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So, in this what I suggest is, I am going to show you a paper that I recommend that you

read especially, if you are interested in researching this area.
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Abstract The custom in surrogate-based modeling of com-
plex engineering problems is to fit one or more surrogate
models and select the one surrogate model that performs best.
In this paper, we extend the utility of an ensemble of surro-
gates to (1) identify regions of possible high errors at loca-
tions where predictions of surrogates widely differ, and (2)
provide a more robust approximation approach. We explore
the possibility of using the best surrogate or a weighted aver-

Kriging on analytical example problems of varying di
sions. Simpson et al. (2001) reviewed different surry
and gave recommendations on the usage of different
gates fordifferent problems. Jinetal. (2001) compare”
ent surrogate models based on multiple perforr

such as accuracy, robustness, efficiency, trar
conceptual simplicity. They recommended us |
sis function for high-order nonlinear problel

So, this was published in 2007 in the journal of structural multidisciplinary optimization.

It was published by Tushar Goel, Raphael Haftka and a couple of other people. Haftka is

kind of a guru of surrogates ok.
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Abstract The custom in surrogate-based modeling of com-
plex engineering problems is to fit one or more surrogate
models and select the one surrogate model that performs best.
In this paper, we extend the utility of an ensemble of surro-
gates 1o (1) identify regions of possible high errors at loca-
tions where predictions of surrogates widely differ. and (2)
provide a more robust approximation approach. We explore
the possibility of using the best surrogate or a weighted aver-
age surrogate model instead of individual surrogate models.
The weights associated with each surrogate model are de-
termined based on the errors in surrogates. We demonstrate
the advantages of an ensemble of surrogates using analytical
problems and one engineering problem. We show that for a
single problem the choice of test surrogate can depend on the
design of experiments.

Keywords Multiple surrogate models - Polynomial
response surfaces - Kriging - Radial basis neural networks

Kriging on analytical example problems of varying dimen-
sions. Simpson et al. (2001) reviewed different surrogates
and gave recommendations on the usage of different surro-
gates fordifferent problems. Jinetal. (2001) compared differ-
ent surrogate models based on multiple performance criteria
cy. robustness, efficiency. transparency, and
conceptual simplicity. They recommended using radial ba-
sis function for high-order nonlinear problems, Kriging for
low-order nonlinear problems in high dimension spaces, and
polynomial response surfaces for low-order nonlinear prob-
lems. They also noted difficulties in constructing different
surrogate models. Li and Padula (2005) and Queipo et al.
(2005) recently reviewed different surrogate models used in
the aerospace industry.

There are also a number of studies comparing different
surrogates for specific applications. Papila etal. (2001), Shyy
etal. (2001), Vaidyanathan et al. (2004), Mack et al. (2005b)
presented studies comparing radial basis neural networks and

response surfaces while designing the liquid rocket injector,

supersonic turbines, shape of bluff body. For

1 Introduction

Surrogate models have been extensively used in the de-
sign and optimization of computationally expensive pr
lems. Different surrogate models have been shown to perform
well in different conditions. Barthelemy and Haftka (1993)
reviewed the application of meta-modeling techniques in
structural optimization. Sobieszezanski-Sobieski and Haftka

997) reviewed diff odeline apo)

ptimization, Stander et al. (2004) compared polynoj
sponse surface approximation, Kriging. and neural n
while Fang et al. (2005) compared polynomial
surface approximation and radial basis functions.
searchers observed that no single surrogate model »
to be the most effective for all problems.
While most researchers have primarily
with the choice among different surrogates
relatively very litle work about the use of
o o) -

T
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And 1 guess Abdul Samad also has worked with Haftka. And so you can just take very

simple ensemble of surrogates. You can see it has received lot of citations also from

some 1000 citations it has received. So, what they are talking about is they will build a



weighted average surrogate ok. This w 1 is a weight for the surrogate that you are talking

about. This is again a linear sum if you look at it ok, too many linear sums.
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ably low when Ngy is large. On the positive side. the
weights selected this way protect against errors induced
by the surrogate models. which perform extremely well
at the sampled data points but give poor predictions at
unsampled locations.

WTA2/Best PRESS (BP):

The traditional method of using an ensemble of surro-
gales is o select the best model among all considered
surrogate models. However, once the choice is made, it
is usually kept even as the design of experiment is re-
fined. If the choice is revisited for each new design of
experiment, we consider it as a weighting scheme where
the model with least (global data-based) error is assigned
a weight of one and all other models are assigned zero
weight. In this'study paper, we call this strategy the best

As discussed above {wo issues associated with
the selection of weights: (1) weights should reflect our
confidence in the surrogate model and (2) weights should
filter out adverse effects of the model, which represents
the data well. but performs poorly in unexplored regions.
Astrategy to select weights, which addresses both issues,
may be formulated as follows:

w! = (Ei+aEqy), wi=

B | @ B BSBSE|® @@ el H 2.2, & 8 Tools
large. For example, the best surrogate has a weight equal
10 or less than I/i»\‘w — 1- which becomes unreason-  fis aug. = WprsFprs + WirgTirg + Wrbnndrinn ©)

where weights are selected according to the scheme WTA3
(4). The rationale behind selecting these surrogate models
to demonstrate the proposed approach was (1) these surro-
gate models are commonly used by practitioners and (2) they
represent different parametric and nonparametric approaches
(Queipo et al. 2005).

The cost of constructing surrogate models is usually low
compared to that of ana f this cost is not small (for
example, when using a Kr model and GMSE for large

data sets), the user may want (o explore surrogate models
that provide a compromise solution between accuracy and
construction cost. In general, the choice of surrogate mod-
cls, which are most amenable (o averaging and uncertainty
identification, remains a question of future research.

Since global measures of error depend on the data and de-

sign of experiments, weights implicitly depend on the choice
of the design of experiments. This dependence
from Fig. | where we
1,000 instances of Latin hyperc
of experiments (DOEs)
next section). The center line of each boxplot o
percentile (median) value and the box encompa
and 75th percentile of the data. The leader "
lines) are plotted at a distance of 1.5 tir

range in each direction or the limit of t}

the data falls within 1.5 times the inter

data points outside the horizontal lines & i
8 P .

K

And there are different schemes that they talk about in terms of the weights. They just

generally say E and then at a later point is error they say it is better that you use a presser

ok, but you can use any error that is what; that is why they generalized this as E j, but

later in the paper they recommend using the presser for doing that. And then they say that

you use the best PRESS that is one model and the other one is the weighted average.
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This weighting scheme requires the user to specify two
parameters a and 3, which control the importance of av-
eraging and importance of individual surrogate, respec-
tively. Small values of o and large negative values of 3
impart high weights to the best surrogate model. Large
a values and small negative /3 values represent high con-
fidence in the averaging scheme, In this study, we have
used a=0.05 and f=—1. The sensitivity to these para-
meters is studied in a section on parameter sensitivity.

The above-mentioned formulation of weighting schemes
is used with generalized mean square cross-validation er-
ror (GMSE; leave-one-out cross-validation or PRESS in
polynomial response surface approximation terminology),
defined in the Appendix, as global data-based error measure,
by replacing Ej by \/GMSE; (PRESS based weighting,
PBW). We have used three surrogate models, polynomial
response surface approximation (PRS), Kriging (KRG), and
radial basis neural networks (RBNN) (Orr 1996), to construct
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Fig. 1 Boxplots of weights for 1,000 DOE instances ( inc-
tion). W-PRS, W-KRG. and W-RBNN are weights assf ply
nomial response surface approximation, Kriging. ural

network models, respectively




The WTAS3 is the weighted average that they say use it this way E i plus alpha E average
times beta. The idea is you need to tune your alpha and beta accordingly which was done

in a subsequent paper by another author called head Marg Azad.

But here they are taking some beta to be less than 0 and alpha is less than 1. They are
taking some specific values of alpha and beta to study. Just to give you an idea; for
instance, what they did is they took some function called the camelback function, not the
camelback the Branin hoo function. And what they are doing is; they are running this
polynomial response Kriging radial basis 1000 times and they checked which model
work the best. This is the error I mean this is our weight metric. So, the weights will be

given by one of these schemes.

And what they figured out is there was no metamodel that was a runaway winner, you

understand what [ am saying?
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We can see that the weights for different surrogates vary 3. Goldstein-Price function

x,ye[-22]

ge surrogate model. In lI\is‘cxnmpIL fen= [1 +@+y+ 1
polynomial response surfuce approximation had the highest .
weight most of the time (880 times), but notall the times (39 x (19-4x+3x" - 14 2 | '

There is some numbers I have captured, PRS had the highest weight most of the time 880
times out of 1000, who knows the one sample that you took could have been that 880
fifth or where PRS was not the best fit.

This is why that random simulations are important, because it is based on DOEs which is
again random. So, out of the 1000 DOE:s is they did the 880 times PRS was better and
then Kriging came only 61 time sorry 59 time well RBRB of took 61 times. This is for a



known function, you cannot generate a meaning like now today I do I might get 80, and |
might get only 5 times RBF game and then see the remaining times Kriging was better.
Because the 1000 DOE is that they created and I created could be different, and this was
in Latin hypercube.

Let us say that you do hammers 3 sequence, you might entirely get a different stuff even
these numbers will not be. So, this is a simple x 1, x 2, 2 dimensional problem that we
are talking about. So, this is the whole idea is they say that you know no single
metamodel is going on; unless let us say that I know this function and I build these
approximation over the years, which is what you have what they call subject matter
experts. In companies when you go automobile companies aerospace company they have
subject matter expert they have very good understanding. In those cases, you know what

is a function to be fitted and you can use it, but that is not the case here.
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times Kriging had the highest weight and 61 times RBNN

10+ (2 — v\
had the highest weight). % 30+ (2x = 3y)
x (18- 32x + 1207 4 48y - 36xy +27%)]

(8)

The graphical representation of these two-variable test
problems is given in Fig. 2. which illustrates zones of
high gradients

Hartman functions

3 Test problems

To test the predictive capabilities of the proposed approach
of using an ensemble of surrogates, we employ two types
of problems: (1) analytical (Dixon and Szegd 1978), which n [ n ’

=

are often used to test the global optimization methods, and fx)= -Z(,c,\p -ZUU(\‘/ = /n_,)2
(2) industrial, a radial turbine design problem (Mack et al i=l j=l

2005a), which w coneept design. The details of each
test problem are given as follows:

wherex = (x1,x2,..., %) X €[0,1] )

Two instances of this problem are considered based on
the number of design variables. For the chosen examples,
m=4.

a. Hartman3: This
choice of parameter
1978).

1. Branin-Hoo function

Ye[=5,10, ye[0,15]
flx,y)= (\ —5‘1\:/“:-#5"/'., —b)-

+10(1 =gz ) costa) £ 10 ©

les and the parameters used in *
ed in Table 2 (Dixon and Sz¢

Table 1 Parameters used in Hartman fur ‘

So, then they also give some 6 different test problems of Branin hoo, camelback,

2. Camelback function

Hartman functions.
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= turbine used to drive pumps that deliver liquid hydrogen ]
and liquid oxygen to the combustion chamber of a space- ~ For all analytical problems, LHS was used to pick design
craft. The objective of the design is to increase the work  points such that the minimum distance between the design
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Fig. 3 Boxplots of function values of different analytical functions
\ \ 1
i = -

And then it is interestingly what they do is they also show you the variation of the

functions themselves. They evaluate the function at these 1000 DOEs for each of them.

And then they show you how the Branin hoo function varies it can vary anywhere the

value can vary anywhere between 0 to 300 ok.
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& ot Sy
File_Edit_View Wi
2B 88| ®3we @ HE e 2| B Tools _Fll&igh!
204 T. Goel etal
Table 3 Mea ficient
Vit (GO, il daa Branin-Hoo _ Camelback___ Goldstein-Price __ Hartmandy___ Hartmanty
of different analytical functions Mean 495 19.1 49,179 08 ~0.06
OV 10 18 39 -12 -5
Medin 367 118 8,114 -05 -004

points is maximized. We used MATLAB® (2002) routine
Ihsdesign with maximin criterion (maximize the minimum
distance between points) and a maximum of 20 iterations to
obtain optimal configuration of points. For the radial turbine
design problem, Mack et al. (2005a) sampled 323 designs
in the six-dimensional region of interest, using LHS and a
five-level factorial design on the three most important design
variables (identified by global sensitivity analysis). Out of
these 323 designs, 13 designs were found infeasible. The re-
maining 310 design points were used to construct and test
the surrogate model. For this study, we randomly select 56
points to construct the surrogate model and use the remaining
254 points to test the surrogate model. To reduce the effect
of random sampling for both analytical and radial turbine de-
sign problems, we present results based on 1.000 instances of

The correlation coefficient was numerically evaluated
from the data for test points by implementing quadrature!
for integration (Ueberhuber 1997) as given in (11).

where ¥ is the mean of actual respon )
predicted response, Nies is the numbei

i

So, and then they just show further different functions ok, without any normalization
they are trying to run this stuff. And then they are discussing about the prediction matrix,

as I pointed out they will use correlation coefficient between the input and the output



sorry between the actual and the predicted. They do an RMS error, RMSE we discuss
that and the maximum error, you can interesting where are they using the PRESS is
discussed this is only for the matrix that they are used. So, this would have been good if

it is colour, but it 1s ok.

(Refer Slide Time: 05:45)
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where we k\pull:u’\:L uncertainties in pmluuuurnhu than  tion of responses. The results are presented in Table 8. W1 lnla
g ani the maximum standard deviation of responses was the
We also estimated the maximum (over the entire design  order of magnitude as the maximum actual error for a
space) errors due to each surrogate model for different test ~ gate models, it underestimated the maximum error by a factor
problems and compared with the maximum standard devia- of 2.5-4.0. When the number of data points to construct the
500
¢
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Fig. § Maximun/minimum standard dev actual erorsin the prediction of different surrogates a corres| ions
(boxplots of 1000 DOEs using Brani deviation of responses; e ¢-KRG, c KRG.
and RBNN. a Maximum standard deviation and corresponding actual errors. b Minimum standard deviation and correspondir

’H
XX EREY =

So, what they are doing is; the way they are plotting this one is they are taking a is
maximum, they are looking for maximum errors, standard deviation of errors in the

prediction.

So, they start with about 12 samples I guess, 20 samples 21 by 21 grid is what they are
testamentary is they use about 12 samples for fitting, with the 12 samples for fitting they
do 1000 times they repeat this procedure. And then they say that; this is the standard

deviation of the responses with respect to the actual errors ok.

If you look at it the maximum standard deviation and then you can see that; you know
Kriging performed slightly better than the other 2 guys in terms of the errors, but then

you see there are a lot of outliers in Kriging compared to PRS and radial basis.

Similarly, whereas, in this guide where whichever regions the error was minimal you can
see that each of them all of them performed very, very similar. There is no variation that

is what is captured there is no variation between these performance that is why this; error



is the least. Whereas, in this there was error maximum deviation in the function

evaluations and then each one predicted something else ok.

So, this is what I meant;

whenever there is maximum variation in the predictions it

means that there is uncertainty in the design space itself. So, you need more samples to

understand what happens
understand that this being
good, you might totally be

(Refer Slide Time: 07:40)

there. Whereas, in this case it so happened ok, but please
more or less the same does not mean that your prediction is

off also ok, but this is guaranteed.
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Table 6 Median, first, and third quartile of the maximum standard deviation and actual errors in predictions of different surrogates at the location

corresponding to maximum standard deviation over 1,000 DOEs for different test problems

Branin-Hoo  Camelback  Goldstein-Price  Hartman3  Hartman6  Radial trbine
Median (max SD of response) 105 53 27e5 25 22 0,020
Medi: error in PRS) 114 61 29¢5 39 39 0.0016
Median (actual error in KRG) {2 111 3.6e5 07 02 0.004
ctual error in RBNN) 110 95 2.5¢5 06 0.1 0033

1st/3rd Quartile (max SD of response) T34 38/85 1.0e5/4.2¢5 2032 1927 0.017/0.022
Ist/3rd Quartile (actual error in PRS). 781158 3292 1.0¢5/4.7e3 28052 3349 0.0008/0.0027
Ist/3rd Quartile (actual error inKRG) 21771 66/131 1.4¢506.5¢5 0314 0.104 0.002/0.006
Ist/3rd Quartile (actual error in RBNN)  76/132 42161 1.9¢5/5.7e5 0.3/1.1 0.103 0.0280.038

Table 7 Median, first,and third quartile of the minimum SD and actual errors i the predictions of different surrogates at the location corresponding
to the minimum SD over 1,000 DOEs for different test problems

Branin-Hoo  Camelback _ Goldstein-Price  Hartman3 Hartman6 Radial turbine
Median (min SD of response) 041 0.26 492 0.0019 0.0011 2le-4
Median (actual error in PRS) 47 17 1.630 0.063 0.06 1.0e-3
Median (actual error in KRG) 46 17 0.062 007
Median (actual error in RBNN) 47 17 0.064 0.07

0.0012/0.0029  0.00070.0017  1.5e—
00250143 0.03/0.11
0.025/0.143  0.03/0.11
0.024/0.142  0.03/0.11

Ist/3rd Quartile (min SD of response)  0.25/0.67 0.15/0.40
Ist/3rd Quantile (actual error in PRS) 1798 0.7/44
Ist/3rd Quartile (actual error in KRG) ~ 1.89.9 0.6/4.2
1st3rd Quartile (actual error in RBNN) 1.8/9.7 06/4.2

surrogate model was increased (Branin-Hoo function was The main conclusions of the results prest

odeled with 31 points and Camelback function was mod- dissimilar predictiops of surro ‘

So, they test all these things they give you the median plots and all that and they also

give you the actual plots here ok.

(Refer Slide Time: 07:43)
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Table 8 Median, first, and third quartile of the maximum standard deviation and maximum actual errors in the predictions of different surrogates’
over 1,000 DOE:s for different test problems (numbers after Branin-Hoo and Camelback functions indicate the number of data points used to

‘model the function)

Branin-Hoc!2 Branin-Hoo31 Camelback-20 Camelback-40 Goldstein-Price Hartman3 Hartman6 Radial wrbine

Median (max 105
SD of response)

Median (max 175
actual error in
PRS)

Median (max
actual error in
KRG)

Median (max
actual error in

BNN)
15/3rd Quartile
(max SD of

”

268

T34

response)
15t/3rd Quartile
(max actual

1507209

emrorin PRS)
15t/3rd Quartile
(max actual
ermor in KRG)
Ist/3rd Quartile
(max actual
error in RBNN)

146/298

2141294

88

3

2

173

61/116

239

16/38

119/233

3885

106/127

123/145

1007181

42

31

37

80

3158

3144

26/59

617107

2TE+05 25 22 0.020
4.5E+05 41 40 0.087
5.3E+05 19 19 0.087
39E+05 23 18 0082
1.0¢5/4.2¢5 20832 1927 00170.022
3.7e505.5¢5 3253 3449 00820093
3.905/7.5¢5 1722 1720

27e506.7e5 20126 1.71.9
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So, this is a response correlation that they are plotting, you can see how it is varying for

each one of them see. I hope you understand a box plot; it is thousand repetitions I am

just plotting each one of that the central line is a medial line, this is a 5th percentile, this

is a 95th percentile and these are the outliers. It gives you a distribution also.

So, you can this is the interesting paper if you are looking at ensembles. And they

suggest that you use a weighted average surrogate or you kind of use a weighted

ensemble, unless you have some information on what ensemble to be used in. So, this is

one stuff paper that I recommended to you.
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Case study - Pedicle screw

S.no. Factors Levels
il 2 3 4
1 Density (kg/m?, p 80 160 240 300
2 Insertion depth (¥),] 70 80 0 100
3 Insertion angle (°), 6 0 0 0 0
4 Reinsertion 0 A NN Q

[P
Just discuss a small case study that we did, with that I will wrap it up.

So, we try to apply this idea to a biomedical problem. So, one of the doctors that we
work with in CMC Velu wanted to understand for a specific type of degenerative disease
and this is called the osteoporotic bones ok. When you grow old the dominant in Indian

males there is a condition called osteoporotic bone, which is degenerative.

Generally, your bones are supposed to be generated, but as you grow old they will lose
some density and they will become degenerated. So, then what happens is you have
some issues; your body weight and your bones needs to realign accordingly and all that,

in such cases usually they put some and the bones also become weak so they might

break.

So, under osteoporotic conditions when you do a fusion kind of or a graph you put
something and then you plate it you screw it. It was not clear whether the regular number
of screws that are used on a healthy bone is good enough for an osteoporotic condition
also. So, they wanted to understand what is the pull-out strength ok, will this be good
enough for it to hold it.

And as you see we really need human bones to test this, but it is not task ok. So, then we

can source some caribou bones meaning; bones from the dead body, but that is also a



very difficult right like male, that particular age, osteoporotic condition, people should be

willing to give the bones specifically for the spinal cord.

So, it was very expensiveness in that sense, you will have to wait infinitely no you might
not be able to get. So, you will finally, after 3 years of wait we were able to get 6 caribou
bones to do this study ok, that is all only 6 samples. So, that is the our high fidelity
simulation then we use some low fidelity which is the FDA the Federal Drug Agency

suggests that some kind of a foam which is equivalent ok.

I do not have the foam thing here there is a foam ok, which by changing the porosity in
the foam you can represent the bones. So, they say you can whatever bone related stuff
you can do it and this it is an approved test. So, that is large number of simulations that
we can do. So, what we do is we mix this information and we build a metamodel. We

wanted to give a pull-out strength calculator to be to the doctor.

So, the doctor has some information to begin with which is his input space, density
insertion, depth insertion, angle reinsertion you can see what it means. So, this theta is a
reinsertion sorry, the insertion angle and I is the insertion depth. Density is the bone
density that we are talking about and reinsertion is what happens is they put the screw
and then they understand that it is not go on to hold. So, they remove and then they put

another screw in the same place, which is slightly longer.

But as you know if you have tried nailing something and removing the nail and then put
another nail or a screw in the same spot, it is not going to have the same the hold power.
It is not going to have the first time you put you want to put it the right time. So, this
information if it is reinsertion means there is no reinsertion 0 means, 1 means there was
one reinsertion. So, you can see there are different levels here this they took an

orthogonal array to do this, that is a design of experiment these are the different levels.

(Refer Slide Time: 11:59)
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So, we have done about 32 experiments with the foam are these are the different input
parameters, here is a pull-out strength ok. Interestingly, this is an experiment it is not a
computer experiment. So, for this experimental set up the first one, when I repeated 3

times I get 3 different values, you understand?

So, which also tells us the foam captures the bone nature I take 18 years old male bone
very similar structure, I use another person’s bone it will give me 2 different pull out
strength that is exactly what this is given ok. So, there should be variability, which is
what we have done. And what we did is we use something called an SN ratio Signal to

Noise ratio for identifying.

See if you see I do not know whether you are able to see there is a small dot here. We can
see 236, 634 and 677 are the other ones other to test whereas, this test gave 236 for this

configuration.

So, we know that this guy is an outlier, but then here we can visually do, but when you
are giving it to the doctor to do they cannot go and do all these things. So, what we do is
we create an SN ratio, SN ratio is signal which is the mean of these information divided
by the standard deviation signal to noise. And in this particular case you want the signal

to noise to be meaning, your noise should be less then this over all thing will be.

So, if this noise is more you this ratio will be less. So, wherever you get this value to be
lesser, then they are all issue prone guys you can see that these were all. Wherever there

were less than 10 let us say you put a number on 10 then. So, that is one way of filtering



the data; then what he did is he took all these pull out strengths and fitted a metamodel

this is what he has done.

(Refer Slide Time: 14:11)

Multiple surrogates — weighted average

Surrogate type PRESSpus
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Finally compared it with 6 Cadaver bones predictions so, here is a point PRESS RMS
errors with Kriging trial 1 trial 2 trial 3 so 3 respond surfaces ok. Similarly, polynomial
respond the R B F and weighted average surrogate. So, you can look at the PRESS error,
the weighted average PRESS error was far better than other guys because you want the

minimum error, 0 error means that is the best fit.

So, you can see the weighted average had the least error compared to any individual
surrogate. Weighted averages you weight and take an average or just take this output this
output this output add meaning Kriging PRS RBF and then you average them. What this
plot gives this we plot the variations with the respect to the 6 cadaver bones that we

tested ok.

So, this is for about 6 what we do is we give the inputs and then we ask our pullout
calculator to give out what the pullout strength is. So, was gave a different RBF gave
different, PRL gave different, Kriging gave different. We compared it with the actual
value from that cadaver and then we take a ratio of that. So, if it is one then my

prediction is very close to the actual value.



So, as you can see in this particular stuff Kriging gave a lot of variation. PRS had the
least variation compared to even the weighted average surrogate, but then it was way off
from the ideal line. And this guy was ok, but he does not have a what we call symmetric
distribution this had the median very close to the 1 and then it also had a symmetric

distribution.

So, weighted average surrogate was successfully used in this case to give a pullout
strength calculator. And currently this is in use basically in a qualitative sense the doctor
uses this to understand what is the pull out string and then they make decisions on should
they put 2 screws 3 screws or should they use what should be the depth of insertion,

accordingly they will choose the pedicle screw to do that ok.

Because pedicle screws are like your shoe sizes ok there are different 2 3 sizes are there
they want to design a priori and unless required you do not want to screw further, always
they can do a worst case they can screw you know to the deepest, but you do not want to
do that you do not want to disturb the nature stuff so it ok. So, with that I guess I am
going to wrap this up; unless you have specific questions. If you have specific questions

I will take it now, you have any questions? In general, fine.



