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Transport Theorem 
 

Welcome to the session on Transport Theorem as part of NPTEL MOOC on Transport              

Phenomena in Materials. This theorem is popularly known as Reynolds transport theorem.            

We will need the outcome of this theorem as one of the inputs to the derivation of Navier                  

Stokes equation. Those of you who are not interested in the mathematical aspects need not go                

through this session; however, the end result will be one of the important inputs we will need                 

while derive in Navier Stokes equation which will be in the next session. 
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So, the concept map behind the theorem is given here. We could see that when we have a                  

velocity field which is varying with the spatial coordinates we do have velocity gradients and               

these velocity gradients are going to change the shape of any fluid element they would be                

stretching the fluid element in directions where the velocity gradients are positive, shrinking             

them in the directions where they are negative and so on. 



So, naturally we can see that velocity gradients are going to affect the fluid element. And                

what we are going to do in this session is introduce what are called as the convected                 

coordinates. So, we are going to fix a coordinate system to the fluid element as it is moving                  

around. And when we do that then the translation of any quantity from the spatial coordinates                

we use normally for Eulerian specification and the convected coordinates which we are fixing              

to the moving volume element will be done through a transformation and there we come               

across a quantity called the Jacobian of transformation. And from there we derive what would               

be called as the rate of dilation which we have defined earlier while deriving the continuity                

equations. We will see an alternative definition of the same quantity. 

We will put this in along with the theorems that will allow us to convert the divergence and                  

dot products into the volume integrals. So, we are going to do that together and then have a                  

material derivative of a volume integral derived and that basically gives you the transport              

theorem. And as a special case of a transport theorem where the function that is being                

introduced can be giving us the continuity equation when that function happens to be just               

density and if that function happens to be for example, an advected quantity like momentum               

then it will also give you any equation that we can readily use in the derivation of the Navier                   

Stokes equation. So, this is the concept map. Each of these elements that I have shown in this                  

ellipses with colors can be derived upon deeply separately, but we need to go through all                

these to arrive at the derivation. 



(Refer Slide Time: 02:52) 

 

So, here is the concept that we have already studied while coming across the material               

derivative. So, where we say that if there are points like this if we have a b points and if there                     

is a velocity field as you can see that if the velocity is there in both x and y directions then                     

this element is going to move away. That means, the velocity is positive in both x and y                  

directions x​1 x​2 directions. And if the velocity at b is greater than the velocity of a then the                   

length ab will get stretched as it moves. So, you could already see that the control volume or                  

the volume element has got stretched here. 

Now, in the y direction for example, if the velocity gradient is negative which means that its                 

velocity is still positive, but the gradient is negative which means as you go up in the x​2                  

direction the velocity magnitude is coming down in that case what would happen is that this                

line segment ac will shrink as the volume element is moving. So, as you can see that this kind                   

of a thing is quite acceptable as far as the incompressible continuity equation is concerned               

because one gradient is positive another gradient is negative,the sum can be 0 satisfying that               

such velocity fields are valid ok. 

Now, what we are doing is that we want to define the volume of the fluid element using the                   

spatial coordinates x​1​, x​2​, x​3 like this. So, because the spatial coordinates where always taking               

them as orthogonal, we can take it as a triple product of the unit vectors dx​1​, dx​2​, dx​3 and then                    



we can already see that the product is directly giving us the volume of a volume element in                  

the spatial coordinates. 

Now, what we are doing is we are going to fix the coordinate system ψ​1​, ψ​2​. These are all the                    

new coordinate systems we have introduced. So, we are going to fix the ψ​1​, ψ​2​, ψ​3 coordinates                 

to the volume element and in terms of those coordinates we choose. So, I stress we choose                 

the coordinate systems ψ​1​, ψ​2​, ψ​3 such that such that this fellow the volume of the element in                  

the new coordinate system convected coordinate system will be constant and it will be the               

same as the initial volume. So, dV​0 is the volume of the moving element moving CV. So, the                  

coordinates will then be fixed to the moving element which also means that the length unit                

length of ψ​1 will not be the same as x​1​. It has to change because as the control volume keeps                    

very stretched and compressed and rotated, so ψ​1 ψ​2 ψ​3 cannot be the same measure as x​1 x​2                  

x​3​. So, this transformation between these two is what we introduce through a transformation              

of coordinates ok. 
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So, a little bit more about this. So, why are we calling these, ψ​1​, ψ​2​, ψ​3 as the convected                   

coordinates. So, the reason is that they are fix to the volume element and they would expand                 

and shrink as the need arises so that the volume as defined in that coordinate system will be                  

always same. Whereas, the volume of the control volume which is moving in the spatial               



coordinate system namely x​1​, x​2​, x​3 can change. So, this is why the necessity for both of the                  

coordinate system to be there. 

So, convected coordinates are basically these. And what are these? These are basically the              

spatial coordinate systems and there is a translation between these two that is possible as               

transformation of variables. Now, this is a little different from the transformation of             

coordinate systems we discussed at the beginning of this course where we said that the               

coordinate system is having a pure rotation. So, here it is not just pure rotation we also have                  

dilation introduced and that is why we cannot use those expressions directly, but there is               

some parallel that we can see in situations where the volume change of the control volume as                 

it is moving around happens to be 0. So, if a volume change is not there then we could have                    

the same expressions used, but otherwise in general situation we should not use. 

(Refer Slide Time: 07:04) 

 

So, the translation between these two sets of coordinates is given by a expression which we                

write in the same way we wrote for the coordinate transformation where we have the               

variation of the x​1 in the 3 directions is given and the way we do it is like matrix                   

multiplication. So, we write like this. So, you have got and that you would write it as          x1
︿        

. So, like this you could actually write all the 3 equations for theψ ψ ψ∂x1
∂ψ1 1 + ∂x1

∂ψ2 2 + ∂x1
∂ψ3 3               

transformation of variables and then you have them in a matrix form. 



Now, we have gone through the subscript notation precisely to avoid such (Refer Time:              

07:54) expressions and that is why we can actually now introduce that and in subscript               

notation it comes quite briefly here like this. So, x​i that is the spatial coordinate system is then                  

specified in terms of the convected coordinate system ψ​j through a transformation matrix             ∂xi
∂ψj  

. Now, we could also see that this is applicable for elements. So, small volume elements that                 

we want to relate. So, on the left hand side and on the right hand side we write dx​i and d ψ​j as                       

necessary. Now these are what we are going to use as we go along. 

So, the triple product of the 3 components of the vector dx​i will then be giving the volume in                   

the spatial coordinate system and similarly the triple product of the 3 elements of the vector d                 

ψ​j will give the volume in the advected coordinate system which is dV​0 which is always                

remaining the same. So, we see that there something that is coming in between to relate these                 

two and that is where actually we are going to introduce what is called the Jacobian of                 

transformation. 
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So, Jacobian of transformation is nothing, but the determinants of the transformation matrix             

that is about it there is nothing, but more to it. So, we already see here the transformation                  

matrix is given here. So, we just take the determinant just like we take determinant of any                 



matrix for that matter. So, basically we take for example, this times this into this minus this                 

into this like that we have got 9 terms and then we can expand. 

So, we can now refresh our memory with respect to why this quantity the so called (Refer                 

Time: 09:35) with a tensor or permutation matrix ϵ has been introduced, we remember that it                

was introduced with multiple purposes. One of them is being able to write the triple product                

and being able to give the determinant with very small number of terms. So, here we have                 

that application straight away coming and we can see that the determinant of the              

transformation matrix which is called the Jacobian can just be written with this expression              

here. 

You can already see that there are no free indices on the right hand side all the 3 indices are                    

dummy indices and therefore, you get a number out. This number happens to be unity one                

when we have the coordinate system as only pure rotation that is not the case in this situation.                  

That is why the Jacobian has to be there it could be taking any value depending upon the                  

where that transformation is happening here and it depends upon the velocity gradients. 
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So, in summary the difference between the coordinate transformation which we did for pure              

rotations earlier and the Jacobian which we have introduced now the summary is here we               

wrote this both in the same manner, only thing is that the determinant of the transformation                



matrix for pure rotation is 1. Whereas, here it depends upon the velocity gradients and               

because the determinant is 1 in the case of transformation of coordinates where this only pure                

rotation then we saw that the determinant being 1 gives you the formula that inverse of the                 

transformation matrix is same as the transpose which has actually helped us in some              

simplification of subscript notations. 

But this is definitely not directly applicable for us here because the determinant is not 1. So,                 

this expression cannot be used which means that when we want to transform the spatial               

coordinates to the advected coordinates and vice versa then we need to watch out because               

determinant is not 1 ok. 
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Now, let us look at the volume element change. So, that is where we started off. So, we said                   

that the triple product which is indicated with the square brackets. So, we said that if you                 

wanted to write the triple product of 3 vectors what we mean is that. So, the 3 are in this                    

directions, that is a triple product which you define with the square brackets there a⃗ x b⃗).c⃗  (               

and that gives basically this you can see that it gives you the volume it gives you the volume                   

of this entire control volume that we see which is bounded by the 3 vectors a b c. So, here dV                     

is nothing but the volume bounded by the 3 vectors components dx​1​, dx​2​, dx​3​. And we just                 

write it straight away by multiplication all the 3 because it is a orthonormal coordinate system                

which means that this is the volume of the control volume which is specified in the spatial                 



coordinates which will change as a function of time because the control volume is moving               

around and it would be expanding and shrinking with respect to the external observer which               

is what we are doing here as a spatial coordinates it is like an external observer. So, the dV                   

would change. So, very often this is given as a function of time. 

Now, when we now expand each of this quantities which we expand each of these things in                 

terms of the unit displacements along the advected coordinate system then we can use the               

same expression we have derived earlier. So, here we are having this expression. So, we use                

this expression to translate and we look at how this terms are written. So, we can see that the                   

triple product of the same terms will give you the same volume of the volume element of the                  

fluid that is moving around and now you can see that the triple product can then be written                  

with ϵ and that we write here. And then we collate the terms we can move the terms back and                    

forth because we are using the subscript conventions. So, the position of the number does not                

matter the commutativity allows us. So, we then arrange them and when we arrange them we                

notice that these 3 are coming together and this is nothing but dV​0​, and then the remaining                 

ones are also coming together and you could see that you have got something else coming                

here and this we just now saw that it is nothing but the Jacobian, so j. So, that is what we                     

write here this is nothing, but the j. 

So, we can see clearly now that we have this expression giving you . So, we now             V dVd = J 0     

have one more meaning for the Jacobian earlier we said Jacobian is the determinant of the                

coordinate transformation from the spatial to the advected coordinate system and we are also              

now saying that it is the factor by which the volume element in the spatial coordinate system                 

is related to the moving one which is actually defined as constant with respect to time. So,                 

this relationship is useful so we are going to then use it later on for changing the coordinate                  

system as we need. 
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And we can now see what would happen when we take a material derivative that is we take                  

complete derivative in the Eulerian specification and see how this quantities are going to              

change. So, we need a two terms for our derivations. So, first term and second term are                 

enlisted here. So, consider this first term. So, the D is capital which means it is for the        d
dt           

advected material derivatives. So, which we see is that if you look at this we could just take                  

this in and then you see that  is nothing, but u​i​. So, this quantity can be written as this.dt
dxi  

Now, we want to then expand this here and we see that you can expand it by this formula                   

because we see that u the velocity is a function of all the 3 spatial coordinates because                 

velocity is specified with Eulerian specification. So, this is because of the choice Eulerian              

specification we have taken. So, this becomes a function of the 3 variables x​1​, x​2​, x​3​, or x y z                    

for that matter and which means that when we are looking at this derivative partial derivative                

we can then use the chain role and then express this as summation of 3 terms and that is∂ui
∂ψj

                   

why the x​1​, x​2​, x​3​, these 3 of them are coming. So, this cross terms show that you are using                    

the chain role. 

Now, once you have the chain role then you can also see that there is the summation there                  

and which means that we can use subscript notation to simplify. So, we choose an index                

which we did not use in other context. So, dummy index l. So, with the dummy index l we                   



then write the expression very simply here . So, it is a matrix of 9 elements varying       ∂xl
∂ui ∂xl

∂ψj
          

with i and j taking values from 1 to 3 and then l is telling the summation. So, we have the                     

summation coming here. So, this expression is then going to be used as follows. 
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So, we want to now look at the Jacobian and see what does it mean by taking a derivative of                    

the Jacobian. So, if you take a material derivative of Jacobian that is we write here. So, what                  

we do is that look at the definition of Jacobian and when we want to take a material                  

derivative we then have to apply to each of these terms. So, we can do it by parts. So, we      D
Dt                

can say what we are doing is differentiation by parts. 

So, when we do it by parts. So, you take the first one and then we immediately see that this is                     

what is coming. So, you can verify here. So, you see that is nothing but , which            ( )d
dt

∂xi
∂ψj

    ∂ui
∂ψj

  

means that is what we have put in the first term. Now, when we take the second one then that                    

comes here, the third one that comes here. So, by differentiation part by part we are actually                 

now expanding. 

Now, we already saw that this quantity can be then expressed as a function of x​1​, x​2​, x​3 and                   

then we used l as the dummy index and therefore, this term can then be written here in this                   

manner the same thing is true for other quantities also. Now, once we write this now you can                  

see that we have got 3 expressions with an ϵ. Now, take term by term and see what will                   



happen. Now if you see the first term you have got the indices , then i here j and k. So, for              ϵijk          

what values of l will this term survive? So, l can, l is a dummy index. So, it can take values                     

from 1 to 3. So, what happens is that if l takes a value matching that of i then you will have                      

with which means that there we can get these 3 out and then write that as for∂xi
∂ψ1

∂xj
∂ψ2

∂xk
∂ψ1

  ϵijk                 

example, the quantity that we just now saw. So, which means that the one value will take                 

only the matching value with I for the first term, it will take j for the second term, with k for                     

the third term. 

If it takes a value that is matching with any other things then what happens is that these two                   

terms will be coplanar and then the values will be 0. So, technically we have actually you                 

know 3 + 3 + 3 that many terms, but actually we will have only 1 + 1 + 1 because the                      

remaining two in each combination will go to 0. So, that is the reason why we write like that                   

and then we gather the terms. When we gather the terms we see that this and this together we                   

already know what that is, that is a Jacobian. 

(Refer Slide Time: 19:27) 

 

And we already have this terms separately we look it up earlier and this is nothing, but the                  

rate of dilation which is∇ So, this is nothing but the∇ definition which we wrote it as                   .u∇

. 



So, clearly we can see that this term this expression by inspecting what values of l will allow                  

the quantity to be nonzero allows us to go ahead and then make those manipulations and we                 

now see that it is coming with nice gathering of the terms showing that the material derivative                 

of Jacobian is nothing but Jacobian times at the rate of dilation, which we can write it in a                   

normalized manner like this. We can write it as . So, which means that we have a         J
1

Dt
DJ = Δ         

another way of describing incompressible fluids. 

We earlier described or introduced the concept of incompressible fluids say in that those of               

the fluids for which the material derivative of density is 0 or density of a control volume as it                   

is moving along the flow should not change. And here we can see that there is other way                  

describing it if ∇ is 0 it also means that is 0 for the incompressible fluids. So, which          Dt
Dj          

means that we have one more definition the Jacobian of transformation from spatial to              

advected coordinates does not change with the time then that is an incompressible fluid. So,               

there are multiple ways of defining the same things. However, basically we use this              

expression for another term that come shortly. So, this is only one of the steps in the                 

derivation of the transport theorem. 
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Now, the transport theorem derivation is very simple just four lines they are all in front of                 

you and the idea is as follows. So, if you take any quantity that is expressed with the density                   

then if you integrated over the control volume then you get the quantity out. So, you take the                  



example like this small f, if this small f happens to be like you know rho then the capital F                    

would be like the mass and in the case of small f being the concentration the capital F would                   

then be the amount of solute for that particular quantity. So, like this you know you can                 

actually think of any quantity that is specified as small f then respectively you have capital F                 

also defined. And because we do not want our theorems or derivations to be specified by the                 

geometry of the domain that we are looking at, it is always a good idea to write all the                   

expressions as integrals and then look at what is there. So, so capital F is written as an ,                  dV∫
 

 
f  

where f small f is a density form of the capital F and in the case of mass it becomes the                     

density itself and capital f becomes the mass. 

So, now, what we are doing is that we see that if you were to inspect what would happen to                    

the material derivative of the left hand side then you would see that we are trying to do the                   

material derivative of a quantity which is actually changing its position. So, you could see               

that of any quantity. So, any quantity you would like that to be . So, which D
Dt              lim

Δt→0 Δt
ϕ| −ϕ|t+Δt t    

means that if at it is elsewhere then you have basically a problem you cannot then    tt + Δ              

differentiate straight away. So, for us to do this differentiation we need to ensure that the                

integral e is actually over the same control volume of same volume. 

So that is why we need to do the transformation. So, here what we have is that we have dV.                    

So, we are then transforming the integration from over the volume which is defined in the                

spatial coordinates to the volume which is defined in the advected coordinates. So, we now               

go over the integration with V​0 and we already saw that dV is actually equal to JV​0​. So, this,                   

the transformation we already discussed so that we are introducing. Now, that the integration              

is over v not then we can safely take in. So, we take it in and when we take it in we know         D
Dt                

that there are two quantities that are occurring f and J. So, then we into differentiate by parts.                  

So, we did that by parts. So, there are two parts, f and J. So, you have got f and you have got                       

J and you then want to take this guy and we then can see that it is coming with two terms. So,                      

differentiate f first and then J next. 

So, we now can see that the integration is split into two parts and then we can separate them                   

out. So, the first part then will be separated out. So, and in the second part you can           JV∫
 

V 0
Dt
Df

0        



see that it is , and is just now saw that it is equal to the rate of dilation. So, we    f Dt
DJ   Dt

DJ                

introduce that here. So, we could see that the expression we derived here is immediately               

applicable here. So, we introduce that. And then we see that the terms can then the collated                 

and what we do is we expand this term. So, we know that is defined as material derivate.             Dt
Df       

So, we expand it. So, we already know that this operator is nothing but this operator. So, we                  

use that expansion and then we write the terms there. 
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And you could see that on the right hand side when you the expansion you then have the                  

combination of the terms. So, the f can go along with the u inside and we write this. So, you                    

have now a dot product and with a then we can change it also to a surface integral and that        ∫
 

V 0

            

is what is done here. 

So, what we have arrived at basically is a theorem that tells us that if there is a quantity a                    

density of a quantity small f that is being advected and we want to know what is the material                   

derivative of it and then we have it possible, and the way it is defined as follows the rate of                    

change of integral of any function f within a moving element is a sum of two terms, the                  

integral of the rate of change at one location and the net flow of that particular quantity over                  

the surface enclosing that element. So, you could see that it is defined with two terms here                 

and this basically is the transport theorem and we call often it as Reynolds Transport               



Theorem, so RTT. So, very often people refer to that as RTT. So, RTT is this particular                 

expression. So, you could then substitute various quantities for small f and see how the               

expressions turn out to be and those are the applications of the RTT. So, let us just take two                   

applications because we need them immediately for our next few sessions. 

So, one application you can take is what happens if that small f is nothing but the density                  

itself. So, small f is a density. So, you see that here we put a and here you put a . So, the               ρ       ρ    

same expression is written you put a  here you put a  here.ρ ρ  
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Now, you can see that the left hand side is giving you the material derivative of the mass of                   

the particular control volume which is moving and that is expressed as part two parts the                

change of the density at particular location and the flux of mass around the control volume at                 

which we are evaluating this. So, which we then expand and then we can see that                

immediately on the right hand side you could see that the term gives you the equation that we                  

already know. So, the left hand side has to be 0 because you cannot have mass change and                  

therefore, the right hand has to be 0 and immediately we see that the continuity equation has                 

come out of it. 

So, this has to be changed to be the volume integral and then it is both terms are over the                    

same volume and therefore, we can write like this. So, the intermediate step for this would be                 



like this. So, let us just write it off, so that we. So, the sum of the two integrands is over the                      

same integral. So, you can do the sum inside and therefore, you could write it is like this. So,                   

you could write like this. So, and if this were to be true for any control volume at any location                    

then; that means, that the integrand has to be 0 and that nothing, but is the statement of                  

continuity. So, you can see that continuity equation is an outcome of RTT with used for f.              ρ     

So, if you substitute the function f with the density then Reynolds Transport Theorem reduces               

to be continuity equation. So, therefore, it is a much more generally applicable equation we               

can say. 
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So, now, we can also then use it for quantities that can be expressed as advected quantities for                  

example, let us take momentum. So, you would like to write momentum as follows. So,               

instead of writing mass x velocity what we do is that mass . So, this would be the            ρ x u  x       

momentum. Now is basically mass into velocity. 

Now, we can see that here we have a situation where a rho is coming with a particular                  

function which gets advected. So, we want to now think what will happen in a general case.                 

So, we write it as rho G. So, in a G is basically a quantity that is getting advected and we                     

want to just look at how the expression turns out to be. So, what we do is that we substitute                    

small f is equal to G and then just expand it and we see that on the left hand side the     ρ                 

material derivative of G dV and on the right hand side we can then expand it. And we see   ρ                 



that you have this two terms and then when we separate the terms by applying this operator                 

on each of these quantities separately then you will see that you have got a quantity here and                  

here, and there is a small amount of algebra we can go through that because steps are quite                  

straight forward you can just do differentiation by parts. So, there is nothing more to that. 
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And then when we proceed further we see that while gathering that terms you have the                

continuity equations sitting in there. The moment you have continuity equation sitting in             

there we can apply it and then knock that off and then we knock that off and then you notice                    

that this is nothing, but operator operator and this is nothing but the continuity equation.      D
Dt           

So, what happens is that left hand side which means that whenever you        GdV dVD
Dt ∫

 

V
ρ = ∫

 

V
ρ Dt
DG      

have got a material derivative with integration where one of the quantities is then when             ρ    

you take that in then you should go like that. So, it goes in here. So, the  is coming out.ρ  

The reason is that the continuity equation is actually knocking off the term that correspond to                

the differentiation with respect to . So, now, this is very valuable because this gives us a     ρ             

hint that when we have a term like this, when we have terms like this for example. So, we can                    

then use the Reynolds transport theorem to write it in this manner and we can also apply this                  

for vectorial quantities because you could do it for each component at a time and therefore,                

which means that you could also do it in these situations. 



So, now, this is valuable because this is nothing, but momentum and this together gives you                

the rate of change of momentum and therefore, we can now see that rate of change of                 

momentum can be related to acceleration. So, you can see that this term is nothing, but                

acceleration in Eulerian specification. So, we have a way by which we can take this               D
Dt  

inside the integral and that is going to be useful for us in a moment in the derivation of                   

Navier Stokes equation. 
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With that we close this session. We can actually use this session essentially to find inputs for                 

the derivation, but otherwise if you are not very thrilled by mathematical jugglery then you               

can skip this and that still will not affect the way you learn this transport phenomena course. 


