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Lecture - 09
Derivation of Navier Stokes Equation

Welcome to the session on Navier Stokes equation as part of the NPTEL MOOC on
Transport Phenomena in Materials. In this session we are going to derive the Navier Stokes

equation starting from the Newton’s second law of conservation of linear momentum.

So, this session may look a little tedious; however, I advise that you pause at appropriate
locations, do some of the algebra yourself and then get back because it could be quite tedious
if you are not familiar with the subscript notation, the tensor operations and the material
derivative concept etcetera. So, all the things that we have done till now will all be
converging into this particular derivation, so do pay attention what is coming at what stage go

back and refresh those concepts if necessary.
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So, the concept map for the derivation of Navier Stokes equation is given here. The starting

point for the Navier Stokes equation is nothing, but the Newtons second law the conservation



of linear momentum and we see that it basically is talking about the velocities and

accelerations and how they are related to the forces.

Now, the difference between how we did that in high school and how we are going to do it in
Navier Stokes equation is that we are going to apply this to a control volume and the moment
we say that then we write expressions as integrations because we do not want to be
constrained by the shape of the entire body. So, we are going to write integrals over the
control volumes. And we also will be borrowing the concept of Reynolds transport theorem
because at some point the rate change will be then expressed in Eulerian specification. So, we

have the need for the l% to go inside the integral. So, we use the Reynolds transport theorem

there. And we will have quantities which are specified with dot products with the surface
vectors and then we can convert them to volume integrals using the divergence theorem and
the flow is basically governed by forces and we see the forces as two different types. So, we
see forces as fields which will be then coming as a body force and we can also see the forces
applied on surfaces which are basically stresses and we see why the stress tensor can be
called as symmetrical tensor we will see very briefly one discussion to convince you on that.
And then we are going to decompose the symmetric stress tensor into two components the

pressure component the way we know the pressure and the deviatoric stress component.

Then we are going to relate the deviatoric stress to the velocity gradients through a linear
constitutive equation introducing the concept of a Newtonian fluid. And then we put this all
into the derivation along with the tensor concepts like a symmetric tensor when it multiplied
with asymmetric tensor and then summate them you get a 0 and how the isotropic tensor of
order 4 can be written and so on. So, all these things put together will give you the Navier

Stokes equation.

So, you can see that in this concept map each of these concepts can be studied separately and
we convinced about before we start this derivation. Make sure that you are familiar with all
this background concepts and the basic point that we must never forget is that it is no
different from Newton’s second law because that is the starting point for us if there is no

more physics than what is there in the Newton second law that is going into the Navier



Stokes equation. So, we start of by looking at these terms here we saw that the forces are

necessary and so we are going to describe them.
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Volume forces

Long range / body / volume forces decrease slowly with increase in
distance between the interacting elements.
Examples:

@ Gravity - due to density p gradients
@ Electromagnetic - in metals carrying electric currents
@ Fictitious - centrifugal or coriolis forces

Fi(x;, t)ooV

Eg. Gravity pointing vertically downwards :

Fi=g%

So, there are two types of forces that we are going to consider the long range forces or the
body forces or volume forces. These are the ones which decrease slowly with the distance
between the interacting element which means that fields that are like gravity. Of course,
gravity is a function of distance, but for the kind of distances we talk about in fluid flow then
they are not very large, typical about few centimeters some may be in meters. So, therefore,
you can assume that the gravity field does not change from one part of the domain to another

part. So, such things are basically the volumetric forces that we are talking about.

So, most of the time we are only going to look at the gravity, but there are situations where
the electromagnetic flow can also be described and therefore, those also can be brought into
this. Sometimes we also have fictitious forces that will be coming in fictitious as in they do
not have a separate physics that is causing them, but they are coming because we have chosen
a different coordinate system like for example, centrifugal or coriolis forces. So, those also

can be brought in as volumetric forces like this.

So, anything that is volumetric should be then described in this manner. So, that you have the

p dV coming as mass. So, F is basically the specific force. So, this basically F is the specific



force which is basically force over mass. So, you know that the gravitational force is mg and
if you divide with m and only g is remaining and therefore, one example for a specific course
is just g, so it will have the units of acceleration. And normally we think of y axes going

upwards. So, if you want to write in a vectorial fashion you can write it like this F = gx, .

(Refer Slide Time: 05:15)

Surface forces

Short range forces decrease rapidly with increase in distance
between the interacting elements and are of molecular origin.
Examples:

@ Forces applied on surfaces - normal and shear

@ Marangoni forces - due to surface tension gradients

a(x,-,nj, I)LYA

where, n; is the unit normal to the surface element dA. ¢ is called
the local stress.

Now, the second type of forces that we are going to use are basically short range forces that is
forces that are actually felt only on the surface and not beyond. So, for example, the stresses
what we normally talk about are all surface forces because the stress is applied on the surface
and then it is going to act on the body and just the force is not actually penetrating into the
bulk of the body. So, these stresses are basically both normal and shear together and

therefore, we all sum it up and say that it is a stress.

Now, there are also other things that will come in. So, Marangoni forces for example, due to
surface tension gradient these are also basically stress that are acting only on the surface and
they can also be clubbed up along with stresses like this. So, we have a very generic way of
describing them . So, it is a tensor of order two, ¢ into the area is then the force that we are
talking about. So, the force is two types. So, one is the body force like the mg and the other

one is the forces because of stresses that is basically o into the area. So, we have got those.
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Rate of change of momentum

Consider a moving fluid element of volume dV and area dS on a
surface with normal n;.
Rate of change of momentum of this CV is:
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Use the Reynold's transport theorem:
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Now, look at what is it that we are going to change the momentum is changing because forces
are acting on it this is the summary of the Newton second law. Now, we want to write the
momentum as an integral. So, what you are going to is like this. So, we see here p dV is
basically the mass and then you multiply with the velocity and you have got the momentum,
which means that this quantity what you have written is nothing but the rate of change of
momentum because momentum alone is in this integral and then D% is giving you the rate of
change in the Eulerians specification. So, the statement is basically the rate of change of
momentum is caused by the forces. So, now, is where the utility of the Reynolds transport

theorem is coming in.

So, we could see that the rate of change of momentum when you write like this and you can
then take the D% in like this we can by using the Reynolds transport theorem and then you
now have rate of change of momentum written in a slightly different fashion where the
acceleration term is coming inside the integral acceleration as depend in the Eulerian

specification.

So, this is basically now going to be useful because we see that it is over an integral and as
long as every other term is over the same integration of over the dV then we can take the

integrands. So, that is the strategy why we want these gt is to go inside the integral.
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Wmomentum is equal to the total force acting on
the fluid element.

\The total force that acts on this CV is the sum of body forces and
urface forces, using divergence theorem:

So, we have here the equation of motion. So, the equation of motion can be written in English
like this. The rate of change of momentum is equal to the total forces that is, acting on that,
fluid element or body whichever bodies undergoing that change of momentum. So, in our
case we are taking the control volume. So, the rate of change of the momentum of the control
volume is equal to the total force that is acting. We already had written the forces in two
ways. So, we have seen that here. So, we have written as two terms the volumetric force the

Fp dV and the surface forces which is a 6,1,dS . So, we have got those two terms.

Now, we see that the second term we can write it in a slightly different manner we can use
the divergence theorem. We already saw that the divergence theorem when we derive the
continuity equation we saw it for a vector quantity, but at that time we also mention that you
could generalize it. So, we are generalizing this fashion. So, here is the generalized
divergence theorem where the index that is matching is what is used for derivation here. So,

which is nothing, but basically the stress dot n j is basically d.c.

Now, we do not want to use those quantities like del dot because it is already implied by the
matching of subscripts. So, if you are already familiar with subscript notation you already see
that on the right hand side j is matching and therefore, it must be a dot product over that

particular index.



So, now you introduce this quantity inside here. So, that the total force is now described in
this manner. So, you could see that the left hand side is rate of change of momentum. So, rate
of change of momentum is this fellow and the total force is on the right hand side that is the
total force. Now you can see that this equation is written over the same control volume
everywhere, which means that the integrands also should be the same and that is exactly what
we are doing. So, we have written that the equation of motion can now be written without the
integrations which means that this is now valid at every location in the domain. So,

whichever domain we will choose at every location this particular part is true.

Now, this is not going to be very useful equation of motion looks good it is very brief and
conveys the kind of sense that we know from the Newton second law, but it is not useful the
sense, on the right hand side we have got 6 which we just do not know what to do with
because we are actually writing this equation to determine u. So, we want to find out u and
therefore, everything on the right hand side should be something that we know, but ¢ is
something that we do not know. So, we need to do something about it and we are going to do

that.

(Refer Slide Time: 10:23)
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We now need to express oy in a way that can minimise the number
of unknown parameters in the above equation of motion.
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@ Recancile pressure and stress

© Role of shear components

So, what you are going to do is o is basically a stress tensor and if you expand it because it is

a tensor of order two you will have it as 9 components. So, you could see here 9 components



here because ij both indices go from 1 to 3. So, we have got 9 components. So, I have

intentionally written c,, here and o,, here because it is a most general form.

Now, we can say that how do I reduce this 9 components, I do not want 9 unknowns from the
right hand side. So, I want to reduce the number of components the way to do it is to see step
by step. First step is 6 symmetric tensor if it is symmetric then we know that the 9 will
become 6. So, you have less number of unknowns and then if it is. So, then we want then take
out some quantity and we already know that the stress and pressure are having similar
convertation in planning (Refer Time: 11:10) we say that something is pressurized or
something stressed we mean the same thing. So, how do we bring out those kind of quantities
and the sense of what we mean by pressure as a that is something to compress a particular
body is then preserved, so we will do that. And in the process what we are introduce is on the
right hand side wherever ¢ is we want to change it something that we know or can relate to

the real life ok.
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Continuum assumption

Consider stress at the center of a control volume of size dx; - dy, - dx3.
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So, here I want to argue that stressed tensor is symmetric tensor. So, you could just simply
state that stress is defined for continuum and therefore, it must be a symmetric tensor, but we
can see why. So, let us take a control volume that is drawn here. So, the control volume is

drawn here in this manner, and at this point we inspect how the forces are going to act if they



are going to be caused by the stresses and we have written ,, and ,,, they can also be called

as 1,, and T, 0r T,, T, yX etcetera.

So, it is up to us which symbol we use now the torque which is then acting on at this point is
governed by basically the force imbalance which is rotating this control volume about the
control over clockwise direction as well as the clockwise directions. So, each of these forces
are then going to be summed up and we see that the area element multiplied by the distance
you see that the torque is basically the difference in the stresses 6, and o,,. So, if there is
actually an imbalance between the two components c,, and o,, it means that on the control

volume is the torque that is acting.

Now, what is a consequence of the torque is acting? So, the torque is acting then you can
relate it to the angular rotation in this particular manner and you could look up one of these in
strength of materials books to write this for a rigid body and blindly apply it for a control
volume though it is not a rigid body, but they inspects what happens if we did that. If we did
that what happens is that as when you cancel this three volume elements you will see that you
have a problem here what happens is that if you choose a smaller and smaller control volume
if dx, and dx,, tend to O and if the 6, - 5,, is finite then what happens is that this will tend to

0,

So, now, that is a problem because if you have any difference between the two of diagonal
terms of the stress tensor, it will lead to a very large or tending towards infinity rotation of
this control volume about the z axes which is not allowed because of continuum assumption.
By that what we mean is this control volume is stuck to other control elements around it. So,
we are define domain like this. So, if this is a control volume of our interest then it is stuck to
all the control volumes around it and therefore, it cannot rotate by itself and definitely not at
you know such angular rotations speeds and therefore, it means that the only way to avoid

this kind of an observed situation is to say that this must be 0 which means that ¢,, = c,, .

In other words the ¢ is a symmetric tensor. So, let us then assume that it is true and then go

ahead and use that concept.
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So, we say that if 6 is a symmetric tensor we now have written here 6, 6, both ways and c,;,
both ways which means that we now have 6 components that are to be determined. So, from

9 we have got 6. So, there is some progress.

Now, let us go further and see what we can do about this? Now, here is where the see the
sense of ¢ and sense of pressure. So, let us consider 6,,. So, what does ¢,, mean? Which
means that if you take x,, x, direction which means that the force acting on a plane x, in the
one direction which means that on this plane force acting with this same x direction which
means that it is basically the opposite of pressure because pressure is trying to compress this
body. So, we understand pressure in this manner and o, is basically trying to expand it in the
x, direction. So, there is a mix up of these two concepts. So, we want to then separate them

out. So, that is exactly what we are going to attempt.
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Decomposition of stress tensor

Trace of oy:
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So, what we are going to do is that the symmetric tensor o is going to be written in two parts,
the first part is basically what is going to be isotropic in nature or you could also call it as
hydrostatic if the fluid that is in question is water otherwise you just simply called it as static
component, and that gives the sense of pressure and rest of it. So, we want to give them
names and we can call the first one as related to pressure and the second one as related to
something that will make the control volume distort and therefore, we would like to call it as

deviatoric stress.

Now, you could see that the quantity that I have used is 6,, which is nothing, but the trace of
the stress tensor. Now the reason why we used trace is also for another purpose trace does not
change with coordinate system rotations. So, it is a scalar. So, therefore, when you use this
expression, the expressions become valid in any coordinate system. So, therefore, we put that
here. So, one by three is done. So, that the first part has a trace of exactly o,, and the second
part will have a 0 trace because when you do this summation you see 6, + 6,, + 6;; minus of

these. So, you get them cancelled out and you see that it should you know not have any trace.

So, you now see that you could do the decomposition in a subscript notation form like this.
So, what was written in matrix form is now written in the subscript notation because you can

see the first part is nothing, but when you take this c—;" outitis 10001000 1 and that is

nothing, but the 6 here that is written here. So, you just put it in there. So, we have now



decomposed the stress tensor into two parts, one part which has the hydrostatic or isotropic
component acting in all directions equally, equally because you could see that all the three
components are equal. So, equal stress acting in all directions that is a first component.

Second part is whichever is having the shear stress and other components that are there.

Now, dij will also have 9 elements, but still we will have some way to relate with what we

know.

(Refer Slide Time: 17:49)

Pressure and Deviatoric stress

Static pressure of the fluid defined with the convention that positive
pressure is that which acts to compress a fluid element:
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dj is called the deviatoric part of the stress tensor.

We have separated the stress into two terms:

o pressure term (—pd;) that leads to a shape-conserving change
in the volume element.

o deviatoric stress term (d;) that leads to a volume-conserving

change in the shape of a fluid element

So, once we have done this separation we can then now formally define. So, we are now here
formally defining pressure. So, notice that we have got the triple equal which means we
define the quantity p. So, we say that the pressure is what is defined as a minus of one-third
of the trace of the stress. So, it is basically the isotropic component of the stress tensor with a
minus sign in front. Why is minus sign because pressure is always thought as something that
compresses whereas, 6,, 1s going in the opposite direction. So, therefore, to make the same

meaning come we just put a minus sign there.

So, therefore, we can now write the stress tensor as — pd i T dij where d i is the 6. So, we have

separated the stress into pressure term and the deviatoric stress terms. So, deviatoric stress is
this fellow, this fellow is a deviatotic fellow and pressure term is this fellow you can see that

the stress is now composed of two components. This is going to be useful for us in a moment.
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Property of deviatoric stress
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Use of this property can be done using the contraction theorem of

tensors.

Now, there is some property of the deviatoric stress, you could see that the trace is 0. So, you
could sum up the diagonal term and you get a 0. Now this is going to be very very useful
because later on when we are doing some derivation we can actually see that this can be put

to use.

Now, when d; is specified in any manner and you are asking what is d,, what you are actually
doing is repeating the subscript. So, from here to here you are going basically through a
process in tensors that is called as contraction. So, you have an arbitrary tensor Qi and if
you were to ask what should be a,,, then the contraction theorem says that it is not a tensor,
but a order of 2 because only 2 subscripts are free this it as it order of 4. So, you can actually
have tensors of order n - 2 obtained and they will also be tensors. So, here we see the same
thing that is being used and therefore, we just simply change the subscript and then go ahead
and see what happens and those expressions are also valid. So, we let us those this kind of a

things useful and note down and keep them aside.
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Changes to fluid element due to velocity field

So, what happens when a fluid is undergoing any motion is as follows. So, if we have a fluid
element which is described by ABCD then we see that in general it will undergo any arbitrary
kind of a transformation. So, ABCD is going to PQRS. So, the transformation can be any
arbitrary shape. We do not have things like this, you know you do not have a control volume
like that going and becoming like that. So, we do not want that because that is not a well
behaved fluid flow. So, you have things like this you know, you could just have them

stretched around or just simply moved around or located.

So, it should be only things that are actually going to be simple operations. So, such
operations can then be decomposed into four different manners, one is a translation just
relocation, we have got translation as the relocation of the control volume, after that rotation
pure rotation and then a pure shear and then pure dilation. So, then can prove that such
arbitrary shape changes can be described as a mix of all this four ways of changing the
control volume. And now you can see that these are also coming as a consequence of the
velocity field. So, the velocity field which is a function of the distance will give you this, the
reason is very simple for constant velocities it should have a translation of the control
volume. In the case of velocity that are having gradients it should lead to dilation we have
seen that in just a moment. But you see that shortly for off diagonal terms you see that the

average of them will give you the shear and the difference of them will give you the rotation.



So, you could see that these kind of transformations are coming mainly because of the

velocity gradients.
So, let us just look at what are those.
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Positions and velocities

Initial Position \/eloqty

Al (%, o) (u, v)
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Positions after dt:
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So, what we do is basically ABCD the locations we write the coordinates x, y, and the
velocities are u and v. And in general there are these gradients that are present, so u has the
gradient in both you know x direction as well as in y direction. So, let us see how the

velocities are specified.

So, at A B C D the locations are specified as (x,y,), (x, +06xy,) so on and, which means
that the width is 6x here and &y here and A is basically x,y,and you can see that B is
nothing but (x, +0x, y,) , D is(x,,y, +8y) and C is (x, +6x, y, +0x) . So, that is exactly
what you have written. Similarly the velocities also can be done and by using the first order
approximation is in taylor series expansion you can actually see that the velocity at any
location. For example, the velocity at B is nothing, but the velocity at A plus the gradient into

that particular distance. So, that is what we are going to use and write the velocities.

Now, once you have these velocities and positions what we are going to do is how the
position P Q R S is coming from A B C D due to the velocity times to the d¢ . So, which

means that a position of dt is nothing but initial position plus velocity time dt. So, once we do



that we could say that the position P. So, x, is nothing, but x, +u, x dt. So, this is how we

can arrive at all the positions new positions and we have written them.

Now once we write these positions the advantages basically we now have a way to define the
different components of these dilations and shear in rotation. So, we now do the dilation, the
amount of dilation is nothing but difference in the lengths divided by the original length that

will be give you the amount of strain. So, such quantities are now going to be defined. So, we

PQ,~AB
4B

are going to define the dilation strain as follows which means that, if you see this PQ

and x component we drop a line this is PQ_ this part is PQ, component. This divided by AB.

So, PQ/;;AB it shows you how much of expansion or contraction is happening along the x

direction. So, it gives you this kind of a strain.
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Dilatational strain rates

Dilational strain along x, sy is mj\;ﬂA
Dilational Strain rate:
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Dilational strain along y, s is =5~

Dilational Strain rate:
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So, dilational strain and that is actually defined as s,,. So, s, is nothing, but —%

Now, we have the values for the locations PQ as well as AB. So, we substitute them PQ
means basically the position Q minus position P. So, now, we do that and when we do that

we get this very simple expression that the dilation is given in this manner rate of dilation.

So, that is the rate of dilation because % is already there. So, you could see that the velocity

gradient in x direction is giving you the dilational rate in that direction which is already



familiar to us. Similarly we can also do it for y direction and you see that the dilatational

strain rate of deformation along the y direction is given by fl—; .

So, similarly we can also define the shear stress. So, shear is basically defined in this
following manner. So, what you do is that how much of this divided by how much of this that

is the shear. So, what we do is with define the same way.

(Refer Slide Time: 25:41)
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Shear strain rates

Shear strain along y, s is PT%,
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So, the shear strain is defined in this manner A—lQ; and then if you then look at the locations

and derive you can see that the shear strain rate is given by this you can see the cross terms v
and x up in two different directions are coming together. So, shear strain is coming like that.
And then the pure shear strain is written as an average of those two angles and then you see

that this is how it is coming up.
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Rotational strain rates

Pure rotational rate:
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One can generalize the above expressions using the subscript:

And similarly the rotation also can be written the different of those angles that gives the
rotation. So, you could see that this quantity is very generic quantity it is a strain rate tensor

and it has basically the diagonal terms off diagonal terms and they seem to have some

meaning.
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Decomposition of strain rate tensor

Expressing it as a sum of symmetric (e;) and anti-symmetric (Q;)

tensors:
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So, we see that these terms the diagonal terms alone are related to the dilation the sum of the

off diagonal terms are related to the shear the difference of the off diagonal terms is related to



the rotation and the velocities themselves in absolute way are related to the translation which

we are not bothered at this moment we are only looking at the differentiations.

. . . Ou; .
So, now, we see that we can actually write the generic quantity a_:’. as a sum of symmetric
J

and antisymmetric components stresses and those are actually what we are trying to. So, here
the symmetric part we say it is e; and the antisymmetric is €;and we see that the

antisymmetric part is related to the rotation and the symmetric part is related to the dilation

and shear. So, this is how the strain rate tensor is going to be decomposed.
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) 9 @rwin v [JH L@ D P
EEREEEEN EOEE % 088§

Anti-symmetric part of strain rate tensor

Recognize Vorticity w as

{E}:ﬁxﬁ

/

oy

%

Wi = €jklljk = €k

1
l QU = —Efykwk \I

vl . . .
Remember: If ©; comes withsummation of same indices with a
symmetric tensor, the sum will be zero.

So, once you do then we also can see how the rotation part can be related to something else.
So, we see that the rotation part can be related to the vorticity which we introduced as what
are the planar flows session. So, you could see that the vorticity is related to the Qin this
manner and because you have got only three different components in omega because they are
antisymmetric tensor and those three can be the components of the [, £2 and [ related. So,
they can be also called as duals. So, which we see that it is an antisymmetric component of

the strain rate tensor.



And the reason why we want to do it also because whenever it comes in summation then we
know that symmetric and antisymmetric tensor coming in summation we give to 0. So, that is

we are actually separating the strain rate tensor into two components. So, let us do that.

(Refer Slide Time: 28:17)

08§

Relation between stress and strain-rate

@ By definition, dj is the deviatoric stress which implies that it is
zero for a stationary fluid.

@ The velocities and thus the velocity gradients :j—it are zero for a
bl

stationary fluid.
@ The deviatoric stress represents the frictional interaction between
different layers of the fluid and is assumed to be dependent only
on the instantaneous and local distribution of the velocities. 92~

o ) oty
Let us assume that the deviatoric stress and the strain-rate are Ry /f
i e 4 [TH ) 7/
related through a linear constitutive equation: \= J/] | 7 =~
\/ A

Now, what is the linear relationship that we want to derive? The idea is as follows. The shear
stresses are going to cause deformations of a control volume in this manner, so the shear
stresses T that is applied over will going to leave this, this actually this kind of a change of
control volume is described by the velocity gradients, which means that you could relate the
shear stresses with velocity gradients and because shear stress is a tensor of order 2 and this
also as a tensor of order 2. Then the relation should be through a linear relationship with the
property having a most generic tensor order which is 4, 2 + 2. So, that is exactly what we are

writing here.

So, here is a proposal. So, we are proposing that the cause which is basically the shear stress
is leading to an effect which is basically the velocity gradients. So, we are proposing that they
are related linearly. So, they may not be related linearly in some situations, but let us hope
that this fellow is going to be helpful to us. So, now you can see that on the right hand side
we have got ¢ we separated it into the pressure and d; and we then change the d; to the

velocity gradients and then now you see that the velocity gradients are appearing on the right



hand side which is good because that is an unknown and we can always handle that in some

way.

So, here is where the Neumann principle is going to be off use. So, A is basically property
you see that if this is a cause and this is the effect and what is related them both it must be a
property. And according to Neumann principle any property should have the same symmetry
as that of the material for which we are describing that property. And what is a material here?
It is a fluid now fluids are isotropic, which means that the tensor that should be used to
describe a must be a fourth order tensor which is an isotropic tensor which we have already
come across in the introduction to tensors the most generic way of writing is in this manner

where there are actually 3 independent quantities which are basically u,, p,, p; .
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Viscosity tensor

Fluids are isotropic
Aj must possess the same properties as that of an isotropic tensor

of order four. / . +
—— L,Z'—#\ 3 m‘w,;””‘b“@ Lt
[ Ao = pudyd + padidyg + /t355k15j//) ‘ Yekv-
\R\—J/w C0 o)
Since deviatoric stress dj is symmetric, interchanging the subscripts i . 1 ) W/ﬁ-)ﬁ L |
and j should keep the quantity identical. In the above equation, this ? glu‘ T/ o
applies also to the R.H.S. ie., } < (T S,“L,’J }
— o Q] I2) =
{ \ [
Aju = Ak i[ fi2 = i3 !/ f‘q, 3
—_—1
! Aijk/ = l‘lﬁij'?l«/ + ph2 (ﬁﬂdkj + (Yr'kd_;l) [‘

Aju Is now symmetrical in k and [also.

So, if you take a very generic tensor A4 ikl which is a fourth order tensor and you must have 81
components, but in this case 4 ikl is a property related to liquid which is isotropic. So, we can

say that this kind of a expression can be used which means that there are only three

independent quantity. So, what we do is that we then put it in and then see what happens.

So, you see that on the left hand side the equation. So, you see that the left hand side equation

d.

ij°

now d; is has a symmetry over the indices i and j the reason because o is actually

symmetric tensor therefore, the deviatoric stress also should be a symmetric tensor. On the



right hand side the ij indices are appearing only for A, which means that when you swap the
indices on the left hand side then this equation is valid they should also not have any effect on
the right hand side. So, when I swap the indices on the left hand side nothing happens

because D is a symmetric tensor.

So, therefore, when I swap the indices on the right hand side also the same thing should be
prevailing which means that if you take the swap the indices for this quantity and change i to
J and j to i then the quantity should not change and that is only possible when p, = p,
because you see these two quantities. So, I want to have. So, p,6,,0 gt [T PLR this is before
swap and after swapping the indices 1 and j we see that it is jl and ki +p,;8,6, . Now you see
that these two are same actually o i ki because 0 is actually a symmetric tensor is 0 is a

symmetric tensor. So, these two are same and these two are same which means that this and
this must be the same. So, that is exactly what we are written here. So, saying that we actually
do not need three independent quantities for the property A just two is enough. So, that is

how we have reduced.

So, now that we have that mu 2 is equal to mu 3 let us choose that value to be mu 2 itself and

then write it as Ay = p1856k1+u26ik6ﬂ. So, now, we have got a little less number of

unknowns here.

So, now, once you look up this expression it appears as if even if you swap the indices k and 1
nothing will change. So, this is an outcome of the expression that we have written. So, look at

this expression and I will just swap the indices k and 1. So, 4., and I I am swapping and on

ijk
the right hand side what is coming uIBUSH . So, I write 1 k plus uZSikSU + uzéﬂéjk . Now, you
see that this expression and this expression are actually one and the same it just that the terms
are actually swapped. So, 1 k j 1 is coming second here it is coming first here and i 1 k j is
coming first here its coming second here. So, constants are same. And this and this are also
same because 0,0 is also symmetric over the indices k and | which means that the right hand
side does not change when you swap the indices k and 1 which means that left hand side also
should not change which means that a is also symmetrical in the indices k and 1. So, we now

discovered that imposing these symmetry of the deviatoric stress we are actually obtaining

the properties of A which is basically saying that is a symmetric over ij as well as kl.
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Using symmetry arguments on tensor indices

| dj = Ay (ew + Q)

Since Ajjy is now symmetrical in k and /, when it is multiplied by an
entity that is anti-symmetric about k and [ and the terms are
summed over k and / they vanish. Thus, the Q, term drops out

di = (11000 + 112 (90 + 0iy)) €

dij = pdiduen + pa (Gidien + Oixdien)

So, now you are writing the expression once again and the expression we have written the
linear constitutive relation. We actually wrote linear constitutive equation as follows and we
are writing this part as 2; because we can actually separate the velocity gradient as the
symmetric and antisymmetric parts we are writing there now we expand A and we write here.

So, we write here this part is nothing but the expansion of A.

So, when you do this now what happens is that you could see immediately that there is
symmetry of k and | indices for the first term and you are doing a summation over capital
omega k | and capita omega actually antisymmetric over the same indices k and 1. So, when
you sum up that term will gone and therefore, we can just drop this term off. So, that is why
you see here I do not have capital €, because the summation will not survive, which means
that we can now use this ¢;; and then multiply with everything and then see what happens.
So, when you were doing that we could see that the part by part we can multiply, so
H15,-jkl x e ki, it is coming here and then we multiply. So, we are doing part by part. So,
why are we doing part by part because the o has a specific property it can use it can be used

to swap the indices and we are going to do that now.
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Use of contraction theorem

We have already defined rate of dilation or rate of expansion as
_du " dwp  duy
O Ox Oxg

For the first term, we use the contraction theorem to get

Ekk

dj = 0zl + 21
Recalling that d; = 0,

—\
di = 1330 + 24 = Qtl + 2/:,2}A =0

So we are going to use the swapping of indices. Now, the e,, itself we already know the
definition. So, that is nothing, but the definition showing that the e is basically the symmetric
part and we can also see that d; as the summation 0 here for trace, the trace of d;; is 0 because
we already removed the diagonal elements from it by defining the pressure and that we can

now use by seeing what happens if we do a contraction operation.

So, what we do here is that ij you just do a contraction operation write d kk. So, instead of ij
you just put kk and then see what happens. So, d,, the first one is like this d,, and then this
term 6,, which means by summation over the three diagonal elements of a 6 that gives you 3
and the remaining ones also going to be there. So, that is how we actually expand and then
we see that we write in this manner and you get a 3 there and here the same term is coming so
there must be 2 here. So, which means that we see that as consequences of the trace of the

deviatoric stress being 0 we get an equation like this.

Now, this equation is very interesting because this gives us a relationship between p, and p,
in other words we do not actually need two independent constant we actually get only one of
them. Of course in the case of incompressible fluids the p, and p, can be different and this

equation still be valid because actually the ois 0, but if you want this equation to be valid



even for not incompressible fluids then it is better that this part is alone going to 0 which

means that u, and p, are related and this has a name this is called the stokes assumption.
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Stokes assumption

We would like the above equation to be true also for incompressible
fluids ie., also when A # 0.
It can be true only when the term in parantheses vanishes.

Stokes assumption

For monoatomic fluids since there is no conversion of translational
energy into vibrationary / rotationary energies, bulk viscosity can be
assumed to be zero

7 Y
Bu+2m)=0 =(u=-<p |
A
Calling the one constant parameter as /i, the equation becomes
i

0 1.1
gl: —g)mU-A + 2ue; %2/: [eg = EA(),,-J

‘U\
| ==

So, stokes assumption, we say that if you want this equation to be 0 even when the rate of
dilation A # 0 then it can only happen when the quantity in the parenthesis namely this
quantity, this quantity in the parenthesis should not survive and which means that we can
actually relate p,and p,. So, this is how we are relating p, and p,and it goes by stokes
assumption which is valid for fluids that are consigned containing molecule that are too long

etcetera.

So, it is also called as bulk viscosity is taken as 0. So, we will now use this relationship to go
back to d; and write the constants p, p, as just one constant mu and that is we are writing
here. So, we instead of p, we write — % K, and instead of p, we just say u ,so — % n o ;AT

this. So, we write this expression.

We now see that this expression; is coming quite in it. So, now, you see that on the right hand
side you have got only the symmetric part of that strain rate tensor and we have got the rate
of dilation and just one quantity viscosity p. So, now, we see that this pthe symbol is chosen

very you know carefully, this p is nothing but viscosity and the property tensor A is the most



general way of writing it, but with all this manipulations we come to conclusion there is

nothing but the viscosity itself we are talking about.
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Significance of the linear relation and Viscosity

Newtonian behavior: Shear stress is directly proportional to the %
velocity gradient \ a\f/ ‘
5 [Gy =9+
=2 [e,-, - %Adg] —7 "
7ol B‘M’ )
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]
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The proportionality constant /u is defined as the viscosity of the
liquid. Fluids that obey this linear relation are called Newtonian fluids. n"

—

b Ly
v o W

ol TM‘ ;[:,«{L
e

;
e e e e e e e ey Q] e s

Now, let us take that expression and see what happens. This expression when you take for i
and j becoming 1 and 2. So, i=1 and j=2 then d,,, d,, is nothing, but 1, . So, we see that this
expression for 1D turns outas t,, = p% . Now this is nothing, but the statement of Newton’s

law for fluids which is basically saying that the fluid we are talking about is a Newtonian

fluid.

Ouy,

So, in other words when we started of saying that d;; = 4,5+
1

this is actually saying that it is

nothing, but most general form of the Newton’s law of viscosity here. And when we apply it
for 1D we see the expression which is very popular in the text books and this is what actually
we normally use. So, we can see to the tensorial part is actually the starting point and this can

be obtained from it straight away using the manipulation that we have done till now.
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Equation of motion

Combining equation of motion and the expressions for stress tensor,
g €q p L

we get: - / o)

PR

D al 1

g— = pFi+ = | —pl; + 20| &5 — ~Ad;
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Expanding the term e; and?usmg the Kronecker delta to contract

subscripts, we get:

Dy 0 () 0 (o) 0 (2
Por = Ox  Ox “(")xj 0, ‘(')x,v ax g

/f\

TS Uy )

Now, we have the d;; expressed in terms of the velocity gradients. So, let us just go ahead and
put it in the equation of motion. So, we saw that this entire thing is basically ¢ and o is
written as two components the pressure component and d;;. So, the pressure component - p
and then it is also written as d;; and then we saw that this is coming straight here in and this is
coming via the linear constitutive equation as this quantity. So, we can see that the expression
that is written in the equation motion is used as it is except that we have expanded c on the

right hand side.

Now what we do is the term by term we can apply this particular operator and see what
happens. Now here is where the property of A dto swap the indices will be useful. So, you
could see that when you when you have 6 i and x j then these indices are same. So, the i will
be then coming out, so you could see that this will give me this term. So, I have only i index
that comes straight away from the subscript notation convention that we have used. So, if you
are not convinced you could actually expand and see what happens and you will come to the

same conclusion.

Now, the second term the second term you then expand e;. So, we already know that ¢; is

nothing but %[g—;’jf + 6_2 ]. So, this is what you are going to substitute in and then you see that

two and this half will cancel and we got the rest of the expressions. So, this is coming



because you have got this first term. So, the first term is coming here and the second term is
coming here. So, you could see that the two and this half is getting canceled the p is sitting

there undisturbed and this is the term.

The last term is kept as it is. So, the 2 is going in. So, — %AS and then the 6ij and j, [ am just
making this Ox;. So, the subscript notation usage is very much there here for us to make this
simplification. So, what we have written now here in the bottom is basically equation of
motion for a generally any fluid whether it is compressible or incompressible because we are

just leaving it as it is here.
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Navier-Stokes equation

Since the order of differentiation should not matter and if y is not a
function of location,

Du; op 0 Oy d [ Oy d (2
el afhee i Pl 2t [ 2
i =P ot <”0xj> B </’0x,>+0x,< 3 >

/)% =pFi- i + il (l()i> - 2 (/LA)+ i (*%;/A)

Dt oy \"og) T '
Dy dp 0 (0w 104
o=ty ("‘a?)*ia:“’“’

So, at this moment what we do is that we do further manipulations of this expression. So, all
the terms are kept as it is and then we expect to term by term what happens. So, what happens
is that here you could see that the equation here you have got the indices the same here and
they are not the same here. So, what we do is that can we swap these two indices because you
can see that the order of differentiation should not matter if the quantity u is well behaved
function and p is not location dependent. So, then you can swap those, so we do that and
when we do that you see that here we get 6 coming in. So, when we swap the indices. The

first term 1is left as it is.



So, then when you take this term and the second term then you can see that here it is pA and
here it is —2pA. So, it must be 1pA. So, these two together are giving this term. So, that is

about it. Remaining terms on the left hand side and the first three terms are untouched.

So, now, you have got this equation which basically is the typical form that you would see in
text books which we also call as Navier Stokes equation for any fluid which can be either
incompressible or compressible. So, very often one would wonder where is this 1 by 3
coming and we now have a origin for that. The % coming because of the stokes assumption
and the stress of the Abeing 3 etcetera. So, that is how this term is coming and this statement
is nothing but the Newton’s second law applied to control volume. So, this equation is what is

worth remembering. So, this is refer to as the N-S equation.

And if you want to now look at the Navier Stokes equation for limited situations like an
incompressible fluid then we can actually knock off one of the terms. You can see the last
term has the delta there we know that, but an incompressible fluid the delta is 0. So, we can
just knock it off and then write the Navier Stokes equation for incompressible fluids by
knocking of the last term. Now, when we are knocking of the last term we see that there is
this term which we want to expand and then we want to expand it by showing that you could
62

2

write it as -
X
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Navier-Stokes equation for incompressible fluids

If the fluid being considered is incompressible (A = 0):

)%— )F-fa—p+ L(‘)z—ui+ ! i
Por " By e T ooy
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So, here is basically the Navier Stokes equation for incompressible fluid and this operator

5‘3—; is nothing but the laplacian operator. So, you could actually write that also and this
J

operator is nothing, but the gradient operator. So, you could actually now write the Navier

Stokes equation for an incompressible fluid using the vectorial operators as well. That is what

we do here.
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Navier-Stokes equation in vector form

Define kinematic viscosity as follows:

L
I/EL

P

Expanding the material derivative DD; and writing in vector notation,
for incompressible fluids of constant property:
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So, we use the vectorial operators and we have the gradient here, we have the see the left

hand side as % the material derivative we are expanding the material derivative on the left
hand side and on the right hand side we have got the gradient operators and the Laplacian
operators we use. So, you could see that this now becomes the in vectorial notation the

Navier Stokes equation for incompressible fluid.

We are defining a quantity called kinematic viscosity. So, if p is called the dynamic
viscosity, then ¥ becomes the kinematic viscosity and the units of ¥ happens to be m?/sec
and that will be the same in units as the diffusivity which means that you could think of ¥ as
momentum diffusivity. So, ¥ can be thought of as momentum diffusivity. So, you can then

plug that in and therefore, this is also one of the popular ways by which the Navier Stokes

equations are appearing for an incompressible fluid and you also notice that the V? operator

also implies that there is no location dependency of the viscosity which also means that for



constant viscosity constant properties. So, we can also say for constant properties. So, this is

how a derivation of the Navier Stokes equation has come about.

So, I hope you now are clear how this equation came about starting from the Newton second
law all the way through all the manipulations with respect to the control volume, with respect
to the usage of the tensor properties, the Neumann principle, the material derivative and so
on. So, you can see that this is a combination of all the things that we have been discussing
for the last 4 or 5 sessions and it is a very good idea to brush up all those concepts before we
go through this particular derivation. What we now do is we use this equation as a starting
point for all the problem solution from now on that is because we can avoid having to do the
momentum balance for every problem it does not make sense because once you have done
momentum balance as a part of the Navier Stokes equation. Then you are done with 6 and
we can just simply use that equation as it is and then knock off terms that you do not need

and then solve the problems. So, we want to do that in the following sessions.

So, you can check the website for the practice assignments and practice the derivation by

changing some of the terms in between to make sure that you have understood the derivation.



