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The main focus of discussion in the last class was when the relative retardation is changed

you are able to get light of different ellipticity, azimuth and also handedness. So that gives

you a hope by measuring the characteristics of the light it is possible to find out what is delta

and in fact there is a whole body of optic literature what you call as ellipsometry which tries

to find out azimuth which finds out the handedness and also the ellipticity.

Fortunately, in photoelasticity particularly 2 dimensional photoelasticity we do not have to go

to that  much detail  we can simply use a plane polariscope or a  circular  polariscope and

analysis the exit light characteristics. So it is a lot more simpler only when we go in for 3-

dimensional photoelastic analysis we invoke certain aspects of ellipsometry in more detail

and what  we looked at  next  was for  all  our  photoelastic  analysis  it  is  desirable  that  we

understand what is a light impinges on the model.

And we said that the simplest light that you can impinge on the model is plane polarized light

and for getting a plane polarized light what we did we said that we are using a sheet polarizer

and a sheet polarizer is like this that is what we saw in the last few classes earlier you have a

sheet polarizer which is very convenient for you to rotate and it is also easy to have a larger

field and it is desirable how this acts like a filter.

Because I said when you have a natural light this acts like a filter and you get only plane

polarized light that comes after this and for you to understand this you should know some

aspects of crystal optics only then you will be able to appreciate even the physics behind a

sheet polarizer.
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And that is what we have looked at in the last class polarizers in sheet form and what we

learnt was within the polarizer sheet the horizontal component is absorbed by the polarizer

and for illustration this is shown which large thickness in reality this is very thin and this

phenomenon is called dichroism. So a dichroic material is one which absorbs light polarized

in one direction more strongly than light polarized at right angle to that direction.

So what  do  you find  is  from the  natural  light  it  allows  the  vertical  component,  vertical

vibration is only partially absorbed and you have this horizontal component is fully absorbed.

The net result is from the natural light source you get only a plane polarized light. So a linear

polarized light is transmitted by a dichroic crystal.

(Refer Slide Time: 03:33)

And if you look at the nature you know you also have certain materials which are dichroic.



So what you find is you have Tourmaline is one example of a crystal being dichroic in its

natural  state  like we have seen natural  crystals  which is  birefringent.  And you also have

Tourmaline is one example of a crystal being dichroic in its natural state and what we have

seen while making the polarized sheets was you had polyvinyl alcohol stretched.

So  the  other  possibility  is  the  most  common  dichroic  polarizers  are  made  of  stretched

polyvinyl  alcohol.  In  general,  they  are  stretched  polyvinyl  alcohol  sheets  treated  with

absorbing dyes or polymeric iodine. So what you have is various materials are dichroic either

in the natural state or in a stretched condition. Tourmaline is one example of a crystal being

dichroic in its natural state.

And when I come to the common polarize sheet they are made of stretched polyvinyl alcohol

sheets treated with absorbing dyes or polymeric iodine and let us look at what each of these

steps really influence. So what do you find is stretching of the sheet orients the molecules

parallel to the direction of strains and render the materials doubly refracting. So the first step

is you stretch it and because of the stretching process the sheet becomes doubly refracting.

So  it  behaves  like  a  crystal.  You  have  2  refractory  indices  you  have  ordinary  and

extraordinary travel through it.  And what happens is when the material  becomes dichroic

when stained with iodine.  So dichroic  means it  absorbs one component  of light  vector  it

allows the other component so essentially you get plane polarized light.
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And you should also make a distinction and this is very important. The dichroic materials are



to be distinguished from birefringent materials. Birefringent materials have similar absorption

coefficient for ordinary and extraordinary rays. See for you to do photoelasticity you need

birefringent material and birefringent materials the absorption coefficient is same for ordinary

and extraordinary rays.

But for polarized sheet you have a dichroic material it absorbs one of the rays completely and

it allows the other ray and hindered and you are able to see and you should also see a very

subtle  point  here.  See I  said  engineering  is  approximation  and when you are  looking at

polarization  optics.  I  said after  the polarizer  and till  the analyzer  we do not  assume any

absorption of light intensity.

So in reality there may be a small absorption of ordinary and extraordinary rays which could

be neglected. So we make that kind of approximation from practical standpoint. So what is

important is we need to know what is a characteristic behind sheet polarizer because that

have really advance photoelastic analysis because you have to work only with Nicol prisms

then  you  had  only  a  very  small  area  for  you  to  analyze  the  amount  of  polarized  light

availability is small the region of interest could be small.

Once we have sheet polarizer I can have a large sheet and large models can be looked at

comfortably and what is fundamental to all of this photoelastic analysis is understanding what

are retardation plates and wave plates.
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And this animation we will be looking at it again and again in this course and this is the cuts



of photoelasticity  we will  again have a look at  it.  I  have a natural  light  source becomes

polarized  when  it  hits  the  front  surface  of  the  model  you  have  this  split  into  2  light

components.  They  travel  within  the  model  acquire  a  retardation  and  in  general  you  get

elliptically polarized light.

And we have seen by changing delta the characteristics of ellipse can change and there are

few important  cases  which  are  of  relevant  to  photoelastic  analysis  and we keep using  a

optical element call quarter wave plate. The name signifies it introduce us a retardation of

delta= pi/2 and this is essentially a crystal plate. The properties are same at every point on

this body of the crystal plate and what we have learned as the process of this animation laws.

You find one of the rays travels faster and you have on this plane the ray travel faster and you

call that axis as F axis and you have another plane which is perpendicular to this the ray trails

behind it you call this as a slow axis. So once you go to your crystal plate you will always

look for a fast and slow axis and what is the advantages when delta=pi/2 we have already

seen from various states of polarization.

The major and minor axis of the ellipse coincide with the reference axis here it is labeled as

fast and slow axis and essentially the azimuth of the ellipse is 0 if I have this as horizontal. If

I have this axis as horizontal in a vertical axis the azimuth will coincide with the major and

minor axis of the ellipse will coincide with the reference axis fast and slow axis. So that is an

advantage.

And this  understanding is very much important  when we look at elaborate optical set up

where how do these optical  elements  contribute  to  formation  of different  types of fringe

pattern because we are going to look at the plane polariscope we are also going to look at a

circular polariscope in conventional photoelasticity. If you go to digital photoelasticity people

had no restriction on what kind of input light you should send.

People have experimented with various combinations and there you will know a physical

appreciation of how these elements contribute to the complete experiment you will be able to

understand it better. 
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On one hand we have quarter wave plate on the other extreme I have a full wave plate. What

is the definition of full wave plate? It introduces the retardation of one complete wavelength.

So it is as good as the crystal plate is not there when I have a full wave plate it is as good as

the crystal wave plate is not there. So this could happen at 2 pi, 4 pi, 6 pi the essential process

is same.

So whatever the input light I send the same light will come out at the exit point and this is a

very important aspect and this is what we will use it for investigating what happens in a plane

polariscope.  Though we developed various states of polarization by looking at elliptically

polarized  light  that  knowledge  is  essential  for  appreciation.  For  understanding  plane

polariscope you will have to just analyze whether the light coming out of the model is plane

polarized or not.

And do you find here I  have also shown schematically  that  the thickness of the plate  is

increased to provide you large value of retardation.
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And what happens when I go to a half wave plate. When I go to a half wave plate a simple

argument is I will have instead of acos omega t. Suppose I will give only in this there is a

retardation this will become acos omega t+ pi so that is nothing, but –acos omega t. So you

will have a component here. So you will have the resulting will be in this direction. So plane

polarized light which is incident on the model remains plane polarized, but rotated by angle 2

theta very interesting.

So what do you find here is when you go to 3-dimensional photoelasticity we also learned

what is a rotator that could be reasonably understood when you look at how the half wave

plate behaves it is for a plane polarized light. So similarly people found there are ways that

you can rotate the light ellipse. The elliptic characteristics will remain same only the azimuth

will change its direction so that is what a concept of a rotator.

So what you have here is in a half wave plate I have delta= pi. In a quarter wave plate delta=

pi/2  and  the  full  wave  plate  delta=  2  pi.  And let  us  summarize  these  concepts  are  also

summarized in this slide.
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So what you find the first observation is when I have a crystal plate even when I send a

linearly  polarized  light  impinging  on  the  crystal  plate.  The  emerging  light  is  in  general

elliptically polarized. So that is the general observation number one. And if I so adjust the

thickness of the plate to produce a phase difference of pi/2 radian then I call that as a quarter

wave plate. It is also labeled as lambda/full plates.

If the retardation is pi radian, then it is a half wave plate. If the retardation is 2 pi radiance

one get a full wave plate and the incident light is unaltered. And this understanding is very

important. Even before we go and find out the expression for delta a clue is given and the

sketch was also drawn that thickness is one parameter which I could play with to get different

values of retardation.

That is the simplest when you look at the expression when you look at it acquires retardation

within the model. So it is easy to anticipate by changing the thickness. So what we will have

to now look at it when I say a crystal plate I should look for 2 reference axis one is a fast axis

and slow axis and I will also have to know what is its refractive indices n1 and n2 I should

know what is its thickness.

So what I will now try to do is I will get an expression for delta which is a function of the

optical properties of the crystal plate that should be our next goal because first thing is we

said delta is very crucial any changes in delta is reflected in the nature of exit light ellipse and

now we go back and find out whether delta could be evaluated from the parameters of the

crystal whatever the crystal plate that we think of. So that we will do that.
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So what we want to do is we want to express the relative retardation in terms of the thickness

and optical  properties  of the crystal  plate.  So what we want  to do is  when I  say optical

property what are the properties I have refractive index n1 and refractive index n2 or you can

also classify it as ordinary ray of refractive index and extraordinary ray refractive index that

is fixed for a crystal.

The difference  between the crystal  and the  model  is  every point  in  the  crystal  has same

behavior, every point in the model in general will have different behavior depending on the

stresses introduced. Suppose I take a tension (()) (17:32) apply uniform tension then it will

behave like a crystal plate only because you are applying a uniform state of stress. So every

point  will  become identical  leaving that  apart  in  a  generic  situation  the local  stress state

dictates what would be the properties of the crystal at that point of interest.

So now what we want to do is we want to get an expression for delta as a function of the

thickness and properties of the crystal plate. So how do you go about what is the clue? See

we know one ray travels faster suppose I fix the thickness because in practice we will have a

model of a particular thickness being analyzed. So thickness of the plate is fixed. So one ray

will travel the same thickness faster than the other.

So looking at in other words the time taken to traverse the thickness by these 2 rays will be

different and that is why we looked at when we learned (()) (18:45) law I said you have learnt

it in your physics course at the school level there you read only about sin A/sin R you never



bothered to look at as ratios of velocities and I said in photoelasticity we have a purpose we

want to look at ratios or velocities.

Now what we used that knowledge and identify that the rays will take different time interval

to traverse the thickness. Suppose I have v1 as a velocity v2 as the velocity I will have h/v1

and h/v2 is the time taken to traverse and then I have omega t as the phase and omega is

nothing, but 2 pi f. So using this input it is possible to write an expression for delta that is

what we are going to do.

So refractive index whenever we want we will look at as ratios of velocities and we will look

at as a tensor when I want to relate to stress. So I use it in a way that will help my theoretical

development that is what I am going to do. And so what you find here is the velocities of

propagation within the crystal is different for the 2 rays. They will take respectively h/v1 and

h/v2 seconds to traverse the plate.

And we take h as the thickness of the plate, you know, t if I use it indicates time so we want

to have a difference symbol for the thickness. And we take advantage of our understanding on

refractive indices. So this time difference contributes to the phase difference. Suppose we

have the frequency of light be f then I can write the expression for delta. Can you try out how

will you write delta? Make an attempt even it is wrong it is fine that is how you learn things. 

So what I  have here is  I  know that  ordinary and extra  ordinary ray travel  with different

velocities  and  I  understand  because  it  has  to  traverse  the  same  thickness  this  will  take

different time intervals. Now the question is can I write in expression of delta in terms of the

parameters that I know. You can go in stages first you take the time difference then look at

how it can be converted into phase difference then bring in certain identities f can be written

in different ways.

And finally write down that expression in terms of difference in refractive indices that is how

we will go. We will look at difference in velocities first, difference in time taken then finally

write it as n1-n2 that is by requirement that is how I want the results to be reported. I can do

that it is very simple. I think some of you must have got it and that is what you have here. So

I have this as 2 pi f h/v1-h/v2.



I will again rewrite f as c/lambda where c is the velocity is the light and we have already seen

if I write c/v1, c/v2 I can write it as n1 and n2 these are absolute refractive indices and you

have to note a very key important observation on this expression. I have expression for delta

which is given as 2 pi h/ lambda * n1-n2. So what you find suppose I say that I want to have

a delta= pi/2.

I want to have a quarter wave plate I can find out what is the thickness corresponding to that

and what is hidden here h will become a function of wavelength it is very important. See I

said from mathematical development of photoelastic analysis the mathematics becomes lot

more simpler if I confine our attention to monochromatically light source where does this

come.

Till now we have not looked at we wanted to see colors so we used white light we enjoyed

seeing those bright colors, but when I come to mathematical analysis we find the crystal plate

behaves like a quarter wave plate for a given wave length. The same is applicable for wave

plates as well as the model behavior. So we would confine our attention our mathematics will

become  lot  more  simpler  if  I  use  monochromatic  light  source  and  do  my  photoelastic

analysis.

Now you have also Achromatic quarter wave plates where the plate gives a phase difference

of pi/2 for different wave length for a range of wave length you have such plates available.

You know when there  is  a  problem you have  opportunity  for  research  and research  has

developed a way to overcome this. So that goes on parallely. So what you have to understand

is in photoelasticity why the wave length is important monochromatic wave length comes

hidden in the expression.

Now what we will do is we will go back and then see what great scientist have contributed

how  this  could  be  related  to  sigma1-sigma  2  more  by  induction  rather  than  clear

mathematical development.
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So what you have here is we call this. This law relates stress and optics and I call this as

stress optic law. It relates stress and optic so I call this as stress optic law and when I do this I

consider we have transparent model material and this is made of a high polymer and we also

take  for  simplicity  subjected  to  a  plane  state  of  stress.  And what  you will  note  is  each

statement you have to qualify.

Let the state of stress and the point by characterized by the principle stress as sigma1 and

sigma 2. I am looking at a 2 dimensional state of stress. I can have matrix involving sigma x,

sigma y, tau xy and so on, but I can also represent the same stress sensor in terms of its

principle stress values. So that is what is indicated here. Let the state of stress at a point be

characterized by the principle stresses sigma 1 and sigma 2.

And Maxwell in 1852 formulated relations between stresses and the indices of refraction as

he conducted a series of test and then found out that n1-n is related to sigma 1-sigma 2. It is a

function of the material  constant. So what he found was he found the direct stress optics

coefficient and there is a transverse stress optic coefficient and what he found was n1-n that is

n1 and n2 or the refractive indices of the ordinary and extraordinary ray.

And n is the refractive index in the unstressed state. So based on a series of experiment he

was able to establish a relationship n1-n=c1 sigma 1-c2 sigma 2 and n2-n=c1 sigma 2-c2

sigma 1.  A similar  exercise  could  be extended for  3  dimensions  which  I  am not  paying

attention now. And what do you find here we are interested in n1-n2. So I subtract these 2

equations then I can group the terms.



And mind you that c1 and c2 depends on what is the transparent model material that I am

going to use. So there is a material parameter that comes in the formulation. Whatever I see is

also function of the material that I use. The arithmetic is very, very simple if I want to relate it

to sigma 1-sigma 2 the arithmetic is very, very simple there is no great deal about it, but to

understand the physics we had to look at how a crystal behaves.

Reinforce ourselves that for a 1 single incident  ray there will  be 2 refracted rays.  The 2

refracted rays are plane polarized in mutually perpendicular direction. In general, they will be

elliptically  polarized  when  it  comes  out  of  the  crystal  all  that  knowledge  is  required  to

appreciate the link, but if you look at the mathematics it is very simple.
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Now I am going to rewrite this delta in a form convenient for us to use and those steps are

fairly straight forward there is no great mathematics involved here. So I have this as 2 pi

h/lambda n1-n2. Now we know n1-n2 in a different form. So I put this as c1+c2 *sigma 1 and

sigma 2 and what I have is this is the material parameter and for convenience we replace it by

another symbol in order to differentiate it from velocity of light we use the capital C.

I can recast this equation. So I have this as 2 pi h/ lambda * capital C *sigma 1-sigma 2. So it

is a function of the material that I am going to use and it is also a function of the wave length

that is very important and you know if you go to any of the optical techniques you would not

tell the retardation in terms of radians. It is lot more convenient if I label it as fringe orders.



And I do not know how many of you have really looked at what is the fringe order. If you

look at  fringe order  it  is  defined as  delta/2  pi.  So if  I  say fringe order  of  1  the relative

retardation is what is relative retardation delta/2 pi I say so the retardation is 2 pi. If I say

fringe order of 1 and fringe order of 1, fringe order of 2, fringe order of 3 you can go and I

can also have partial fringe orders.

So  what  we  will  do  is  we will  recast  it  we will  segregate  the  term delta/2  pi  then  the

expression becomes lot more simpler to look. So I will write this n n as delta/2 pi. So I can

recast this equation as h*c/ lambda sigma 1-sigma 2 and I can write sigma 1-sigma 2 finally

as in this fashion NF sigma/h and we have introduced a new symbol for the term lambda/c in

this fashion.

And mind you this is a very famous relation in photoelasticity. Sigma 1-sigma 2= nf sigma/h

a  very  famous  relation  and  if  you  know  only  this  expression  it  is  not  sufficient  it  is

misleading that is why I put immediately f sigma=lambda/c because if you look at the basic

equation because you bundled some of those quantities by a new symbol there is a chance

that you may misinterpret where is the wave length comes in the expression.

So there could be mistakes like this and you know when we ask question in the examination

then we understand that you have not understood it until then it look as if it is crystal clear.

Only when questions are asked you find that your understanding is not complete. So do not

remember only this final expression always think f sigma is a function of wave length. Why

we say function of wave length, why we emphasize this.

If you go to photoelastic benches some of the earliest benchers, they had a mercury ark lamp

that was one of the easily available monochromatic light source. Then people had sodium

vapor lamb. So these 2 wavelength you come across. Some of the old polariscope they have

only mercury ark lamp, some of the recent polariscope they may have white light as well as

the sodium vapor lamp and somehow the material property is stable may have been obtained

for a particular wave length.

And you may have to use that property for you mathematical analysis then I have to convert

from one wavelength to another wave length. So that is all that you can get by looking at f

sigma is a function of wave length and this is considered as independent of wave length for



the most part of analysis and this also gives that this is a linear expression within limits.

Suppose I apply loads which are very close to plastic region and I have very high stress

gradient.

This relationship is no longer linear and you have to use it with caution. See sometimes you

look at an expression whether the expression tells you or not you assume many things. So one

of  the first  wrong assumption  that  is  possible  is  it  is  independent  of lambda is  a  wrong

conclusion you can arrive at because people have introduced f sigma for convenience and f

sigma how it is defined this also has a units newton per millimeter per fringe and f sigma is

known as the material stress fringe value.

And this has the units like this and when I plug in here I will get stress as (()) (35:06) that is

the purpose here and many things you can understand from this  expression.  See when I

introduced fringe from photoelasticity even when you looked at famous problem of 4-point

bending  where  you  had  tension  and  compression  side  the  fringes  were  always  labeled

positive integers.

On the  other  hand,  when we went  to  my ray you found that  fringes  are  numbered both

positive and negative whereas in photoelasticity you always number it as positive integers

why is it so that comes from this expression because when I say sigma 1-sigma 2 I always

arranged  the  principle  stress  as  in  algebraically  decreasing  order  that  is  sigma  1  is

algebraically is the greatest sigma 2 is middle and sigma 3 is the least. So this will always be

positive.
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Okay let  me go back to my other  question that I  raised about  3 classes back. I  took an

aluminium disk and also a Polyurethane disk. I said poly is one of the photoelastic model

material and then imagine that I apply a same load. I said what is the nature of the stressors

developed because Polyurethane is a plastic which has low angst modules you can visually

see the deformation.

Aluminium is so hard it has about 70 GPA and this is about 0.3 GPA. It is very, very small

value.  So  the  deformation  is  definitely  different  there  is  no  2  opinions  about  that.  The

question I asked was for the same load and for the same size how the stressors would be it is

a  plane  problem.  Have  you  brushed  your  solid  mechanics  and  found  out  what  do  you

anticipate stress will be same?

I am happy to hear that. That is a key point without which there cannot be any photoelasticity.

Suppose I have 3-dimensional model story is different. This we will see towards the end of

the discussion on photoelasticity. We look at the relevant mathematic equation and then show

I said in all the experimental technique the Poisson's ratio is a nuisance value.

The Poisson's ratio will do the spoil sport when I go to a 3-dimensional problem. In planer

problems the stressors are same. It is very, very advantageous. Okay now let us look at the

expression. Now what I have see if I have to use this expression my interest is to find out

sigma 1-sigma 2 that is very clear. From the experiment I will have to find out what is the

fringe order.



And depending on the material that I use you know if you look at photoelasticity for class

demonstration we bring in Polyurethane and then you have polycarbonate, you have epoxy,

you have  perspex,  you have  even glass  they  are  all  photoelastic  materials  and  even  the

recently introduced (()) (38:50) they are all photoelastically sensitive material and we use this

for certain purposes.

In class it  is easy for me to apply the load and then show the generation of fringes very

conveniently and when I do one experiment I want certain amount of stability I do not want

model to deform and introduce large deformation. When I introduce large deformation the

whole analysis become different. So I want to minimize deformation so that is only reason

why I chose different material.

There is also another reason availability and then you have what is called time and effect we

will see all those issues later. So the essence here is there will be chances for you to use

models of different materials for each of these material I need to find out the material stress

range value. Now the question is by looking at this expression for a given problem I change

the material what would happen to the fringe.

We have just now seen I take aluminum disk or Polyurethane disk for the same load applied

stresses  do not  vary instead  of  aluminum disk I  am going to  have  a  heralded disk or  a

polycarbonate disk or Perspex disk and so on. So in such a scenario what happens sigma 1-

sigma 2 will not change at a point of interest. So this product will change appropriately. So if

I have f sigma is small I will have more fringes.

If I have f sigma is high, I will have less fringes. This product will remain a constant and if

you look at the kind of problem that can be coined the arithmetic is very, very simple. If you

understand the physics behind it if you anticipate that this is how it has to chose the left hand

slide. Here it is the left hand side sigma 1-sigma 2 does not change and only the right hand

slide changes so they will adjust.

So you will see more fringes less fringes more fringes less fringes is not the indication of the

values. You need to know the material parameter only when I know that I can evaluate the

stressors and also this is very important if I find out this parameter inaccurately then all my

match  between  experiment  and  if  I  want  to  do  the  comparison  whatever  I  do  from the



experiment and analytical method they will not match if I measure this quantity carelessly.

I have to do sufficient care in finding out. So what we will do is we will have a detailed

discussion on how to find out f sigma as accurately as possible and from photoelastic point of

view we will have to find out how to get the fringe order. I cautioned you even several classes

back that in all optical techniques finding out the fringe order is tricky you do not get it in the

first go.

You have to use auxiliary methods, you have developed engineering equipment, you have to

verify from various methods of finding out and then another question is you find fringe order

and the fringes you do not find out in between fringes. So you have to use compensation

techniques. So finding out fringe order is an issue. So if I have to find out the stressor I have

to know the fringe order N and material parameter.

So what way we will proceed is we will first go and see how to get the fringe order then we

will have a discussion on how to find out f sigma, but even before we discuss on these issues

let us have a look at what is photoelasticity can give. See I said photoelasticity can give you

directly only fringe order and the principle stress direction. How it is going to give, how we

have to do?

We have to look at  the optical  arrangement understand then go about it,  but even before

getting into the details we can now find out from our strength of material knowledge can I

extract what information if I know these 2 quantities that would be of interest because even

before we want to do an experiment on photoelasticity you can be assured what I can get as

information from stress analysis point of view to the extent possible.

So that is what we will see in the next slide.
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So what is stress information obtainable by photoelasticity. So here for this discussion we

assume at a point of interest you know the fringe order we have not yet looked at the fringes

how to find out the fringe order what is optical arrangement all that we will take it up later.

Suppose I know the fringe order I know the material stress fringe value and I also find out

theta what I can do.

So I  will  go to  the more circle  and look at  what  it  is  and take an advantage  from your

knowledge  it  is  not  new  it  is  all  we  build  on  your  understanding  of  solid  mechanics,

strengthen materials, the foundation has to be strong that is why we had a review of solid

mechanics. You should know about more circle. You should know that stress is tensor and

more circle represents this beautifully.

And what I have here I have sigma 1-sigma 2 is given as NF sigma/h and if I know the more

circle I can easily write sigma x-sigma y=sigma1-sigma 2 * cos 2 theta. You all know more

circle you draw in the sigma and tau plane I draw a circle and each points denotes a plane and

here it is x plane and this is y plane and in more circle all this angles are twice the angles that

is why they are at 90 it is shown at 180 degrees.

And when I have so many points on the boundary it shows all the possibly infinite planes you

can find out what is the normal and shear stress absolutely no problem that is why it is a

beautiful representation I do not whether you looked at more circle from this point of view.

When I said all the possible state of stress in all the infinite planes when I have a point of

interest that is what you understand as stress tensor.



And a beautiful graphical representation is more circle. So on the more circle every point on

the circle denotes a particular plane and using this you can also find out what is the principles

stress plane what is the magnitude of sigma 1 and what is the magnitude of sigma 2 and

simple geometry will help you to find out what is difference in normal stresses and also the

shear stress.

What is the value of shear stress you all know it? It is simply sigma1-sigma2/2*sin 2 theta.

So what you find is from photoelastic analysis a simple normal incident can give you fringe

order again and theta at a point of interest and if I know the material stress fringe value of the

model material then I can go use more circle, find out normal stress difference as well as in

plane shear stress.

So I  can  find  out  in  plane  shear  stress  very  comfortably  and this  is  what  I  said  if  you

remember and recall one of the very important problems in engineering is I have a 3-point

bend specimen. I want to find out what is the variation of shear over the depth. I said when I

go closer to the point of loading though you have read in your simple strength of material

course that shear various parabolically over the depth.

This is no longer so when I go very close to the load application point and I also mention

doing this analytically is possible however you have to represent this (()) (47:51). On the

other hand, photoelasticity can give this information directly. So what you need to find out

closer to the point of loading I need to find out tau xy. Tau xy means I have to find out fringe

order and theta.

And in fact you will do this as part of one of your laboratory experiment. You will find that so

nice, so elegant. It is a very key point of strength of materials. Though you learn it varies

parabolically near the lower application point, near the surface shear is maximum and even if

you want to do it by numerical analysis you have to discretize the model very carefully and

also model the concentrated load as accurately as possible.

And is there anything like a concentrated load. It is an obstruction. Is there anything like a

rigid body it is again an obstruction. The concentrated load and rigid body goes together. In

reality  all  bodies  are  deformable.  So you live  on approximations  and same concepts  are



required  when  we  go  and  understand  and  interpret  what  is  the  result  from photoelastic

analysis.

So what we have looked at here is stress information obtainable by photoelasticity. Suppose I

suppose N theta and f sigma I do not have to say I get only difference in principle stresses. I

can also find out difference in normal stresses and in plane shear stress. So in this class, what

we have looked was we started looking at how to understand the physics behind the simple

polarize sheet.

We found that they display the behavior of dichrorism very useful we have taken advantage

of that. Then we moved on to find out an expression for relative retardation and we found it is

a function of the thickness of the crystal plate and also depends on the wave length and we

also reasoned out why mathematic has become simpler when we use monochromatic light

source in photoelastic analysis.

Then we move on to establish what is stress optic law. Maxwell has conducted a series of

experiments he found out there is a material parameter also comes in the equation. And I

cautioned this material parameter is also function of wave length you should not forget that

because if  you look at  the expression sigma 1-sigm 2= NF sigma/h.  It  does not give an

impression that it is a function of lambda, but you have to keep in mind it is a function of

lambda.

So the problem could be f sigma is determine in one wavelength and I do it and experiment in

another wave length so you may have to do the modifications. Then I use different materials

then I have to do. If you look at arithmetic in photoelastic analysis they are very, very simple,

but the physics behind it little involved that is what we are looking at it and once you know

the physics you can easily solve the problem.

And the  most  challenging  and crucial  aspect  its  finding  out  the  fringe  order  values  that

requires some type of training, understanding and that is where digital photoelasticity aims in

minimizing your effort.


