
Transport Phenomena in Materials
Prof. Gandham Phanikumardou

Department of Metallurgical and Materials Engineering
Indian Institute of Technology, Madras

Lecture - 03
Coordinate Transformations

So, welcome to the session on Coordinate Transformations. In this session we will be

using the subscript notation which we have covered in the last 2 sessions, and we will

apply these coordinate transformations to define certain parameters that we will be using

in this  course  transport  phenomena.  And we will  also be  using these expressions  to

derive some of the equation that we will need later on.

This coordinate transformation has 3 components, which is basically relocation of the

origin of the coordinate system, and the dilation of the unit cell, which is basically either

contraction or expansion, and then rotation of the coordinate axes. We will be taking up

only the rotation at this juncture; we will look at the other 2 aspects later on as we will

need.

(Refer Slide Time: 01:00)

So, we will  be looking at  what  are  called  Cartesian coordinate  system which means

basically  we  are  looking  at  orthogonal  coordinate  system,  and  what  we  mean  by

orthogonal coordinate system is indicated here. Let us look at for example, here x y z



axis defined as x1, x2, x3 with hat symbol showing that they are the 3-unit vectors along

the 3 normal directions.

What we mean by the normal directions is that when we take a dot product of any unit

vector with itself, then we would see that it should be equal to 1, and then whenever we

take the dot product respect to something that is normal to it then we should get a 0. So,

this part is defining the orthogonality of the axis. We also have another aspect that is

embedded in this particular system namely the so called right handed system. So, we

could choose the coordinate system to be either right handed or left handed. So, what we

mean by right handed system is that if we take a cross product of x1 and x2, and then dot

that with x3, we should get one if we get -1 then it would be a left-handed system and the

dimension what we get for the triple product x1 x2 x3 .

This gives us whether the unit cell has been normalized with 3-unit  vectors being of

magnitude 1 or not.  So,  we can choose these to be different  in any other coordinate

system, but in Cartesian coordinate system particularly the orthonormal x y z axis that

we are very familiar with, then we are going to use the way we are defined here, with the

3-unit vectors normal to each other.

(Refer Slide Time: 02:42)

So, by coordinate transformation as I mentioned earlier we are only going to look at the

rotation. So, assume that the origin of the coordinate system has not changed, and we

have only done the rotation. So, ensure that the way we have describe the 3-axis x1 x2 x3



ensure  that  the  handedness  has  not  changed.  Namely  the  right-handed nature  of  the

coordinate system is preserved.

So, this is what we mean by the rotation of the coordinate system as I have shown in the

image the location of the 3-unit vectors has now changed. Now when that changes how

do we then represent the new coordinate system in terms of the old coordinate system

and vice versa? And then if there are quantity such as vectors then how do we represent

the components when the coordinate system has changed. So, this is the task that we

have ahead for this session.

(Refer Slide Time: 03:33)

So, the example transformation can be then taken up and we will do a 2D rotation so that

we can  derive  the expression  easily.  So,  what  we do is  basically  we will  rotate  the

coordinate  system about  the x ray axis,  and we rotate  by a certain amount  which is

basically given by θ angle, which I have given here. So, which means that basically the

new and the old x3-unit vector is coinciding, but the x1 and x2 are now rotated by certain

angle θ, that is given here. So, what we will do is we will derive how we can represent

the unit vectors with respect to the older ones and vice versa.
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So, what for that what we do is basically, we draw a line of unit length about the unit

vector which we want to express. And so, what we want to do first is, write the new unit

vectors in terms of the old ones. So, what we do is that let us first write x1 in terms of the

older coordinate systems.

So,  x1
¿
is the new one. So, this is the new one. So, we take a unit vector here we have

shown it here. So, this length is 1. So, if this length is one and the angle it makes with

respect to the old x1 axis is θ, then we can see that the components along the x1 and x2 are

then given by cosθ sinθ respectively which means that we can express x1
¿
in terms of x1

and x2 as given here. So, similarly we can also express the x2
¿
, and for that what we do the

same way we take up a unit vector along the x2
¿
.
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 and then take it is components along x1 and x2 the old coordinate system, and then we

see  that  when  we  express  that  in  terms  of  the  old  coordinate  system  we  get  this

relationship  x2
¿
=−sin θ x̂1 +  cosθ x̂2. We can see that the sine theta and cos theta have

change their position and then there is a minus sign coming, that is going to be of use

later on to see what will happen to the transpose of certain matrices that will be talking

about. So, at this junction we can just write this, and do we need to write x3
¿
in terms of

anything else. So, we see that we do not need to worry, because we know that  x3
¿
is a

same as x3, because the rotation is about the x3 axis. So, x3 axis has not changed it is

orientation at all. So, we can just leave it like that.

So, we now have basically the 3 new unit vectors in terms of the 3 old unit vectors. So,

we can then connect them and see how those expressions look like.
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So, that is then given in this form here. So, you could see that these 3 are the equations

that we have now come up with. So, x1
¿
 in terms of x1 x2 x3 x2

¿
in terms of x1 x2 x3  and then

x3
¿in terms of  x1 x2 x3. So, we can now represent these 3 equations linear equations in

matrix forms the reason why we are going to do it in matrix form is because we could

then give symbols to those matrices. And then use a subscript notation to make the same

expression in a very brief manner. So, what we do is that we write it in the form of

matrix multiplication.

So, let me highlight and show you how this looks like. So, if  x̂1 is then given by this

multiplied by this that is x̂1cosθ+ x̂2 sinθ+ (0* x̂3 ). So, that is how we are doing. So, this

is the typical way matrix multiplication is done in the engineering mathematics courses.

So, this must be familiar to us. So, what we now want to do is that we want to then write

these expressions with some symbols. So, that using the subscript we know the positions.

So, that is what we are going to do now. So, we want to call each of those terms as the

elements of a matrix T. So, T11T12T13 are then nothing but cosθ sinθ and 0 respectively.
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So, we could then write this expression. So, we are now using the short form T. So, that

we represent that as a matrix. So, this matrix is nothing but the transformation matrix. So

this, this has a specific name. So, that is basically coordinate transformation matrix. So,

this is unique to the kind of rotation that we have done. So, when the rotation angle

changes  then  the  elements  of  this  matrix  also  will  change.  And the  matrix  itself  is

expanded here.

So, when we look at the expression here; so if you notice the expression; so here in this

expression  if  you  notice  here.  So,  let  us  just  write  x1
¿
.  And  we  write  this  as

T 11x1+T 12 x2+T 13 x3. So, you could see that there is a summation that is being taking

place,  and that  is  about  the  second index here.  So,  we could then use  the  subscript

notation to indicate. So, when we have a dummy index in the second position of T, then

we can see that we get the summation implied by the subscript notation itself. So, that is

what we are going to do here.

So, here basically what we have written here is that we have use the second index as a

dummy index matching with that of x. So, that it is implying that it is summed up over

the i index from 1 - 3, and the first index corresponds to what is the new unit vector that

is being expanded. So, in a very brief manner we are able to write the transformation of

the unit vectors from old to new using this expression. So, we could also do the reverse.



So, when we do the reverse we have very interesting observation to make. So, let us go

through that exercise now.

(Refer Slide Time: 09:53)

So, the reverse is as follows we have to now write the old unit vectors in terms of the

new ones. So, what we do is same as what we have done earlier. So, here we have seen

that there is a unit vector which we want to expand in terms of the components along the

new axis. So, the unit vector is along the x1 the old one and it is components are given by

cosθ and sinθ and we could also see that the expression comes like this. So, x1 in terms of

x1
¿and x2

¿are written here. So, we could again expand the x2 in terms of the 2 components.
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So, we do the same thing here. So, we take up the unit vector along x2, and then take it is

components along x1
¿
and x2

¿
and then we obtain this equation. And the equation for x3 is of

course, known to us because we have not changed it is orientation at all. So, you would

write this way. So, we have now also the old unit vectors in terms of the new one. So, we

could again express these 3 relationships as set of 3 equations and with a matrix form.

So, that is what it done here.

(Refer Slide Time: 11:05)



So, they are expressed here as 3 equations, and then they are then converted into a matrix

form here and this is a transformation matrix here. So, this is a transformation from the

new one to the old one. And we can see that there is one difference with respect to the

previous matrix and that comes at these terms. So, you could see that the minus is now

appearing on the first row. Earlier when we are expressing the new unit vectors in terms

of the old ones the minus was appearing here. And in terms of the old unit vectors here

we have getting this. So, this is the only difference that we are getting otherwise the

elements are same. We also notice that it is a transpose of the other matrix.

And then we want to expand this in terms of the subscript notation, we write it here in

this manner. And you could see that we are able to use the same symbol Tpi same as

earlier the reason being that the summation is now over the first index of T. Whereas, in

the earlier case it was over the second index of T. So, by changing the index we are then

able to retain the same transformation matrix T. So, I want to just alert you here about

this particular difference, because it is it is very important that we do not lose out on this

particular difference.

(Refer Slide Time: 12:21)

So, I want to highlight here you see that when we are expressing the new unit vectors in

terms of the old ones or old ones in terms of the new ones, the transformation matrix will

come as Tpi only. And then the index p is meant for the new coordinate system, the index

I  is  meant  for  the  old coordinate  system.  However,  the  way these 2 are  different  is



evident because the summation is over the second 2 indices here, but here it is over the

first and the index of x* .

So, you could see that the way we multiply the 2 matrices is different.  The way we

multiply the first one is this way, and the second one is this way. So, you could see that

that is a difference why we are able to write the same expression, but just swap the

indices over which summation is happening and then retain the meaning. So, this is also

coming up because of one particular property of the transformation matrix. Namely for

the transformation matrix, we realize that its inverse is the same as the transpose. So, this

property is what allows us to write this.

And  the  reason  why  this  property  comes  up  is  because  the  determinant  of  the

transformation matrix T is unity it is one because of that this particular property comes

up. And therefore, then we are able to write. So, what we now need to remember is only

one expression here. So, whether it is new in terms of the old or old in terms of the new,

we have to remember that x* is T times x and the indices should be such that you keep

one index. On the left side one index on the right side and then put them side by side

here below, and then the expression would work for you. And the rest of it basically is

subscript notation because you know how to expand this ones you know the subscript

notation the dummy index is i.

So, you sum up over the i index. So, that is how you can get the new unit vectors in

terms  of  the  old  ones  or  vice  versa.  So,  there  are  other  ways  of  defining  the

transformation matrix  T. And I would like to then cover them because different  text

books may adopt different ways of defining them. So, the idea is how do we get the

elements of transformation matrix T for any given arbitrary rotation of the coordinate

system. So, the way to derive is being illustrated here. So, when it is only one θ about x3

axis we already know how to do that, but any general case we can just do that here.

So, let us look at the transformation which is given in terms of the expression here. And

when we expand it we are getting this expression. So, we take p value to be 1. So, we are

looking at the first unit vector of the new coordinate system and expanding it in terms of

the 3-unit vectors of the old system. Now you see I want to get T11, and that is what I

want to now check. So, I want to get this now we can see that if we were to pretend x1 x2

x3, the old ones as well as the new ones were to be like variables. Then differentiating



this expression with respect to this variable will get me only this term out. So, that is

what is being done. Here a partial differentiation is going to get me that term. So, you

could then look at the entire expression, in this form which is very, very brief it just

shows you that  by  looking at  the  differentiation,  you could  get  the  elements  of  the

transformation matrix in this form.

So, the convention is that first index goes to the numerator, and the second index goes to

the denominator, and p corresponds to that of the index of the new coordinate system, i

correspond to the systems of the old coordinate system. So, if you stick to this kind of a

connotation then we will  not make a mistake.  So, you could you could arrive at  the

elements  of  the  transformation  matrix  by  looking  at  the  differentiation  and  this  is

particularly useful when the transformation is given as a functional form, then we could

use this kind of an expression.

We are now taking up the reverse transformation the old in terms of the new ones, and

here you can see from the previous slide we can see that here we have got star on the

left-hand side which means that the new ones, in terms of the old ones and here I am

writing the old ones in terms of the new ones. So, whichever way we write we are seeing

that we are getting the same expression. So, we can get the same expression, which is

very interesting. So, it just shows you that when you want to express the elements of

transformation matrix, you take partial differentiation of the old and the new, and the

order is not important the reason why it is happen is of the same principle basically the

inverse of T is same as the transpose.

So, here you can see that the index positions are changed and what it implies is that we

are  taking  the  transpose,  when  we  are  doing  the  second  way  of  differentiating  and

therefore, the inverse transformation is giving you the same Tpi. So, it does not matter

now how to remember the expression of T. You just differentiate old in terms of the new

coordinate system or the vice versa and as long as you are able to remember the position

of the indices the first position Tpi we write.

So,  we  remember  the  first  index  corresponds  to  that  of  the  new,  second  index

corresponds to that the old coordinate system, then the expression is going to be correct.

So, if we make a swap here then we will have a transpose of those matrices coming out.



So, we should watch out for that; so an alternate way of defining the elements of T when

the unit vectors are given in vectorial form is shown here.

(Refer Slide Time: 18:37)

So, here what we do is that instead of looking at partial differentiation, we basically look

at as a dot products. So, we do the same exercise. And we see that we want to get T11 out.

So,  what  we  do  is  basically  we  realize  that  from the  orthogonality  property  of  the

coordinate system. If we were to dot this with something that will leave behind only this

term and not have these 2 terms which means that if I were to dot that with x1 then what

happens is the first term will remain the second because it is x2 dot x1 it will drop of third

one x3 dot x1 it  will  drop of. So, I could then imagine that.  T11 is nothing but a dot

product of x1
¿
and x1 similarly the other terms.

So, you could also imagine the elements of the transformation matrix as dot products of

the new and the old coordinate system. So, which means that in case the new coordinate

system axis are given as a vectorial form of the old coordinate system then we can just

do the dot product and we can get all the 9 elements of the transformation matrix directly

using this kind of relationship. So, either way we need to get the matrix T so that we can

define the transformation completely.
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So, there are certain properties of the transformation matrix which are derived from the

nature of the coordinate system that is being used here which is basically the orthogonal

coordinate system. So, these properties of transformation matrix are then used to reduce

some of the expressions as we derived various quantities later on. So, we know that both

the new and old coordinate systems are orthogonal.

(Refer Slide Time: 20:25)

And which means that when we dot the new unit vectors we should get one, and this is

true also for the old ones. So, each of these the way we proceed as follows. So, we know



this form the orthogonality. What we do is that we take up each of these vectors, and

express them in terms of the old vectors. And then when we express them in terms of old

and then do the dot, we see that we get an expression which involves transformation

matrix being multiplied twice. And then we will see whether the value is unity or 0. So,

using the first expression that is express x1
¿
 in terms of x1 x2 x3 and then dot it with itself

then we will see that this expression, which is basically if I want to expand a T1i T1i i=1-3

is equal to 1. So, this comes up because we are actually what we are doing is T11T11 + T12

T12 + T13 T13 .

So, this expression is going to be 1, because of the orthogonality of the new coordinate

system. And this one I want now imagine as if it were to be coming from 2 indices of a δ

, and I want to take those 2 indices to be what are here. And we know the property of δ .

So, we just write it  as one. So, the reason why we write this because we see a very

general form that is evolving here when we take the orthogonality, relationship were x1
¿

and x2
¿
we get a 0. So, here again we choose those 2 indices here, and realize that the

expression is actually valid.

So, we can then generalize saying that if the index is such that it is m and n then we can

write the expression using δmn whenever there is a summation of i the other 2 indices can

be used for the indices of δ . And this is basically nothing but statement of orthogonality

of the coordinate systems both new and old. So, when we write the orthogonality of the

new  coordinate  system  express  in  terms  of  the  old  coordinate  system  we  get  this

expression. Where the second index is being used as dummy index, but if we do the

reverse that is we express the old coordinate system orthogonality and express the old

coordinate system unit vectors in terms of the new ones and do the same analysis. Then

we see that the dummy x index is actually in the first position of T.

So,  we can  see  that  either  way we are  getting  the  δ , on the  right-hand side.  So,  is

essentially  what  it  implies  is  that  whenever  there  are  2 t’s  coming up together  then

inspect there are 2 indices. And let us say the first index is matching. Then put the other

2 indices here. So, that is how we can write the expression using the subscript notation.

And  there  is  no  deeper  meaning  in  this  expression,  than  the  orthogonality  of  the  2

coordinate systems.
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Now, there are some more properties of the transformation matrix that we can use we

can  say  that  transformation  matrix  is  completely  determined  by  the  rotation  of  the

coordinate systems. So, whenever we know the rotations by what axis by what amount

then we can then determine the elements of T completely. Determinant of T is 1. The

reason why this is so because, we are talking about a pure rotation, we do not want to

consider situations where the new unit vectors when you look at the triple product it is

not different from 1, the unit cell is not expanding or contracting the unit cell is of the

same volume we are only rotating the coordinate axis.

So, because of  that  the determinant  of T will  be 1,  and inverse is  the same as it  is

transpose  we  have  come  across  that  already  and  orthogonality,  leads  to  these  2

relationships. So, these are the 4 aspects of the transformation matrix to summarize, what

we have done till now. So now, we are going to use these to make some more analysis.
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So, why do we do all this? The whole idea is as follows.

So,  there  are  certain  quantities  which  we want  to  represent  irrespective  of  how the

coordinate system is raid out. In other words, if take the example of a u⃗ . So, the  u⃗ , if

you look at it is components in the old coordinate system the components are u 1 and u2,

and in the new coordinate system the components are u1
¿
and u2

¿
.

Now if this  u⃗  were to be for example, a velocity vector or a gradient etcetera, then we

know that it sense of the magnitude and direction does not change whichever way we

chose the coordinate axis to be, which means that. When we rotate the coordinate system

from x1 x2 to x1
¿
and x2

¿
 then the elements u1 and u2 should change over to u1

¿
and u2

¿
, and

maintain the direction and magnitude of the vector. So, the sense of the vector should be

preserved  when  we  rotate  the  coordinate  system,  and  only  those  quantities  whose

elements  are  following this  sense  being preserved will  be actually  called  as  vectors,

otherwise it just becomes a bunch of numbers which change randomly when we change

the coordinate system. So, this is the principle behind writing this expression. And let us

just go through the small algebra that is behind; so identical to what we done with the

unit vector.

So, let us look at the elements. So, these are the 2 expressions we have taken we have

taken a 2D situation, and we have taken this angle  θ exactly like what we did in the

previous exercise. So, to know how the elements u1  u2 are written in terms of u1
¿
and u2

¿
.
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What we do is as follows.

(Refer Slide Time: 26:01)

We first write the u in terms of it is components. And then what we do is that each of

these unit vectors, which are old unit vectors, which we write in terms of the new ones.

And we already have those new ones. So, this is the first one, and this is the first one, and

this is the second one, this is the second one, and the third one of course, is unchanged

because we are rotating about the x ray axis.



So, we have those expressions coming in. So, once we write the old coordinate system

unit vectors in terms of the new one, then we collate all the terms for x1
¿
and x2

¿
and x3

¿
, and

then when we collate we get those things here. Then once we write then we now have

expression here u is equal to this way. Now you can see that u1
¿
is now expressed in terms

of u1 and u2 ,u2
¿
 is expressed in terms of  u1 and u2 ,u3 also expressed in terms of u3 which

we can then write in the form of a matrix.

(Refer Slide Time: 27:03)

So, that is what we do here and the way we are multiplying is the same as what we have

done here. So, this is the way. So,  u1
¿
is u1 cosθ + u2 sinθ + (0 * u3 ) , u2

¿
is - u1 sinθ + u2

cosθ + (0 * u3 ), u3
¿
is (0 * u1 )+ (0 * u2 ) + (1 * u3 ) .

So, we have got this expression. And it is actually not surprising that the matrix that is

coming  in  here  is  nothing but  the  transformation  matrix  T.  Reason is  that  we have

actually  use the  unit  vectors  to  arrive at  this  particular  expression.  So,  the way unit

vectors are transforming is given by the transformation matrix. So, we should get the

same matrix here. So, we now have that expression here. And so, the way the elements

of  a  vector  transform  when  the  coordinate  system  is  rotated  is  given  by  the  same

expression as we have done earlier namely up
¿
=T piU i. So, let us look at this expression

carefully. So, where the new coordinate system indicated by the star the index chosen is

p, and then for the old coordinate system you do not have a star and the index chosen is i.



And the sequence of writing the indices for T is the first on the left second one on the

right. So, we should always remember that this is how it is written. And the i is for the

old which is coming on the right hand side. And this way if you write then when you

swap the quantities then this sense does not change. so in fact, later on we will see that it

is this expression that will be used to define what can be called as a vector at all. So,

vector is one which transforms in such a way that the elements the components of the

vector will change in this manner whenever the coordinate system changes. So, we use

that as a definition of vector.

(Refer Slide Time: 28:54)

So, this is how we are defining here.

So, we say that any bunch of 3  numbers cannot be a vector. Only those bunches of 3

numbers which follow this relationship can be called as components of a vector. And

which can be proven you know there are some quantities which are known to be vector.

So,  we  can  go  ahead  and  proof  whether  they  are  vectors  or  not,  according  to  this

relationship we will be doing that in a later session. And are there any quantities that we

already know are to be vectors we have for example, velocity. So, velocity vector is here

and we can look at gradient of temperature gradient of composition, electric of field and

so on polarization and so on.

So, these are all various quantities that we know which are part of describing a physical

process,  where  the  vectors  are  involved.  Now  there  is  a  small  terminology  I  am



introducing at this juncture, which is basically field. So, the idea of field is basically the

quantity the parameter we are talking about is having a particular value at a particular

location, but if you change the location the value could change. So, think of temperature

field where the temperature at any given value given location is fixed, but as you change

the location the temperature could change. So, such a such a quantity which changes as a

function of the location is called a field.

So, what we mean by a vector field is nothing but a vector that is a function of the

location. So, velocity field when we use the word velocity field, what we mean is this? A

velocity which has 3 components, but those 3 components are functions of the location.

And the location is specified in various means sometimes, we specify the location using

x y z sometimes we specify the location using r θ z. Sometimes we may specifying r θ ϕ

in spherical coordinate system. So, the choice of the coordinate system is up to us, but

once a location is specified, and if the value of any vector is at that location specified

then it can be called as a field.

And examples for vector examples of velocity fields vector fields are such that you know

you can  see  velocity  field  gradient  of  a  thermal  field  gradient  of  composition  field

electrical field. So, these are all things that will come across in this subject again and

again.  So,  the  word  field  should  immediately  indicate  to  us  that  there  is  a  location

dependency that is coming up. So now, we have defined how the elements of vector

should change such that you can call it as a vector. So, we have given this. So, what

would be then a scalar should be? 
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Defined  by  a  fact  that  the  numbers do  not  change  when  the  coordinate  system  is

changed. So, basically, we use the word invariant. So, a scalar is one which is invariant

across a coordinate transformation. So, it does not change when the coordinate system

has changed examples are of course, temperature. So, we know that whichever way the x

y z coordinate system is oriented, once we specify a location the temperature of that

location is fixed it does not matter which way the x and y directions are pointing at. So,

such quantities are called scalars and very important note that energies are all scalars.

So, because later on when we define energies in terms of various quantities we realize

that because energy is a scalar then whatever quantities we are using should be such that

they must be having a functional form which does not change when the coordinate axis

are rotated density is also one more example where which is a scalar field.  So now,

scalar  field is something that we are introducing now it is a same sense what we have

said for vector field a scalar field is basically a scalar which changes it is value as  a

function of the location,  but not when the coordinate  system is rotated.  So, we have

temperature field we have density field we have phase field and so on. So, these are all

various quantities that will be coming up as a part of this course later on.

So,  we  will  be  using  the  word  scalar  field  and  in  multiple  ways  and  whenever  we

indicate that what we mean is that whenever the coordinate system changes, then the

value does not change and the value is a function of the location. Now the invariance is



something that one can be proven. So, that is if there is a quantity which when we rotate

the coordinate system has not changed at all for any for any transformation matrix T.

Then for any Tpi ϕ
¿and ϕ are the same which means that a ϕ is scalar. So, this is the idea

that we are going to use later on to define what is this scalar and what is not. So, it is not

as if any quantity which has just one number at a particular location can be called as a

scalar  is  very  important  that,  that  particular  number  should  not  change  when  the

coordinate system is rotated by any arbitrary transformation matrix T.

So, this is the essence of it. So, we will practice these with some assignments. So, we can

go back to the course website and look at some practice assignments to practice with the

coordinate rotations, and arriving at various values of the elements of T, and then using

orthogonality arriving at various kinds of derivations that we will be practicing, and look

up the course principle for the details.


