
2+r2

2, okay, plus some
K1, A1 cos θ4 + B1 sin θ4. This would also go with this one, -2 r1+r2 cos θ2. 

This would be, so this is a constant. So this, so I can say this is equal to A1 cos θ4 + B1 sin θ4 +
C. I don't even have to call it, A cos θ4 + B sin θ4 plus I should take this also to the other side.
Okay. Let me just put this as equal to 0 where my C would be r1

2+r2
2+r4

2-r3
2-2r1r2 cos θ2. All

this is known. θ2 is my input. All the other angles. Sorry, I’m late. 
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I want you to, what's the, when you want to solve an equation like this, what's the most
common substitution you do? Yeah. Use the tan θ/2 formula. Express both cos θ and sin θ in
terms of tan θ/2 and solve. You will get a quadratic equation. Okay. 

[Music]
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