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Lecture - 04 

Introduction to Tensors 
 

So, welcome to the session on Introduction to Cartesian Tensors. So, the concepts of tensors               

will be introduced to you, and we are going to take only a subset of the concept, namely the                   

Cartesian tensors. So, it will be sufficient for us to handle the concepts that are required for                 

this course. 

So, the Cartesian tensors are introducing the following manner. So, the idea is as follows:               

why do we need the tensors at all. So, in the subject transport phenomena, we are going to                  

basically describe physical processes; such as heating, cooling, or diffusion, or velocity that is              

actually evolving as a function of pressure gradients and gravity direction and so on. So,               

essentially whenever we are describing physical processes, it is important that we use             

quantities, which do not be affected by the coordinate rotations and transformations. So,             

tensors are basically mathematical entities that are used to represent physical processes, and             

we are going to use that in context of coordinate rotations and we are going to define in fact,                   

the tensors in the same way. 

So, normally whenever we encounter the quantity tensor so we are often coming up with this                

particular word order or rank. 
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So, people say a tensor of order 1, tensor of order 2 or tensor of rank 1 or rank 2. So, what we                       

mean by both order and rank is 1 and the same, it is basically telling how many elements will                   

be there for a tensor quantity. So, if you want to mention a tensor of an order n for example,                    

you can immediately say that there will be 3​n number of elements that will be involved. So,                 

which means that a tensor of order 0 means that there will be just 1 number we are talking                   

about for that quantity, which is basically a scalar. And then when we are talking about tensor                 

of order 1, which means a bunch of 3 numbers we are talking about and tensor of order 2 is a                     

bunch of 9 numbers and so on. 

And it is also important to know that this order is also having one more important meaning,                 

that is basically tells you how many different directions are involved while measuring that              

particular quantity that is being represented by the tensor. So, number of directions is              

important ok. So, as you can see for the tensor of order 1 we are having 3 elements. So,                   

which means that we are talking about only one direction, and to represent one direction we                

just need vector and which has again 3 elements. So, that way you can actually be familiar                 

with the tensor of order 1 is identical to vector and that is what is familiar to us, but we can                     

then make a very general definition of what is a tensor for any arbitrary order, and then use                  

these expressions to process the derivations that we need for this course ok. 



And one of the reasons why we also choose tensors is because; tensors can actually handle                

anisotropy very well. What mean by anisotropy is; that there are different values of a               

particular quantity in different directions. So, there is a direction dependence of the quantity              

because directions are already coming in here. So, the direction dependence can be handled              

very naturally. So, these are also the reasons why we are using tensors in this particular                

subject. It is possible to do the entire subject without involving tensors, but if we can                

introduce tensors write at the beginning, then most of the mathematics that we need, will be                

quite simple and also it actually gives us a broader perspective of this subject, ok. 

(Refer Slide Time: 03:47) 

 

So, we start off with tensors of different orders. So, we talk about the zeroth order first. So,                  

scalar is basically the tensor of order or rank 0. So, it is not common to use the word tensor                    

when we are talking about the scalars, though it is technically correct to say it is a tensor of                   

order 0, but people do not use the word tensor mainly because a scalar conveys the same                 

thing anyway. 

So, scalar is basically a quantity which is invariant across a coordinate transformation, which              

means that do not need any directions to represent that particular quantity. There are 0               

directions involved in measuring that particular quantity and therefore, it is a tensor of order 0                

and examples are basically temperature, energy, density, and so on. So, these are very              

familiar to us and we are again refreshing our memory about a technical term that we have                 



used earlier scalar field. So, which means that it is a variable which has its value depended                 

upon the location. So, scalar field is nothing but a scalar variable, which is a location                

dependent 1. 

So, there is still no direction at because there is the location itself is specified and that is                  

adequate, and the value of this scalar should not change when the coordinate transformation              

happening. So, which means that whenever we are having any arbitrary T, whatever is the               

values that we have given whatever it is, we must not have any change in the value of the                   

scalar variable that we chose. So, this is actually to prove that something is a scalar or not ok. 
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So, then we go on to describe or define what is the tensor of order 1. So, it is a vector which                      

is again familiar to us in engineering, but it is also basically tensor of order or rank 1, is not                    

again common to call vectors as tensors of order 1, but technically that is what it is. 

So, again we go through the definition, a bunch of 3 numbers can be called as a vector                  

whenever they transform using this particular relationship, whenever the coordinate system           

rotates given by the elements of the transformation matrix. So, the transformation matrix is              

defined by the rotation of any angle whatever if it rotated by multiple rotations, then you can                 

also put those things in. So, the elements of transformation matrix can be obtained, and the                

elements of the if they transform in the particular manner, then it can be called as a vector.   ⃗  u                 



If it does not transform like that then its not a vector it is just any arbitrary collection of 3                    

terms, which vary randomly when coordinate system is changing, and similar to the scalar              

field we can also defined what is a vector field. So, vector field is 1 which has 3 components                   

which are actually function of location. So, the location is coming in there. So, we will be                 

encounters a vector fields in this subject and therefore, we must be comfortable with it               

already. 

So, in other words we are already going to actually use what are called tensor fields. So,                 

tensor fields may sound the quite technical, but we are basically talking about scalar fields               

and vector fields, and because scalars and vectors are nothing but tensors of order 0 and 1.                 

Therefore, we are also going to use tensor fields as a part of this course ok. 
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So, we are now going to go through the definition of what is a scalar and what is a vector to                     

see whether we can use a definition to define those as scalars or vectors. So, what is going to                   

be proven is actually indicated here. So, we want to show that dot product of 2 vectors is a                   

scalar. So, what we mean by that is, when we take 2 vectors, and then look at dot product                   

then in any other coordinate system components of these 2 vectors could change, but the dot                

product will not change is will be the same value, numerically it will be the same value. So,                  

we want to prove that. So, how do we prove? The way we are prooving here the same steps                   

will be followed for all the derivations. So, if you pay attention to the sequence of steps, then                  



it will help you derive a many of remaining derivations also by yourself. The way it is like                  

this, first let us analyze what is provided to us what is given to us is that u and v are vectors                      

ok. 

So, the moment you say that something is a vector, it means that it follows the definition of                  

vector. So, this is a definition of u being the vector and this is the definition of v being a                    

vector, and what is the dot product. In the summation convention using the subscript notation               

a dot product is then written in this manner. So, the subscript is the same. So, what are we                   

using here? We are using that the subscript which is repeated can be replaced by the other                 

subscripts. So, will become the expression in subscript notation to indicate the dot  ui vi            

product of the and .⃗  u ⃗  v  

So, once we write the dot product here, then what we do is that we verify whether the                  

elements of this particular expression are they different when we change the coordinate             

system. So, the way we change the coordinate system is to say that the transformation matrix                

T is having some values, and what we do is basically we see the dot product in the new                   

coordinate system. The dot product in the new coordinate system is given by and of             u*p δv*q pq   

course, I notice that the subscripts are repeated.  

So, I just use this. So, this is the dot product in the new coordinate system. Now because u                   

and v are given as vectors, then we use a definition of vector for both u and v and when we                     

then look at this expression. And then see that there are two transformation matrices coming               

side by side, then we pull them together and when we realize that we have some                

simplification that is possible here. We see that we have got a subscript that is repeated here.                 

So, q is repeated here. 

So, I could get the index of p there and that is what I did here. So, what are we using here we                       

are using the property of δ to change the subscripts. So, we are using that and then writing                  

this expression. So, the moment we write here again we see one more simplification is               

possible, that is the subscript p same and i and j are here coming up. So, we again have the                    

property of transformation matrix T, where we saw that whenever there are two T’s coming               

together with one subscript that is matching then the other 2 subscripts can be taken for the                 

delta and that is what we have written here. 



The reason why this comes about is because the matrices transformation matrices have some              

properties, because they are actually transformation matrices of orthogonal coordinate          

system. So, therefore, whenever we see two T’s coming up the orthogonality relationship is              

giving us the δ. So, once we have and immediately we can see that we can add 1 of the j’s        δij              

on the other one then we can get the i. So, which means that element by element when we                   

multiply the components of u and v whether we did it in the new coordinate system or in the                   

old coordinate system we get the same numerical value. 

So, we do not have the values of T sticking in at all that is the idea. Basically, the derivation                    

is such that T is totally out of the expression before and after which means that the way u and                    

v transform its elements such that when you dot them up. Then the number will be the same                  

this is basically the proof of dot product of 2 vectors being a scalar ok. 

(Refer Slide Time: 11:35) 

 

So, then we also can use this to prove few other things, you can see that if is a scalar,                 vui i    

then if v that will be the same as u then it is obvious to see that is also a scalar it is a                 ui ui         

corollary and is nothing but 2​. So, it is quite easy to see that when dot product is a  uui i      u⃗| |               

scalar, then the magnitude of a vector is also a scalar. So, that is what we are trying to prove                    

here and the way we do is this is the magnitude of the in the new coordinate system, and             ⃗  u        

because U is given as a vector. 



So, we write the definition, this is the definition of a vector and once you have the definition                  

then we have got the two transformation matrices coming side by side. And then we use the δ                  

coming up to simplify that and then we can see that finally, we get the same combination of                  

the use. There is no trace of any transformation matrix elements are sticking around, which               

means that irrespective of whatever transformation we are talking about.  

For any arbitrary transformation of the coordinate system, the dot product of the vector with               

itself namely the magnitude of the vector is going to be invariant across the coordinate               

transformation, which means that it is a scalar. So, this is for any coordinate transformation               

matrix T. So, this actually shows you that whenever you have a functional form for a vector.                 

Then you can immediately see that if we can take some scalar quantities out by using the dot                  

products, then we know that those expressions will not change when the coordinate system              

changes. So, this has been used in some theorems which we will come out with later on in                  

this course ok. 
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Now, there are also other proofs that we can do, and these appear to be quite silly because we                   

thought always that they are vectors. So, for example, if ϕ were a scalar field then the                 ⃗ϕ  ∇  

must be a vector. So, we always knew that gradients are vectors. So, what is that mean by                  

proving that they are vectors? The idea is as follows; do the elements of the gradient change                 

the way, we have defined the elements of the vectors should change. So, if we can show that                  



then we show that the gradient of a scalar function is a vector. So, to do that what we do is,                     

given that ϕ the scalar field ϕ does not change when the coordinate system is changed.  

So, we do not to have to put a star on top of it etcetera. So, we define what will be the                      

gradient in the old coordinate system and then the gradient in the new coordinate system.               

Now what we see is that we want to express the new in terms of old. So, this is the new in the                       

new, coordinate system what is a gradient. So, here we use the chain rule so that we can                  

differentiate the unit vectors with respect to the old ones using the chain rule. So, this is                 

something that we already are familiar in mathematics, whenever this a variable that is a               

function of three other variables and you can use the chain function. 

So, chain rule for differentiation, which means that we are pretending that star is actually            x*p     

a variable which depend upon 3 variables namely ; so x​1 x​2 x​3​. So, if that was true then you        xi             

can use the chain rule. And if we use the chain rule then we immediately recognize that here                  

we have got in the second term, the elements on the transformation matrix T, because we                

defined the transformation matrix elements in terms of the differentiation also earlier. So, we              

recollect that and bring that in here. So, then we immediately see that, we get the new                 

coordinate system expressed in terms of the old with that T coming up. But then we now                 

realize that what we have written is basically we have written. 

So, we have basically written . Now this is nothing but definition of E being a     EE*
p = T pi i            

vector and if E was basically gradient of a scalar function. That means, gradient of a scalar                 

function is a vector. So, this is how we are proving essentially ok. 
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Now, furthermore we have a couple of more proofs to show. Divergence of a vector is scalar.                 

So, this is analogous to the dot product being a scalar. So, divergence of a vector is scalar. So,                   

we are saying that if u is given as a vector, then its divergence which is here given a ψ is then                      

can be taken as a scalar. So, the way we do it as follows. 

So, we express the u in terms of the old and new set of terms and divergence is expressed in                    

subscript notation as follows. So, we have got this dot. So, we want to indicate sum subscript                 

for this. So, you want to say and . So, this is nothing but , that is nothing but .       ui  ∇i        u∂
∂xi i      ∂xi

∂ui  

So, which means that we see that the subscript notation is allowing us to write this very                 

easily, that is what we are using here. So, we are using the same subscript here, same                 

subscript here to indicate that we are talking about a divergence ok. 

So, now what is remaining to be proven is that, if u were to be a vector then this is something                     

that you can take for granted because there is a definition of a vector. So, when you substitute                  

that into the expression then what we get is follows. So, we see here that when we substitute                  

we have got the p that is ticking inside the differentiation, but T is nothing but a                 

transformation matrix which is basically a number, which has owned a number for a given θ                

it just be a number. So, you can bring it out it is not location dependent. It is basically only a                     



relationship between 2 sets of axes it is not location dependent and therefore, you can bring it                 

out. So, when you bring it out then you can see this expression. 

In which the second one is again familiar to yours, it is basically nothing but the elements of                  

the transformation matrix. So, when we have got 2 transformation matrices coming side by              

side, using the subscript notation we see that it is basically a summation over the first index.                 

And we again realize that we are seeing that there is a simplification we can do. The second                  

indices are not the same first index is same. So, we can put the second indices into that δ                   

because of the orthogonality of the old and new coordinate systems and we have put that in                 

here. 

So we then see that; finally we can see that when we use the function of δ to simplify the                    

subscripts, you can see that i choose j as a common subscript. So, the other subscript i is then                   

put in there. So, we then choose expression to be having the dummy index i, we could also                  

choose the dummy index to be j that is not a problem. So, when we put that in here then we                     

get the divergence, which is defend in the old coordinate system. 

So, we see that whether you choose a new or the old, we see that the divergence is defined in                    

such a way that there is no element of the transformation matrix coming in, which means that                 

it is not dependence upon the transformation matrix, which means that it is invariant across               

the coordinate transformation, which means it is a scalar so that is how we prove that                

divergence of a vector is scalar ok. 
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Now, we want to move on from scalars to vectors to tensors which are basically of order                 

higher than 1; so order 2 for example. So, in this situation we have to remember that in high                   

school mathematics or may be even in the first year engineering mathematics, we may not               

have used tensors. So, it may be a new concept. 

So, here is where we have the opportunity to get them introduced, because it makes the rest                 

of the mathematics quite simple. So, let us get that clear. So, most of us have already                 

encountered stress, the stress we always defined as force for unit area. So, if you want to                 

define stress in this manner force per unit area, what we mean is basically you have got when                  

you apply force on one area element of area A. Then the stress that is expressed by that                  

sample with the hatched area is now basically .A
F  

But if you define like this then you would see that you cannot actually comment on how                 

many elements are required to determine the stress. Because it is very clear that we have got                 

only one direction for force and that is about it and we are just taking two numbers and                  

dividing. So, very often people think that the way they remember this expression, they              

remember there is only one quantity that is required. So, may be stress is a scalar, but that is                   

wrong because technically the correct way of defining the stress is like this. 



The reason is like this, whenever you want to define stress we need to remember that there                 

are 2 directions that are involved. One is the direction of load and another is the direction                 

which is normal to the plane. So, we have 3 combinations of both these directions that are                 

possible, so that totally 9 elements that you can have in a stress. So, technically we say that                  

stress should have 9 elements, and it is a matrix of 9 elements and it is a tensor of order 2,                     

because there are two directions we are talking about. So, this is the first quantity engineering                

which is of a tonsorial order higher than one, which we will be using very frequently. So, we                  

must not forget that stress is a tensor of order 2. And so we can use that to then define further                     

quantities as we go along ok. 
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So, we let us now define the tensor of order 2, and then we will also use the expression that                    

we have used for stress to check whether it is a tensor of order 2 or not we will come to that                      

shortly. So, technically the definition of a tensor of order 2 is given here. Any bunch of 9                  

numbers a​ij is bunch of 9 numbers any bunch of 9 numbers which transform using this role,                 

whenever the coordinate system has transformed using a transformation matrix T then that             

bunch of 9 numbers can be called as elements of a tensor of order 2. 



So, you could see that transformation matrix is coming twice; the reason is that there are 2                 

directions involved in defining the quantity a which is a tensor of order 2. So, therefore, we                 

can then say that is a tensor of order 2 ok. 

And technically the tensor of order 2 should be called as a Bisor, but very often people do not                   

use that they just use the word default is tensor. So, when people do not mention the order or                   

rank of a tensor, what they mean is basically tensor of order 2. And what are the quantities                  

that we are familiar with in our engineering education where these are actually known to us                

as tensors of order 2. 

Just now we mentioned that stress is a tensor of order 2, and we have also strain is a tensor of                     

order 2, strain rate is a tensor of order 2 and thermal conductivity which is again a concept                  

that comes from the high school physics itself, thermal conductivity also is a tensor of order                

2; thermal expansion coefficient, diffusivity, electrical conductivity, magnetic permeability,         

dielectric permittivity, gyration tensor for optical properties and so on. There are whole             

bunch of quantities that are actually of tensor of order 2. And some of these actually we are                  

not familiar to be using 9 different numbers to represent them, some of them we have                

reformed only 1 number to represent. 

So, under what circumstances a tensor of order 2 can have just one number and not 9                 

numbers, it will be clear in the next session. For now remember that the most generic way of                  

defining these quantities that are listed here, is to call them as tensors of order 2. 
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Now, here we want to show that Kronecker delta is a very special tensor, its a tensor of order                   

2, but it is a special one namely an isotropic tensor of order 2. So, what we mean by that                    

isotropic tensor is as follows. So, what we mean by isotropic tensor is that, there is no                 

direction dependency. 

So, please not that I am not calling it as a scalar, it is a having no direction dependency. So,                    

for any transformation matrix it will transform according to the form such that, the              

numerically the elements of a δ do not change there will still be 1 0 0, 0 1 0 and 0 0 1. So,                        

first of all if we want to prove this what we need to do is, that we have to take the definition                      

of a second order tensor which is known to us and then use the properties of the                 

transformation matrix and the δ to see what happens. 

So, first what we do is that we will look at this expression, and see that you can see the j                     

index is matching here. So, I can get the i index and put it there. So, that is what we did here.                      

And here again there are 2 piece 2 transformation matrices coming up. So, that i index is                 

common. So, I take that index that is not common and put them here ok. Now, we see that on                    

the left hand side we have got the δ and the new coordinate system on the right hand side we                    

got the δ, and the old coordinate system the indices are same and whether we put a star or not                    

the numbers are just simply again 1 or 0. 



Therefore, we can say that δ it will transform in such a way, that it does not have the elements                    

of transformation matrix sticking in, and it does follow the rules of a second order tensor. So,                 

it is a second order tensor but an isotropic 1. And we use the δ conveniently to represent any                   

property there is a isotropic property. So, what we do is that, we pick a quantity and then use                   

δ before it and say that this could be my property as I want. So, I use this kind of an                     

expression whenever we want to represent a property which is a second order tensor, but it is                 

an isotropic one. 

So, this is how we make use of the isotropic tensor, given by δ ok. 

(Refer Slide Time: 26:31) 

 

Now, there are some properties that we can now derive, based upon the definitions. So, one                

property is trace of a second order tensor is scalar. So, this is of actually tremendous                

importance. So, this is used in some of the constructions that are done in mechanical               

metallurgy using stresses, and we can actually realize that the meaning of those constructions              

comes from the very basic property of a tensor namely the trace of a tensor is actually                 

invariant across coordinate transformations.  

So, the way it works as follows; is a is a tensor of order 2, then first of all if it is a tensor of                         

order 2 we then write this definition, and then we see what is a trace. So, trace is nothing but                    

the sum of the elements in the diagram. So, these 3 sum. So, which means that the if a​ij is a                     



matrix then the trace of a​ij is nothing but , which is nothing but a​ii​. So, that is what we         δaij ij            

are doing here. So, trace of a is then given.  

So, we now take this quantity and introduce δ because we want to take a trace. So, once you                   

take the trace now you can see that the same properties of δ can be used to swap the indices                    

and then we get the 2 t’s and then we use a orthogonality of the coordinate systems to see                   

how to reduce the 2 transformation matrices into the δ, and then we see the trace comes out                  

here. So, you could see that on the left hand side. So, on the left hand side on the right hand                     

side we see that is the same quantity a, and all the diagonal elements are being summed up. 

Please see that this expression does not have any transformation matrix elements sitting in it.               

So, which means that this is free from any effects due to the coordinate system rotations,                

which means it is a scalar ok. Now, this has some connotation why it implies is that we                  

already know that stress is a tensor of order 2, what it implies is that the is the                σ11 + σ22 + σ33   

trace, and this is a scalar; which means that whenever you rotate the coordinate system the                

different values of the stresses will change, but the sum of the diagonal elements does not                

change. 

So, this is a property that we have brought out. Now this is not a property because it is a                    

stress, it is a property because stress is a tensor of order 2 and for a tensor of order 2 we have                      

this property coming up ok. 



(Refer Slide Time: 29:10) 

 

Now, we can actually now go on to define tensors of higher order. So, we will not go into                   

depth for each of these, but we want to define them so that the generic definition of a tensor                   

of any order is then evident. Tensor of order 3 is defined here you can see that the                  

transformation matrix is coming thrice, which means that there are 3 directions that are              

involved in measuring a, and look at the indices the indices of the new coordinate system are                 

the first positions of the transformation matrix T, and the indices of the old coordinate system                

come as a second index. 

So, it is a same thing as the vectors, its only that we have got more instances of                  

transformation matrix that are sitting in the definition and technically you should call as a               

trisor, but people do not use it and very often if we just say tensor 1 means tensor of order 2.                     

So, when you are referring to tensor of order 3 then you also mention the order or you can                   

also call it Trisor. So, there are some quantities that are known to be tensors of order 3 and                   

piezoelectric coefficient is one such quantity that we are familiar with. Very often, again it               

might be used as just one number, but that is a separate concept, it is known that if it is a                     

tensor of order 3 then you must have .33  

So, you must have 27 different elements that are required to determinant completely and the               

most general way ok. 
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Now, we can extend this definition to see whether we know some quantity that is also                

isotropic in that sense. So, we see that the quantity which is having 3 indices is Levi Civita                  

tensor or permutation matrix ϵ. So, ϵ just to recap ϵ is defined such that if i j k are cyclic, then                      

you get the value of +1 if they are anti cyclic then you get -1 and if they have any repeated                     

indices then you get 0. So, it is a bunch of 27 numbers with 3 +1’s and 3 -1’s and the                     

remaining 0’s. 

Now this permutation matrix was used by us to define a cross product, and we also used to                  

define the determinant of a matrix. So, we are going to use that to now check what happens                  

whether if we want to call this ϵ as a tensor then what does it imply. So, we see that the                     

definition of ϵ being a tensor now given here. Now from this definition can we talk about                 

anything? Now you see that the way the argument is done is as follows; whenever the indices                 

of are cyclic then what we are talking about is that the expression that we are written here  ϵijk                  

are is nothing but it is a determinant of the matrix T which is +1. And to remember you also                    

know that . a  a  ϵ  a1i 2j 3k ijk  

So, this was a definition of the Levi Civita tensor being used to define the determinants of the                  

matrix a. So, we are using this definition to check; now we already know that the determinant                 

of the transformation matrix T is +1, because we are using the right handed system right                

handed coordinate system. So that means, that whenever i j k are cyclic then we get the value                  



+1 here. And by the same thing when they are not cyclic then they are actually going into the                   

left hand system So, we get the magnitude of the determinant of T being -1, and then when                  

we have any indices matching; that means, that there is a coplanarity that is being used. 

And therefore, we get a 0 there, which means that gain the values that we are getting 1, -1 and                    

0 for cyclic, non cyclic and repeated indices is nothing but definition of ϵ itself, so which                 

means that on the left hand side what we have is ϵ itself. So, we have started with the old                    

coordinate system having ϵ, and we have landed up with a new coordinate system also having                

the ϵ with a same values for the same type of indices, which means that ϵ must be an isotropic                    

tensor of order 3 ok. 

So, this shows that whenever you have an isotropic property that has to be determined, then                

you could actually use an expression like this you could use . So, you can use this           ϵ  λ ijk       

expression to represent an isotropic tensor of order 3, which has just 1 number that is                

multiplied in front of it. So, tensor of order 4 is given here. 

(Refer Slide Time: 33:54) 

 

And you can see that the 4 instances of transformation matrix T that are coming in. You can                  

see that it is coming with the indices pi, qj, rk and sl. And you can see that the indices are                     

such the first one first letters belong to the indices of the tensor in the new coordinate system,                  

p q r s and the second set i j k l are indices of the quantity in the old coordinate system. 



So, the sequence of writing the transformation matrices same as for a vector definition, it is                

just that in the vector definition we have got only one term of transformation matrix coming                

in, whereas in the case of a tensor of order 2, we have got 4 of them coming in and you can                      

extend it to higher order also. And you see the multiplication of the transformation matrix it                

is not a matrix multiplication. 

Please note that the way the indices are it does not indicate a matrix multiplication. So, let us                  

not take this as a matrix multiplication of 4 transformation matrices one after other. 
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We have to be multiplied element by element the way the indices are given. So, just to                 

practice on the right hand side what are all the dummy indices you can see that i j k l are                     

repeated. So, they are dummy indices on the right hand side the free indices are p q r s which                    

means that the 4 free indices, because tensor is order 4. So, we have got 4 free indices the                   

technical name of a tensor of order 4 is Tetror, but very often people do not use that people                   

say tensor of order 4 ok. 

And there are quantities that we already are familiar. So, elastic modules or complains that is                

a tensor of order 4. So, tensor of order 4 is supposed to have 3​4 81 elements in it. So, there                     

must be 81 different elements to represent completely a tensor of order 4. However, we see                

that when we want to represent elastic modules we do not have 81 elements, we have just 3                  



elements 3 different module. So, how did 81 become 3? So, we will come to that in a later                   

class we will just know at this moment we will not discuss about that. 

So, there are some properties of tensors that we can discuss now, and we discuss these to                 

essentially make our mathematics little bit simplified. So, knowing that the quantity is a              

tensor enables us to make some operations. So, that is what we want to now go through. So,                  

what we do is that? There are something that we already know which will work with numbers                 

for example, addition, subtraction, etcetera some of them are commutative property some of             

them of distributive properties. So, which of these properties are applicable to tensors so, that               

we can make use of those in our derivations is our objective. 

So, we will go through some of them now, ok. 
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So, addition and subtraction are allowed for tensors. As long as the subscripts are same you                

can go ahead and add them then the tensorial nature of those quantities would not change. We                 

should not do this when the indices are not matching; that is the free indices are not matching                  

we should not do that in this case for example, if b and c are tensors of order 2, and we are                      

using the same free indices i and j for both of them then a is also a tensor of order 2. And you                       

could also do the subtraction here you have a + or a - it does not matter. 



So, if b and c are tensors of order 2 then a and b are also tensors of order 2. So, that is                       

guaranteed and you could also extend this to any order. So, you have seen here that we are                  

using 4 indices. So, f and g are tensors of order 4, which means that e and h are also tensors                     

of order 4 which means that we can use this to combine quantities to see how to generate                  

tensors of higher order. So, let us take for example: something like this, let us take you know                  

an expression like this. So, this is having 4 indices. So, it is a tensor of order 4. 

And let us take another expression. So, this also is a tensor of order 4. So, what would be? So,                    

if I make like this. So, what happens is that, this term and this term are both tensors of order 4                     

with the free indices i j k l. So, I can add them and then I get a tensor of order 4. So, I want to                          

give some new. So, I can give it as; so we can extend it further. 

So, the summation allowing us to preserve the tensorial nature is useful to generate quantities               

such as this and we will find a use for this kind of a quantity later on. Now there are certain                     

types of tensor that we talk about, particularly for second order tensor they are very               

important. 
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So, we characterize the tensors by some names. So, whenever we use the word like               

symmetric. So, when we say a tensor is symmetric tensor, what we mean is that the matrix                 

representation of the tensor is a symmetric matrix that is what we mean. So, here you can see                  



that i am using; so a​12 ​in both the positions, and 1 3 in both the positions and then 2 3 in both                       

the positions. 

So, you can see that this matrix is actually a symmetric matrix. So, this tensor a is a                  

symmetric tensor. So, it also means that symmetric as in the position of the indices. So, when                 

I swap the positions of the indices then the quantity does not change, that is the essence of                  

calling a tensor as a symmetric tensor. So, now, is it obvious that this δ is symmetric of                  

course, because whether you talk about 1 1 2 2 3 3 they are all ones, but or they  δ11                δ12  δ21  

are both zeros. So, therefore, it is a symmetric tensor of course, it is also a diagonal tensor                  

because you have only the diagonal elements that are present, but it is one very simple                

quantities that we know. 

So, just like we have defined the symmetric tensor we can also define; what is an anti                 

symmetric or skew symmetric tensor. So, what we mean by anti symmetric or skew              

symmetric is, that when we swap the 2 indices you get a minus of that quantity. So, that is                   

what is essentially given here. So, when you swap the indices i and j then you get a negative                   

of that quantity that is given here, which also means that the diagonal elements must be                

necessarily zeros, the reason is that when you swap the indices you must get negative. 

So, 1 1 must be same as minus of 1 1. So, e​11 = - e​11 it only possible when e​11 is 0. So, that is                           

what we are having here indicator, ok. 
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So, these are the type of you know characterizations we give for a tensor, and then there is a                   

theorem which tells you that any tensor can be expressed as a sum of symmetric and anti                 

symmetric tensor. So, you can take any second order tensor and then you can actually call it                 

as 2 parts and one part is symmetric and one another part is anti symmetric. So, we can do                   

that here. 

So, let us say a​ij ; a​ij is any arbitrary tensor of order 2. So, what we do is that we add and                       a2
1

ji  

we subtract . So, we are not done anything to the tensor a​ij​, but you see that the first term   a2
1

ji                   

here is the symmetric part and the second term here is a anti symmetric part. So, we can see                   

that any tensor a​ij can be represented using this kind of a summation that it can be a                  

summation of symmetric and anti symmetric parts. So, this is the symmetric part, and this is                

the anti symmetric part. 

So, this also helps us later on when we look at this stress tensor for example, we want to                   

separate it into the symmetric part and the anti symmetric part because we do not want the                 

anti symmetric part to come and make any presence in our equations for some reason that we                 

will discuss later on. So, ability to spilt a tensor in 2 parts is something that we will need later                    

on, ok. 
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Now, the anti symmetric tensor that is the skew symmetric tensor which has only 3 elements                

in it 3 zeros- so 3 elements and then the other three are just negative of these. So, this can be                     

also represented as a vector because there are only 3 numbers actually you have you can see                 

that you have got only e​12​ e​13​ and e​23​. So, they have only 3 elements. 

So, we could actually generate a vector out of that. So, the way this vector and this tensor                  

related is by the Levi Civita tensor or ϵ and that is given here. So, you can see that the                    

quantity here this is second order and this is a first order. So, you could see that the there is a                     

relationship between a first order and second order tensors if the tensor happens to be anti                

symmetric. And therefore, such quantities are also called as dual tensors, and this particularly              

as of use for us later on because we can actually use this expression to simplify some of the                   

terms later on in some of the derivations. 

So, the idea that when you swap i j you get a minus sign there is also preserved in the right                     

hand side you know that if i, j, k were to be cyclic and i j are swapped, then you go anti cyclic                       

and you get the minus value. So, the sense is preserved only thing is that we are actually                  

relating a second order tensor, with a first order tensor using a third order tensor perhaps this                 

is a first time that we are encountering, how tensors of different order can come together. So,                 



we see that whenever you have got these quantities, you see that you can write equations                

where one is a tensor of order n. 

And another is a tensor of order m and you can in many situations write the quantity to be a                    

tensor of order n+m. And this kind of a form will come again and again in many of our                   

expression later on. 
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Now we can now go ahead and start proving some quantities to be tensors of order 2. Till                  

now we have proven some quantities to be vectors or scalars. So, we can prove some of them                  

to be tensors of order 2, and what do we need to prove them as tensors of order 2 we basically                     

need only the definitions of tensors. So, one thing what we are writing here is that an outer                  

product of tensors is a tensor. 

So, this is a theorem you can prove that shortly. So, this is a theorem, and we already know                   

that the dyadic product of 2 vectors is nothing but outer product of 2 vectors. So, which                 

means that if we knew u and v to be vectors then a is a tensor of order 2. So, we can construct                       

tensors of higher order from tensors of lower order here quite easily, and this is actually using                 

the symbol � and these 2 are basically saying the same thing, ok. 
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So, the inner product also is a tensor is another theorem, this also can be proven in various                  

situations. So, what we mean by inner product is that some of the indices are dummy. So, you                  

can see here that you can see j and k are repeated. So, on the right hand side j and k are the                       

dummy indices and i is the free index on the left hand side i is a free index. So, you can see                      

that the way b and c are multiplied is a inner product, you cannot call it as a dot product,                    

because dot product we are familiar like this you know .vui i  

So, we are not familiar to using the word dot product whenever we are taking higher order                 

tensor, but inner product is a very generic way to say that does not matter how many indices                  

are there for the 2 quantities b and c, if some of the indices are repeated then it is a inner                     

product. Now what is a non repeated index will come on to the left hand side as a index of a.                     

Now dot product of 2 vectors is nothing but inner product of 2 vectors and the theorem says                  

that inner product of 2 tensors is a tensor. 

So, inner product of 2 vectors must be a tensor, and because is a inner product it must have                   

reduce reduction of the order of the tensor. So, we go from order 1 to 0. So, tensor of order 0                     

is scalar and that is way we write it as a scalar. So, what we are stating here is nothing but the                      

same statement as here. So, what we are stating is inner product of 2 tensors of order 1 is a                    



tensor of order 0, and here we are saying inner product of a tensor of order m with the tensor                    

of order n is a tensor of order m - n. 

So, here it is 1 - 1 = 0 and that is why we get the scalar. So, this is a theorem and it can be                          

proven. So, we can see that u​i ​v​i must be a tensor of order 0, we went add and proven it                     

earlier, but we now know that there is a theorem to say very generically how this can be                  

handled. Now you can also see that we can define double dot product of 2 tensors just like we                   

have define the dot product of 2 vectors like this with a double dot, and that is nothing but the                    

inner product of 2 tensors of order 2 where both the indices are repeating. So, there is no free                   

index so; that means, this must be a scalar and as per the theorem this must be a scalar also. 

So, one can actually use this to actually deduce lot of things about the tensors that come                 

together ok. 

(Refer Slide Time: 47:18) 

 

Now, contraction theorem is one theorem that is also useful to actually go ahead and assume                

some of proves has actually not required, what contraction theorem says is as follows.              

Whenever there are certain numbers of indices for a tensor, then if you repeat any of the                 

indices then you are doing a contraction operation. So, let us say you have taken a tensor of                  

order 2 a​ij​. If i repeat the index; that means, if i say a​ii ​; that means, what i have done is a                       

contraction operation over the indices i and j, and the number of free indices here is 2 and this                   



is 0 here. So, whenever we do a contraction operation we actually reduce the order of the                 

tensor from m to m-2. The theorem says that whenever you do a contraction operation of a                 

tensor, the resultant quantity is also tensor, but the order is of m-2. 

So, what it implies is that when you do a contraction operation of a tensor of order 2, then the                    

resultant is a tensor of order 2 minus to 0 tensor of order 0 is scalar. So, what we are also                     

saying is that the trace of a is a scalar. So, this is something that we have proven separately                   

earlier, but from this theorem also it is evident that is nothing but contraction theorem               

applicable to second order tensor is what is giving you the fact that the trace of a tensor is a                    

scalar now you could also apply it to any higher order terms, ok. 
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Now, this is the one of the powerful theorems that are used to derive quantities that we do not                   

know as tensors, but we realize that tensors and this theorem is called the quotient theorem.                

So, the quotient theorem is actually a very settle concept, what it says it as follows. We will                  

define it in the respective vectors and then we can extend it to higher order tensors also,                 

quotient theorem is applicable for tensors of any order what it says is as follows. If you knew                  

that in every coordinate system u​i and v​j which are basically 2 vectors are always related in                 

this form, in every coordinate system they are they are represented in this manner  v  ui = bij j              

then b​ij​ must be a tensor of order 2. 



So, it is like this you know when you knew this way that this is a tensor of order something                    

this is a tensor of order something and the way this is multiplied in every coordinate system                 

then it implies that this must also be a tensor of order appropriately taken. So, this is idea.                  

Now the outer product being a tensor is when you knew these two are tensors, but here it is                   

not these 2, it is these 2 which are tensors and we are talking about the tensor will order of                    

what is here ok. 

So, it is not actually a direct extension of outer product or inner product being tensors. So,                 

that is why we need a separate theorem to talk about this now when we apply it for higher                   

orders we can also see that in every coordinate system if a​ij and c​ik are related like this, then                   

b​jk also must be a tensor of order 2 and we can also go ahead. Now we can use this quotient                     

theorem to deduce that a stress must be a tensor of order 2, because in every coordinate                 

system stress is actually define in this manner and we know that this is a vector of order 1,                   

tensor of order 1 vector and this is a tensor of order 1 vector. 

So, here is 1 and here is 1. So, this must be tensor of order 1 + 1 tensor of order 2. So, the                        

stress being a tensor of order 2 is actually a result of quotient theorem that is about it that is                    

enough for us to believe that stress is a tensor of order 2 and there is a quotient theorem to                    

also prove the same thing, ok. 
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Now, the proof of the quotient theorem is given here, the proof is actually like this you go                  

step by step first we say that because u is a vector we write this, this is nothing but the                    

definition of u as a vector every vector has to follow this definition. And then we say that in                   

every coordinate system u is written in this way. Therefore, I can write in the old coordinate                 

system in this manner itself, and if v​j is a vector then I can expand v​j as this. Now what we                     

realize that there are two transformation matrices that are coming together, then I bring them               

together here and then we realize that we can actually look at this subscripts, and see that we                  

can actually collect them and we see that when we express the left hand side in the new                  

coordinate system coming here. 

Then when you subtract right hand side and left hand side, we see that in every coordinate                 

system this expression must be 0. And this is for any arbitrary and arbitrary . So, which            ⃗  v    ⃗  u    

means that this is only possible when is always equal to this, when this is always 0 and       a*pq            

this is always 0 when for example, in every coordinate system this is true. Now this is                 

actually a definition of a as a tensor of order 2 and that is exactly what the quotient theorem                   

says. What it says is that in every coordinate system if you wrote in this manner, where U and                   

V are tensors of order 1 then a is a tensor of order 2. So, that is what is been proven. 

So, which means that we can now go ahead and use quotient theorem for the things that we                  

do not know as tensors to deduce that they are tensors ok. 
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So, some examples are given here. So, let us look at the heat conduction for example, heat                 

conduction, fourier heat conduction is given where heat flux is related to the temperature              

gradient in this manner where k is a thermal conductivity. 

Now, we know that on the left hand side is a vector of order tensor of order 1, and on the                     

right hand side this is a tensor of order 1 both are vectors the heat flux and the gradient or                    

temperature or both vectors and therefore, the most general way to describe the k is that it is a                   

tensor of order 2. Using the quotient theorem, we can deduce that it must be a tensor of order                   

2, that is the most generic way of saying it and then of course, we can go ahead and make that                     

into a more specific form when we know more about the thermal conductivity. 

Similarly thermal expansion coefficient, we know the thermal expansion coefficient is given            

by this expression we already know that on the left hand side σ is a tensor of order 2 on the                     

right hand side we have got ΔT, Δ is a difference and T is a scalar. So, tensor of order 0 and                      

this is order 2 so; that means, the thermal expansion coefficient should be a tensor of order 2                  

ok. So, that being tensor of order 2 is adequate coming from the quotient theorem. 

And the later on we will see that when we have only one number to represent thermal                 

expansion coefficient. There must be some other piece of information reduce in 9 elements of               

thermal expansion coefficient to just one, but the most generic way of representing α thermal               



expansion coefficient using a tensor of order 2. That is right way to do the last one last                  

example is Hookes law. So, you could actually see the stress and strain being linked in a                 

linear manner is in the Hookes law. So, the strain and the stress are tensors of order 2. So, the                    

most generic way of representing a quantity that comes there using the quotient theorem must               

be using a tensor of order 4 and this is how for example, from expressions that we know                  

already we can deduce the most general tensor order of any quantity. 

Later on we can see whether we need such a higher order term or is it sufficient to have a                    

lower order tensor quantity, it will be represent that what to the quantity, ok. 
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So, at this moment we stop, and we will have some assignments to let you practice with what                  

we have thought. So, we will have situations to prove something is a tensor or not, and to use                   

the various theorems about the tensors that we have derived till now to practice these               

definitions. 


