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We have been discussing on transmission  photoelasticity  and I  said  one of  the very  key

equation in transmission photoelasticity is a stress optic law wherein you get sigma 1-sigma 2

as NF sigma/thickness of the model and I said F sigma is a material stress fringe value, which

need to be evaluated with as much accuracy as possible. We have seen how to evaluate this

using a circular disc and a diametral compression.

And I said one of the most crucial data that you need to collect from an experiment is the

fringe order and fringe order needs to be evaluated correctly from the fringe field. You had

seen circular disc, which is a very simple fringe field where you have 0th fringe order on the

outer boundary and you are able to go and increase it towards the load application point.

We also saw another example where ring under diametral compression, which showed almost

all features of a generic fringe field. You had a source, you had a sink, you had a saddle point,

you had singular point, you have isotropic point and that presented a very complex fringe

pattern and when you have a complex fringe pattern if you resort to color code, you get very

good colors.

And based on the color it is possible for you to identify the 0th fringe order and also identify

the gradient  and what is important  here is today we are going to discuss certain aspects,

which use the color code in a different sense. I said color code could be used for finding out

the gradient and you can also find if the changes are very small, the color sequence helps you

to say whether the fringe order is increasing at a point of interest or decreases at a point of

interest.
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So it is better that we go to the color code and recapitulate what we have learnt. You have a

black, which I labeled as 0th fringe order and we have the first transition as tint of passage we

have fringe order 1 and if you look at the color sequence, it goes from black to grey, white,

yellow, orange, dull red and tint of passage.

See in actual model situation if the load changes are small, you know you will not be able to

see appearance of a new fringe order when you use the monochromatic light source. On the

other hand, if you use a white light source, it is possible for you to observe the color change

so your eyes need to be tuned because the changes may be very small and subtle. So the color

change is the only way to identify whether the fringe order has increased or decreased.

So the color sequence is very important and that is what we see here, I have from 0 to 1 you

have a color sequence like this, from 1 to 2 you have a color sequence like this, from 1 to 2

you have blue, blue-green, green yellow, orange and rose red. So if you are focusing on a

particular point of interest and when we do some modification on the optical arrangement, the

color sequence will help you whether the fringe order increases at the point of interest or

decreases at the point of interest.
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And we are going to take up a very important topic which I had said earlier also that when

you are actually finding out the principal stress direction, photoelasticity gives you sigma 1-

sigma 2 as well as the principal stress direction at the point of interest. Many of the failure

theories you know you do not want the orientation whether it corresponds a sigma 1 direction

or sigma 2 direction.

I said even in conventional photoelasticity such a distinction is not generally required, but

when you are having an experimental arrangement it is all the more desirable that you also

find out whether it represents principal stress 1 direction or principal stress 2 direction. I had

mentioned long time back that you need a calibration of the polariscope to do this. Whether

this is the problem only in experimental approach?

No, we have also seen the ambiguity exists even in the theoretical calculation or the principal

stress directions by the famous formula you all know tan 2 theta=2 tau xy/sigma x-sigma y.

When  you  find  out  theta  from  this  because  theta  evaluation  uses  inverse  trigonometric

operations,  the  solution  is  multivalued.  You  do  not  know  whether  it  represents  theta  1

direction or theta 2 direction.

We have already seen principal stresses are arranged algebraically, so you have a maximum

principal stress is given the value of sigma 1 labeling of sigma 1 and algebraically the next

smaller one sigma 2 and a smallest you call it as sigma 3. So when I say theta when I want to

know the maximum principal stress direction. How do you associate this?



We have seen when the equation is ambiguous in your simple strength of materials, one can

always  take  recourse  to  Mohr’s  circle  and  resolve  whether  the  theta  evaluated  indeed

principal stress direction 1 or direction 2. So you need to have some kind of an auxiliary

information. Suppose you want to evaluate it mathematically and we have also seen that you

have to have this problem post as Eigen vector and Eigen value problem.

In that case, for every value of principal stress you will get the corresponding Eigen vector

that will fix the theta value to the associated principal stress direction. So this is what we had

seen mathematically. So now what we will look at is what is the kind of calibration that do

we have to do for the polariscope?
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So what I have here is I can do this by taking tension specimen. So when I take a tension

specimen what do I know? When I have a tension specimen like this I know the principal

stress direction because that becomes the major principal stress direction. I am pulling it like

this perpendicular to this there is no stress. So the maximum principal stress direction is the

direction of the pulley.

And what I do here is the tension specimen is viewed in a circular polariscope with the axis

of the tensile loading along the polarizer axis. I take up a very simple problem and then I

align  it  with  a  polarizer  axis.  Then  I  do  we  have  already  seen  I  can  use  analyzer  as  a

compensator. So when I rotate the analyzer anti-clockwise or clockwise, the fringe order at

the point of interest will change.



And that is precisely what is going to happen and what is going to happen is the retardation

introduced would be so small I would not have a full fringe order come and occupies this. If I

know the color code and the color sequence, it is possible for me to assess whether the fringe

order has increased or decreased by a particular rotation of the analyzer. So the calibration is

looked at from that point of view.

So what I do this is I have the analyzer rotated anti-clockwise. Then I observe how the fringe

order changes. Let us say that the fringe order increases by doing so. Then what I understand,

when  the  fringe  order  increases  by  doing  so,  I  know the  original  major  principal  stress

direction  was along the polarizer  axis  and when I  rotate  the analyzer  anti-clockwise,  the

fringe order has increased.

So this is keep it as a base information. I go to an actual experimental model and I identify at

a  point  of  interest  and  then  rotate  the  analyzer,  if  the  fringe  order  increases  then  I  say

polarizer  axis  coincides  with  the  major  principal  stress  direction.  So this  is  the  kind  of

calibration.  So  what  is  summarized  here  is  if  a  similar  variation  of  fringe  order  is  also

observed in a practical problem, then the polarizer axis is a major principle axis.

So what you need to do is you need to have some kind of a calibration to the polariscope. I

said this is part and parcel of any experimentation. If you want theta for the major principal

stress direction and minor principal stress direction to be determined, that kind of association

needs to be done, it is possible to do experimentally and in fact some of the difficulties in

digital  photoelasticity  was how to specify  that  this  corresponds  to  major  principal  stress

direction or minor principal stress direction.

This has caused what is known as inconsistency in the isoclinic phase map and also caused

ambiguity  in  the  determination  of  fractional  fringe  order.  So  though  in  a  conventional

photoelasticity we are not worry about major or minor principal stress direction. In digital

photoelasticity, you need to worry about and they approach the problem slightly differently.

But the fundamental question here is from experimental point of view, is it possible to say the

major principal stress direction at the point of interest and minor principal stress direction at

the point of interest, you can do that if you calibrate the polariscope and we have seen what

the calibration that we need to do.
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Then what we move on is another simple information in many of the problems you know we

want  to  know what  is  the  sign of  the  boundary  stress.  Determination  of  the  sign of  the

boundary stresses is also a very important aspect and how do we do that? If I want to find out

the sign of the boundary stresses how do, we do that? In the case of beam under 4-point

bending, we knew which fiber is under compression, which fiber is under tension.

You do not need experiments to tell you that, even before you go to the experiment you know

the way the deformation of the beam, you know which is the fiber subjected to compression,

which is subjected to tension, but nevertheless we need to know how to find out the sign of

the boundary stresses and what I can do is to find the sign a simple approach is to apply an

external compression perpendicular to the boundary by a fingernail and observe the change in

the boundary fringe order.

Here  again  the  boundary  fringe  order  will  change  by  a  very  small  amount  and  it  is

advantageous that you view the model in white light and see the color sequence when the

model is compressed by a fingernail and you know you have to come back and then say look

at the model very carefully and we will have to identify depending on the change in the fringe

order whether it is positive or negative.

First principle is it is well known that on a free boundary the stresses can only be tangential.

So this is the first point that you need to keep in mind and for our discussion let us assume

that initially the boundary stress is positive. So I label it as sigma t. We do not know what is



the sign of the boundary stress, but we take up with a simple situation where the boundary

stress is positive to start with.

And whatever the fringe order that you see in the circular polariscope is proportional to sigma

t because the perpendicular direction the stress is 0 because it is a free surface. So I see that a

sigma t  whatever  the  fringe  order  is  proportional  to  sigma t.  Suppose  I  go  and apply  a

compressive load-sigma c by a fingernail, then what happens to the fringe order? We are only

looking at sigma 1-sigma 2.

Now I apply a compression through the fingernail so minus of minus becomes positive, so I

get this as sigma t+sigma c and thus the fringe order should increase. So what we are looking

at is if the boundary stress was positive, a compression by a fingernail on the surface would

result in increase in the fringe order at the point of interest.

So what we will do is if the fringe order increases by a compression, you will say boundary

stress  was  positive.  On  the  other  hand,  if  the  fringe  order  decreases,  boundary  stress  is

negative. Then the question comes can I always apply using a fingernail? You know we will

also have a short discussion on various photoelastic model materials. We will see for which

kind of problem fingernail is good enough.

If the fingernail is not sufficient, we may have to apply the force by external means that is

one way of doing it.
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And that is what is summarized here. One can also use a sharp edge if you are not able to

apply the compression by a fingernail because we use a finger nail to do this test this is also

called as a nail test and as I have mentioned the change in fringe order may be small and one

has  to  use  color  code  to  observe  the  change  whether  the  fringe  order  has  increased  or

decreased, you will get the information by knowing the color sequence.

That is the best way because these changes are very small and only a color code can provide

you this information. So from this point of view also knowledge of color code really helps.

So what we have seen is I can do it by a nail test, go and apply the compression and if I am

not able to do with the nail, use a sharp edge, but we can also think of other ways to do it.

Once  you  understand  the  principle,  they  have  already  seen  what  is  the  Babinet–Soleil

compensator?  We have  put  a  compensation  after  the  model  and  added  compensation  or

subtracted compensation. So on a similar fashion I can use an external member to assist you

in doing this kind of a test and that is what we will see now.

(Refer Slide Time: 17:04)

For us to do that I can even use a simple tension specimen, I can take a specimen subjected to

tension. I can do it either keeping it tangential to the boundary or keeping it perpendicular to

the boundary. So what I can also do is I can adopt another approach wherein a simple tension

specimen is kept tangential or perpendicular to the boundary. So if it is kept tangential what

will happen?



If I keep it tangential to the boundary, I am adding retardation. The original retardation was

positive if I add retardation, the fringe order will increase. When the fringe order increases, I

would say the boundary stress is positive. So you also can do a similar approach when I keep

it perpendicular to it. So that you take it as a home exercise because you know here you have

to be very alert in your logical development of the argument.

Because if you miss the way you have added the retardation you may end up with wrong

result. You cannot say if the fringe order increases it is always positive, fringe order decreases

is always negative, that kind of a generic conclusion we cannot arrive at. We have to look at

whether the model was kept tangential to the boundary or perpendicular to the boundary.

If it is kept perpendicular to the boundary, the reasoning will be different because you are

adding or subtracting retardation in a direction perpendicular to it. So what you will have to

do is you have to be very careful when you do this when it is tangential to the boundary and

when  it  is  perpendicular  to  the  boundary.  So  develop  the  reasoning  when  the  tension

specimen is kept perpendicular to the boundary.

So what we have seen, we can find out the sign at the boundary stresses either by using a nail

test or by a sharp edge or even by having a simple tension member kept in front of the model

and in fact if you see stress freezing you can also stress freeze the tension specimen and keep

it ready and just keep it tangential to the boundary or perpendicular to the boundary, you do

not even have to pull it.

So that idea you will  get  after  looking at  what  is  the way people employ 3-dimensional

photoelastic analysis wherein they use stress freezing followed by slicing, similar concept can

also be extended to simplify your experimentation, but the principle comes from your basic

understanding of your compensation technique and what happens on the free boundary.

On the free boundary, you must always keep in mind that stresses can at best be tangential to

the  boundary  and  you  should  never  conclude  by  looking  at  the  circular  disc  on  a  free

boundary stresses are 0. If stresses are 0 in the case of circular disc was a special case. We

had beam under bending you had maximum stress on the top and bottom surface. They are all

again  free  boundaries  and  you  had  another  example,  you  had  a  ring  under  diametral

compression.



You had fringe orders varying on the outer as well as the inner boundary and I cautioned

whenever the fringe order crosses a 0th fringe order, the sign at the boundary stress also

changes and you will also have to recall if you have done a course in theory of elasticity, you

know many times you talk about stress concentration. Suppose I have a plate with a hole and

pull it, people know the maximum stress reaches 3 times the nominal stress.

What many people do not observe is on the inner boundary of the hole at 90 degrees to the

maximum stress, you have compressive stresses develop. So what you have here is on the

boundary of the whole you need to find out what is the sign at the boundary stress and here

again your singular point will  help from isoclinic fringe field will help. I said ring under

diametral compression and plate with a hole shares certain commonalities.

You can identify point of transition because from theory of elasticity we know you have

maximum stress. Suppose I take a tension specimen and pull it vertically, on the horizontal

diameter  you  have  maximum  stress  developed,  on  the  vertical  diameter  you  have

compressive stresses developed. So in between there has to be a transition. So on the inner

boundary it is a free boundary sign at the boundary stresses changes.

And for such applications using an external member is convenient because if the hole is very

small, I cannot go and put my nail. I can use a tension specimen and then investigate and

reconfirm that your understanding of theory of elasticity is correct.
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See now we come back to our famous problem, you know I have plastic model, this plastic

model  is  polyurethane  and I  have an aluminium specimen and apply the  same diametral

compression load and what  will  happen to the plastic  model? Plastic  model  will  deform

visibly because it has a lower Young’s modulus whereas aluminium is about 70 GPa and

plastic is around 3 GPa in general.

And this is polyurethane is much smaller than that. Now the question is I use only plastics in

the  case  of  photoelastic  analysis.  How  am  I  justified  in  extrapolating  the  result  from

conducting an experiment on plastics to metallic prototypes? We will go in stages. First we

will look at planar problems and when you look at planar problems, we will also simplify it

further that we will not look at the body forces.

(Refer Slide Time: 23:35)

So what I have the important question that you will have to keep in mind is how does one

relate the results from conducting experiments on plastics to metallic prototypes? You know

the confidence comes by looking at the equations of theory of elasticity. If you look at the

equations of theory of elasticity, what do the equation say? When I am looking at a planar

problem, we will have to look at equilibrium equations.

And if you are working on a stress formulation, we will also have to look at compatibility

conditions.  So what I  have here,  in  2-dimensional  problems the equations  of equilibrium

together  with the boundary conditions and the compatibility  conditions  in terms of stress

components you must have stay in compatibility condition in terms of strained components.

We will also spend 2 minutes on that.



These equations are usually sufficient  for complete determination of stress distribution so

what  I  need to  have  is  I  need to  have  the  equilibrium conditions,  I  need to  look at  the

compatibility conditions and satisfy the boundary conditions of the problem and how does the

equilibrium condition looks like? The equilibrium condition is like this.

You all know, dou sigma x/dou x+dou tau xy/dou y+Fx=0 where this is the body force and

you have dou tau xy/dou x+dou sigma y/dou y+xy=0. I have used the equality tau xy=tau yx

while  writing  this  expression.  Does  this  expression  have  any  elastic  constants?  This

expression does not  have any elastic  constants.  When this  expression does  not have any

elastic constants, you do not need variation between a plastic and aluminium to behave when

you satisfy this condition.

So the equilibrium condition does not have elastic constants fine and what are compatibility

conditions? We will go back and then see.
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If you go back and then see from your theory of elasticity understanding, you have 6 strain

components but you have only 3 displacement components. Suppose I find out the strains

from displacements,  no  problem.  From displacement  to  strain  is  a  simpler  exercise,  but

knowing the strain components, finding out displacement you have to bring in the equations

of compatibility.



If you do not bring in equations of compatibility, you will not have deformation consistent

with the loading applied and what you have here is in simply connected bodies, the strain

field  must  satisfy  the  compatibility  conditions  to  guarantee  a  valid  displacement  field.

Though  in  theory  of  elasticity,  you  have  stress  formulation  as  well  as  displacement

formulation, the very popular airy stress function is basically a stress formulation.

In fact, we know stress function for a variety of problems. So you evaluate stresses, from

stress-strain  relations  evaluate  strains,  from  strain  displacement  relation  evaluate  the

displacement,  but  when I  go from strain to  displacement,  I  need to  invoke compatibility

condition otherwise my displacement evaluation would not be compatible and what do you

see here? You get 2 sets of equations could be constructed.

One set expressing the normal strain components in terms of shear strain components and

vice versa and the equations appear like this.
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So when I relate these normal strain components to shear stress component, you have it like

this. So on the left hand side you have only shear strain components, on the right hand side

you have the normal strain components. If you go and plug in the expression for epsilon xx,

epsilon  yy,  and  epsilon  xy,  this  equation  will  be  completely  satisfied  and  since  we  are

confining our attention in our discussion only to 2-dimensional problem for the time being we

need only the first equation.



So this is set 1. I have compatibility condition expressed in terms of strain components. Once

I have this if I know the stress-strain relations or strain-stress relation I can replace the strain

quantities in terms of stress components. In fact, it was one of the home exercise problems.
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I am only reviewing solid mechanics for the sake of continuity and you have set 1 and you

also have another set, which relates your shear strains to normal strain. The left hand side is

only normal strain and right hand side you have only shear strain components. This you must

have studied in a course in advanced mechanics of solids, it is nothing new, it is only looking

at these old equations just for continuity.

And in fact we were more concerned with set 1 and that is good enough for our discussion.
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And suppose I write this expression in terms of the stress components how do the equations

look like? And we will look at plane stress conditions and plane strain condition separately.

The compatibility condition in terms of stress components has the form like this for plane

stress. On the right hand side what I have, I have -1+nu*dou Fx/dou x+dou Fy/dou y and

these are body forces.

And one of the simplest assumptions what we make in most of our problems except civil

engineering problems, we can consider the body force to be constant or 0. When it is constant

also,  the  right  hand  side  vanishes.  Suppose  the  right  hand  side  does  not  vanish,  the

compatibility condition is a function of what? It is a function of Poisson’s ratio, which is a

material property.

Whereas equilibrium condition was not a function of any of the material properties whereas

compatibility  condition  is  a  function  of  the  Poisson’s  ratio  suppose  you  eliminate  the

consideration of body forces from the point of view of simplicity, you find the right hand side

becomes completely 0. So this equation will be independent of elastic constants again and the

right hand side will be slightly different when I go to plane strain.

When  I  go  to  plane  strain  and  find  out  what  is  the  compatibility  in  terms  of  stress

components, only the first term on the right hand side changes instead of -1+nu it appears as

-1/1-nu.  So  in  the  case  of  constant  body  forces,  the  equations  determining  the  stress

distribution do not contain the elastic constants of the material. So what is the implication?

The  implication  is  the  stress  magnitudes  and the  distributions  are  same for  all  isotropic

materials.  So here you have  the comfort,  your  theory  of  elasticity  comes to  your  rescue

because  in  most  problems  you  know  the  body  force  if  you  are  really  looking  at  static

problems is the dead weight and if it is constant you are not going to have any problem, only

when you have rotating components where the body force is the function of the radius then

you have to worry the Poisson’s ratio plays it spoil sport.

I have said in all experimental methods the Poisson’s ratio will be a nuisance in one way or

the other. We have to learn to live with that. So what we find here is even though I perform

experiment on a plastic because of the strength of the equations from theory of elasticity for a



2-dimensional problem when the body forces are considered constant, elastic constants do not

play a role.

The stress distribution is same but the displacement will be different because displacement or

strain they are all dictated by the elastic constants. So you have to do the experiment very

carefully, you cannot apply any load to the plastic  model and then say that  I correspond

whatever the result that I do you will have to follow the loss of similitude that we will also

see.

But  what  you find here is  working on a plastic  is  convenient  from optics  point  of  view

because it behaves like a crystal,  I have birefringence and then I am able to visualize the

stresses, all that advantage we have when you work with plastic and the results also can be

correlated to metallic prototypes from the strength of equations of theory of elasticity. When

we go to 3-dimensional what happens?

We will see that also. The comfort what you have in 2-dimension is not the same. Three-

dimension is always difficult; you will have to live with problems.

(Refer Slide Time: 34:45)

And this  is  what  is  emphasized  again  what  you will  have  to  know is  though the  stress

distribution and its magnitudes are same in a 2-dimensional model when we consider body

force as constant, the strains and also the deformations are function of elastic constants. So in

essence, a plastic model will get deformed more than the metallic prototype. That you would

see.



But we will learn similitude equations and how do we load the model? What is the level of

load that we should apply? So what we find here is equilibrium and compatibility conditions

indicate at the stress distribution in the elastic state. All these are very important, we are not

looking at the plastic condition, we are looking at elastic state and we are only discussing

photoelasticity.

We are not looking at photoplasticity, so with such kind of modeling the stress distribution is

independent of the loads and the scale of the model. So I do not have to worry if I do it on a

plastic, I do not have to feel sorry I could do only in plastic and then compare it with the

metal. You are doing it on plastic and the results are equally valid as far as stress and its

distribution is concerned. The same is not true for displacement and strain.

They are dictated by elastic  constants.  This subtle difference you should understand very

clearly and even if I have a rotating component, it may be a still a 2-dimensional problem,

body first changes from point to point then your Poisson’s ratio affects the distribution as

well as magnitude. Then you will have to have a model material, which has same Poisson’s

ratio as the metallic prototypes, which is not possible always.

And what you have here, when we make photoelastic models, the scale of the models and the

loads may be chosen as convenient and we will also keep in mind a plastic model will get

deformed more so I should select the load such that I do not get into large deformation in

plastic. The deformation and strain in the plastic model are matched more or less with the

metallic prototype.

That  also  will  see  in  the  similitude  conditions.  The  first  and  foremost  advantage  from

elasticity equations is the stress distribution is independent of the loads and the scale of the

model when we look at in plane problems with body force remaining constant.
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Now let us look at how does the compatibility condition looks when I go to 3-dimensional

situation and these are famously known as Beltrami and Mitchell equations. You may not find

this  in several  books and experimentalist  are  concerned about this.  So I  have this  as del

squared sigma xx+1/1+nu dou squared/dou x squared I1, this is the first invariant that is equal

to -nu/1-nu dou Fx/dou x+dou Fy/dou y+dou Fz/dou z-2 times dou Fx dou x.

What strikes you immediately when you look at this expression? First, it is long, very long

expression than  what  you saw in  2-dimensional  situation.  In  2-dimensional  situation,  we

could look at when body force is constant the equation gets simplified. Suppose body force is

constant in 3-dimensional situations what happens? The right hand side still goes to 0, but the

left hand side has the nuisance Poisson’s ratio.

So the moment you come to the 3-dimensional problem, Poisson’s ratio change will affect the

magnitude  of  the  stress,  not  only  the  magnitude  even  the  distribution.  It  is  dictated  by

Poisson’s ratio,  never  forget  this.  In  a  practical  situation  you  may  say  the  influence  of

Poisson’s ratio is small, so let us gloss over it that is permitted because as engineers we have

to live with approximation.

We will make the approximation which is reasonably good and sufficient for your practical

application, but never forget the moment you come to 3-dimensions, Poisson’s ratio is the

nuisance.  Do not think that only photoelasticity  has the stigma, you will  see now all  the

coating techniques the Poisson’s ratio will play a spoil sport, but the grace is whatever the

influence it will have it is very small.



It is all like second order effects but from an analytical understanding we should know such

effects exist. When you are getting the result you should take it with a pinch of salt in a 3-

dimensional problem that Poisson’s ratio plays its role. So that you have to keep in mind and

you know I have 3 such equations. Actually you can go back and fill those equations. I have 3

such equations, 1 is for sigma xx, another is for sigma yy.

And I think I leave that as a home exercise, you just have a look at it in the class but go and

develop it because it is all cyclically repeating.
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So I will have another 3 sets of equations, which are also cyclically repeated and the first

equation looks in this form. I have del squared sigma xy+1/1+nu dou squared/dou x dou y

I1=-dou Fx/dou y+dou Fy/dou x. So this also you will have 2 more equations, which you can

look at them but you can easily fill it up from the symmetry of this symbols by looking at

these cyclically changing this will be able to get this.

And you have this as I1 as sigma x+sigma y+sigma z.
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See what  is  important  in  doing a  model  study is  you will  have to  follow the similitude

equations.  For  exact  similarity, the  model  and prototype  should  be  geometrically  similar

when deformed by the respective loads. See we have seen when you are working on in plane

models for 2-dimensional problems, the stresses are not altered when I go from plastic to

metallic prototype.

On the other hand, the displacement and strains are dictated by the material property. For the

same load, a plastic will deform more and what we look in similitude equation is you do not

apply the same load, if you apply the same load as service load in prototype, the model will

break completely. So you have to apply a load much below the actual service load and you

also develop a philosophy of how to apply the load.

And what we are looking at here is the model and prototype should be geometrically similar

when deformed. So that is the issue that you take it up to find out what is the load by which I

can apply on the model. So what we look at here is the strains developed in the model and

prototype should be equal.

This  is  the  desirability  and  I  said  in  all  experimentation,  Poisson’s  ratio  is  a  nuisance

assuming that both the model and the prototype have the same Poisson’s ratio the stress in the

model and the prototype are related, I have a symbolism that with suffix denotes whether it is

a model or a prototype and m denotes the model and this is your actual prototype. So I have

sigma p*Fm/Fp*Lp/Lm whole squared.



So what we look at here is we bring in characteristic lengths from the model as well as the

prototype and then we find the stresses in the model is related to stresses in the prototype like

this. Our goal is we want to find out the load whatever the load that I want to apply on the

model, I want to do that in such a fashion when deformed the model and prototype should be

having similar strains.

This is what we are looking at so that will bring in the elastic constants.
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How does the equation look like? So what we do is we replace the stresses in terms of strains

and the Young’s moduli the force scale is obtained as the force that I need to apply on the

model is related to the force that is coming on the prototype*Lm/Lp whole squared*Em/Ep

so I bring in the elastic constants and obviously in a prototype of steel, it is about 210 GPa

and model is about 3 to 4 GPa.

So that means Fm will be much smaller than what is the load that is coming on the prototype

with the strength of this equation what we find the model as well as the prototype when they

are loaded they will have similar values of strain as well as deformation. You do not want to

have large deformation in the model otherwise the equations are not valid and here again we

will have to bring in a distinction.

In 3-dimensional problems, the compatibility conditions are given by Beltrami and Mitchell

equations,  they  are  functions  of  Poisson’s  ratio  and  unlike  2-D  problems,  the  stress

distribution  is  dependent  on  Poisson’s  ration  even  if  the  body  force  is  constant  that  is



emphasized. Even if the body force is constant 3-dimensional problems are always difficult to

handle.

And what you find here is by using this scale for finding out the force to act on the model, we

maintain certain kind of similarity on the strain levels and mind you this is obtained with

assumption that Poisson’s ratios are same, so it is not going to be same between the model

and the prototype. So we need to keep that also in mind when you are looking at the model

study.

See we have looked at model to prototype relations. We have also looked at the similitude

equations. Now let us look at what are the kind of photoelastic materials that you have? And I

have a quite a variety of them.
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We will also see them physically and also see their properties and what I have here is I have

an epoxy disc, this is the disc made of epoxy and this will have particular elastic properties

and I have another model, which is made of polycarbonate. This is of polycarbonate even by

looking at the difference it has a slight yellowish tinge and these properties are very similar in

characteristics.
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On the other extreme, I have the polyurethane model and this also has a tinge of yellow. The

difference is I can even compress it with my fingers. It has such a low elastic modulus and I

can compress it. You can see the deformation when it is loaded, you can see the deformation

when it is compressed, you can see my fingers are pressing that it is so soft. So it is very good

for models for class illustration and also a good model to do the fingernail test.

So when I put the fingernail, it gets compressed very easily so I can find out the sign at the

boundary stresses by nail test without resorting to any external gadget.
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And  you  also  have  another  model  this  is  from  a  stereolithography  process  so  this  is

something like SL5180 resin.
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And I  also  have  on  the  other  extreme,  this  is  Perspex.  See  if  you  look  at  Perspex and

polycarbonate, they are both transparent and this is model of a plate with a crack and we will

see the respective properties. You know long time back we had mentioned when you want to

find out isoclinics it is desirable that you use a Perspex model because it has a very high

material stress fringe value.

So you will  see isoclinics  lot  more clearly  because isochromatics  would not  develop for

smaller loads and the properties are summarized here.
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You have  some properties  are  listed,  I  have  the  stress  fringe  value,  I  have  the  Young’s

modulus and I have the Poisson’s ratio and I also have finally what is known as Figure of

Merit? Figure of Merit is nothing but the Young’s modulus/material stress fringe value and if



the Figure of Merit is larger, it indicates that it is a good model for photoelastic analysis. So I

have polycarbonate.

We  have  seen  polycarbonate  and  epoxy  are  similar.  Polycarbonate  has  8  newton  per

millimeter per fringe and this is obtained for a sodium vapour source and we have seen that it

is a function of the wavelength and it will also change from time to time. You know you will

also have to keep in mind that you calibrate the material and then use the property. Then I

have epoxy.

And glass has a very high value of F sigma and Plexiglass is comparable to the glass, it is

about 140 and polyurethane which I said that I can even apply loads with the finger as a very

low F sigma of 0.2 and its Young’s modulus is also very, very small, it is only 3 MPa whereas

for most plastics it is about 3 GPa. It is only 3 MPa and it is only 3 GPa for all the other

plastics and glass is like almost like aluminium, it is 70 GPa.

And Figure of Merit is listed here, it varies from 325 to 3 and if you look at gelatin is a very

nice candidate when you want to analyze the effect of body forces. If you are really looking

at civil engineering construction, they use gelatin and make models out of it and bring in the

body  force  component  in  the  analysis  and  normally  you  know  many  experiments  are

conducted with polycarbonate and epoxy.

Polyurethane is  good for teaching purposes and this  is  also used in  civil  engineering for

modeling layered soil and with recent advancements stereolithography, you have this SL5180

that has compared to the common photoelastic material it has a high F sigma value and it has

a Figure of Merit of 97 and if you look at the Poisson’s ratio, the polycarbonate is much

closer to metals.

So polycarbonate is one of the most preferred model material for photoelastic analysis and

you can also use epoxy because it is easy to cast in a laboratory and then prepare models. So

this gives you an idea of what are the various photoelastic materials and what we have seen in

the class today was we looked at the importance of color code.

We said color code the sequence is advantageous to calibrate the polariscope to find out the

maximum or minimum principal stress direction and also to find out the sign at the boundary



stresses. We have looked at nail test, we have also looked at how to find out the sign by an

external member. Then we moved on to model to prototype relations. Now one of the key

learning, we learnt was in a 2-dimensional problem when the body forces are constant, the

stress and its distribution is not affected by elastic constants.

Whereas when you have body force varying or when you go to any simple 3-dimensional

problem,  the  Poisson’s ratio  of  the  model  material  dictates  the  stress  and its  distribution

because it is always different from a metallic prototype, there would be influence of Poisson’s

ratio on the stresses evaluated and finally we looked at similitude equations.

Then we also had a  look at  what  are  the various  photoelastic  model  materials  that  were

commonly used and what are their relevant properties. Thank you.


