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Lecture – 20 

Heat transfer with advection 
 

Welcome to the session on heat transfer with advection as part of the NPTEL MOOC on                

transport phenomena in materials. This is also called as a convective heat transfer. 
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See outline for this session is as follows: We will take up a heat transfer along with a fluid                   

flow in a rectangular coordinate system. The first two cases are in rectangular system and we                

will then move on to the cylindrical case also and in a very simple problem, while looking at                  

the concept of Nusselt number, you will also look at a spherical coordinate system and               

through these sessions we will also be introducing new concepts like what is a bulk               

temperature, what is a Nussle number and so on.. 

And we will end the session with empirical correlations of Nusselt number, which basically              

will give us the heat transfer coefficient and once, the heat transfer coefficient is available,               

then we can use it as a boundary condition in the problems that we normally encounter in                 

metallurgy. Now the domains for this session will always be liquid domains. So, which              



means that this fluid flow is taking place inside the domain and we want to understand how                 

that flow will couple with heat transfer. So, let us take a trivial situation where we can rule                  

out the effect of a flow on heat transfer. 
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So, we are looking at heat transfer normal to the unidirectional flow. So, you could then pose                 

a problem with the following assumptions. So, let us look at the equation which is               

generalized fourier heat conduction equation in rectangular coordinate system and say that,            

the situation is where, you have a flow taking place in one direction then the heat flow is in                   

the other direction. So, this is the situation that we want to look at. So, if you take the state                    

assumption, then you do not need this term and then, if you say that the temperature is                 

varying along only x​1​ direction, then you would not need the terms like this. 

So, all these are gone because of the assumption 2 and then, we say that the directional                 

unidirectional flow is along the u​2 direction. So, this is a x​2 direction, u​2 is in the x​2 direction,                   

which means that u​1 is not there and u​3 is also not there. Now, you could see that though u​2 is                     

present, it is multiplying with this term here, which is again dropped. So, this means that the                 

flow is not affecting the temperature gradient at all on the advective term. So, this is the                 

reason why, for example, it is necessary to look at which phase a flow compared to the                 

unidirectional heat transfer. 



However, the flow can also be affected in another manner. So, it can affect through the source                 

term that is present here. So, if you drop all the terms on the left hand side, you have got only                     

this term and then, the source term. Now, sometimes the unidirectional flow is termed as plug                

flow. So, which means that this u​2 is a constant and it means it is not a function of the other                     

two variables x​1​ and x​3​, which means that there are no velocity gradients that are there. 

Then if you look at viscous dissipation, which is basically caused because of velocity              

gradients, then g will be 0. So, for a plug flow, you can say that g is 0 and in such situations,                      

then you could also drop this term, which means that your generalized Fourier heat              

conduction equation in case of a steady state heat transfer in one direction and flow in the                 

normal direction. Then the thermal profile is actually not affected by the fluid flow. 
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So, sometimes these are the situations where apparently the flow is there, but actually it does                

not affect. In situations where the plug flow is not the case, but unidirectional flow is actually                 

the case with variation of velocity in the other two directions. Then, you do have a viscous                 

dissipation coming in. So, viscous dissipation is written in this form and if you then recollect                

the Newton’s Newtonian viscosity approximation, where we have already seen then this            

basically is tau, which is then given by μ times and then, this itself is again . So, you          ∂x1

∂u2        ∂x1

∂u2    



could then write the g as this. So, which is basically W/m​3 and if such a viscous dissipation is                   

taking place, then it goes into the g term here and affecting the temperature profile. 

And then you could actually look at this equation and then solve it by integrating twice and                 

you can then look at the solution that will come in this form and in the process of obtaining it                    

we have made assumptions like the boundary condition saying that the domain on both ends               

has temperature T​0 and when is this kind of a situation possible in situations like bearings. So,                 

in situations where you have got for example, outer wall moving and inner wall stationary               

there is relative motion between these two and then this thickness which is is very small             δ    

compared to the radius. 

So, the radius is R. So, compared to R if is very small, then we can have the situation and          δ           

what kind of a flow are we then talking about we see that we are having a flow of this nature.                     

So, clearly there is a gradient and that gradient is what is causing a viscous dissipation which                 

is causing the heating now if the temperature variation is across this distance and you can see                 

this parabolic. So, which naturally means that you would have the maximum heat at the               

center and therefore, if this was the velocity profile then the temperature profile would have               

something of that nature ok. 

Now, the maximum heat that is actually obtained here, this is a reason why for example,          δ       

what is in this region is getting hot. So, this means that, this usually is the lubricant. So,                  

which means that lubricants do get hot because of viscous dissipation when is very small            δ    

and the velocity gradients are steep and there is one reason why for example, lubricants have                

to be designed. So, that their viscosity does not fall significantly with increasing temperature.              

Now, that part. 
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Let us look at how this solution is going to look like. You can already see the solution is                   

written and then, you could then plot it. So, you could see from the profile that the                 

temperature this way would be T​0​. If you look at the functional form and there will be                 

something maximum here and this distance is x​1​ direction ok. 

And this parabolic form is something very common to us. We have already seen this coming                

many times and you could already see that, whenever you have got the laplacian term playing                

a role along with a source term, then for example, you would have. So, whenever you have                 

this kind of situation then usually this will be parabolic if this is constant term. So, that is                  

something that we already saw and here, we can already see that in the problem, similar kind                 

of a thing is coming. So, without even solving one can already guess what is going to happen. 

Now, you could already see that this problem can be solved with the different boundary               

conditions, such as there is no heat flow across one of the walls, for example, what would                 

when happen is the parabola will get shifted up? So, if you say that one of the walls is                   

insulating for example, then, it would mean that you may have a temperature profile which is                

still parabolic, but then, having it is maximum on the surface because then, the slope of the                 

temperature profile is zero and that would accommodate. So, like this you could actually look               

at the solutions for various boundary conditions. So, this is one way by which the fluid flow                 



is affecting the temperature profile. Now, let us see what happens when the fluid flow is                

actually not normal, but parallel to the unidirectional flow. 
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So, here is a situation. You have the flow along the x​1 direction. So, u is this way. So, heat                    

transfer also is in the same direction. So, which means that basically anti - parallel or parallel                 

it is not normal definitely. So, this means that, they will have some coupling that will take                 

place. What we want to inspect is how the temperature profile would be. So, T as a function                  

of x and we want to see whether this is going to be a straight line or not. So, our guess would                      

be that it may not be straight line. 
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So, the way we solve is as follows. We again write the governing equation and see what                 

would turn out to be. So, we see that steady state is to be assumed and then, the unidirectional                   

velocity which is along the x​1 direction. So, u​2 is not there, u​3 is not there and the T is varying                     

only along the x​1 direction, which means that along the x​2 and x​3 directions it is not there and                   

of course, these ones are anyway 0 and then, there is no heat generation is an approximation.                 

We want to say that we do not want to look at the viscous dissipation at this moment. So,                   

which means that the governing equation will have only these two terms, which then is               

written here and you could then see that this and this can be written as ​and which is then               ̇  Ṫ    ⍡    

converting the equation to the simpler form. 

So, you could then write this as . It is dot, because that is nothing, but this is , = .       1
Ṫ

∂
∂x            ̇  Ṫ   ⍡  α

u1  

So, when you integrate, you would get logarithm and then, it means its plus               n Ṫ  l = α
u x1  

constant and then, when you exponent, you will get into some constant term.         exp( )  Ṫ =  α
u x1     

So, like that you can actually look at the solution and then, when you integrate this, you get                  

another constant and that constant is called B. Here, in our situation. So, you could then                

finally, see that the solution should be exponential form ok. 



Because here you are writing is exponential. So, solution also will be exponential. Now,     A ∂x
∂T           

the A and B constants can be determined using the boundary conditions, which we said that                

at x​A​, it is T​A​ and x​B​ it is T​B​. 
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So, you could do that and then, solve the constants and then, you will get them as a very                   

symmetric expression with exponentials and at this juncture, how the profile would look like              

is something where we can introduce a new concept called Peclet number. So, that is               

basically to look at this quantity that is appearing in the exponential. It is does not have units.                  

So, you can then think of a number for that Peclet number. 

So, Peclet number is defined as velocity into distance over the diffusivity. Now, in the limit                

of the Peclet number being very small, then what happens if the velocity is very small. In                 

such situations, we already know that exponential of a small argument is approximately one              

plus that argument. So, with that approximation what happens is that, when you substitute              

this into here and you do the same thing for all the four exponentials, then you would see that                   

the expression will come out to be very simple. It would just come to be the same differences                  

in distances as temperatures. In other words, it is going to be just a straight line                

approximation, which is basically conduction solution. 



So, we have retrieved the conduction solution though convection, which is a starting point in               

the limit of a convection being negligible so; that means the solution is valid. Now, how does                 

this solution look like when we plot. So, for some typical values of alpha and u, you could                  

plot and you could also vary the u to be either positive or negative. 
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And that we do a simple mathematical script here, two line script and you substitute some                

values as you like and then, you can make a plot. So, you can say that on the left hand side is                      

T​A​, the right hand side is T​B and then, the distance is here x​1 and then, I am plotting the                    

temperature here. So, you could then see that, you can have the flow to the leftwards and a                  

flow rightwards and for both these situations, the temperature profile is actually deviating             

from the straight line. So, straight line is actually the conduction solution, which is actually               

available here, which we already know this, because a straight line is a solution for the                

conduction equation, when we drop all the terms except the diffusion now. 
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Now, just look at this profile a bit carefully. A midway between the two walls A and B, x​A                   

and x​B midway you see here, if you go up then, where we cross over that, will be the                   

temperature average temperature between the two walls and this is only true when there is no                

flow and when there is a flow, what would happen is that the temperatures are different                

depending on the orientation of the flow. So, which means that, basically you would not be                

reasonable to approximate the temperature halfway, when there is a flow along the direction              

of the heat transfer and you must always see that the temperatures are closer to the upwind or                  

upstream temperature. 

So, you can see that upstream this is for example, these two are where the flow going this                  

way. So, this is upstream and this is downstream here, these two cases are for the flow in the                   

positive direction. So, this is upstream and this is downstream. So, which means that the               

temperatures are approximated to the upstream, whether it is positive or negative and so, you               

should always say upstream or upwind temperature is a good approximation for temperature             

halfway and this is the case, when the fluid flow is present then, fluid flow is not present.                  

You can actually take the average temperature to be the temperature halfway. So, there is an                

important effect of the flow on the heat transfer, when the flow is along the direction of heat                  

flow ok. 
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So, we have already seen these temperature profiles, when we were drawing the steady state               

heat transfer profile in an earlier session and we have been always drawing, for example, the                

temperature distribution in a liquid domain, whenever the heat transfer is happening, in the              

case of hot body in contact with cold body, we are actually drawing this way. So, that heat is                   

going that way and in the case of cold body, with the hot fluid across and we will look at the                     

heat going that way and the profile is drawn. So, you could see that in both the situations, we                   

are drawing profile in an asymptotic manner and the slope here, is what we say, we are not                  

really sure and there is a reason, why we want to write the heat flux in this direction. For                   

example, e is given by​ because we do not know the slope.ΔTh  

You can now see the reason for it, the slope here for example, is a function of the velocity                   

magnitude, which we do not know in a general situation. So naturally, we then cannot use the                 

fourier heat conduction equation here. We need something different. So, we use a dump              

factor heat transfer coefficient. So, this is the reason and these exponential profiles are drawn               

earlier itself, but we now know the meaning while we are drawing that way. 
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Now, we take a slightly long problem to solve, but at the end of it, we have a very elegant                    

solution that is coming up. So, this solution is basically what we are seeking for a temperature                 

profile in a cylindrical coil system or pipe flow. So, what we are saying is that, a cross section                   

of the pipe flow is a circular and we say that, the velocity profile u​z as a function of r, should                     

be exactly how we have decide derived at earlier, that is basically the so called flow. So, this                  

profile is going to affect the heat transfer and we say that, the liquid that is entering is at a                    

temperature T​0 and what is coming out at any z is a T​z and T​z is then a function of r and; that                       

means, the temperature is a function of r and z and the temperature is changing because there                 

is a heat, that is coming in through the periphery ok. 

So, through the circumference we are getting the heat that is coming in and that is given as a                   

constant heat flux q​0​. So, remember it is a constant heat fluxes on the surface q​0 problems. If                  

the problem is changed to constrict surface temperature, then that becomes a separate             

problem. So here, we are talking about constant heat flux and that helps us make some of the                  

assumptions. We again make some assumptions like fully developed flow. So, this means             

that, this is given by the Porsecille expression then ax symmetry so, no ​variation and             θ    

constant inlet temperature. So, the T​0​ is constant. 

And we say that, flow is effort in the thermal field and not the other way, which means that                   

we decide the fluid flow and then, directly use it in the temperature equation. Then how the                 



temperature is changing, will not change the flow by way of affecting the properties. So, we                

will not look at the cross coupling. We will look at only one way coupling. So, look at this                   

problem and let us see how to go about. 
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So, here is the overall map of these concepts because it is a long derivation. I want to just                   

keep the bird’s eye view. So, we want to derive the thermal fluid for a pipe flow and we will                    

first seek the solution. So, this is a slightly long and once the solution is available, then we                  

want to look at what with the surface temperature and what is called the bulk temperature.                

We will define that later on and from these two, we want to define the heat transfer                 

coefficient and then from there, we want to then come to the concept of Nusselt number,                

which comes out quite an elegant expression in this problem. So, let us now embark on this                 

particular process. 
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So, the equation to start is basically generalized Fourier heat conduction equation for a              

cylindrical coordinate system and that is what is written here. So, you would see that, this has                 

many terms and we are going to drop many of them. So, steady state implies that we can drop                   

this term and the unidirectional flow is along the Z direction, which means that u​r and are                uθ   

not there. So, which means that you could then drop this term and this term and there is                  

axisymmetry in the problem. We say then T is not varying as a function of . So, we will               θ     

drop this term and there is no heat generation term and which means that, you could actually                 

see that viscous dissipation is neglected. 

So, which means this is a fourth term. Now, we need to have a decision here and we say that                    

here the is not a function of z, which means that the maximum way by which temperature  ∂z
∂T                 

is varying along the length, is only first order slope and not. So, we would like to drop this                   

off. So this means that, we can actually simplify the solution a bit. So, which then leaves us                  

with these terms and we have the flow decided already, the functional form which is what we                 

would actually introduce into this ok. 
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So then, that governing equation would come out o be here, in this manner. So, you would                 

see that there is a term and then, term. So that, we actually seek temperature as a     ∂z
∂T    ∂r

∂T           

function of r and z. So, that is what I am wanting. 

Now, the boundary conditions are to be given the boundary conditions, are such that at z = 0,                  

that is at the beginning of the domain. This is the inlet temperature and the condition here, is                  

basically the flux through the walls and then, we also make one more assumption or a                

limitation to the solution. We say that the at the axial direction, the temperature is finite                

which means that in case, when we are integrating, you only see the notorious nature of this                 

term. We may have a logarithmic term and which will blow up at r = 0. So, we do not want                     

that. 

So, we want to say that, the temperature at the center of the circular tube is finite, which                  

means that the logarithmic term should be dropped. So, these are the assumptions, the subject               

to which the solution has to be sort for this particular the equation. So, as it appears, this                  

equation looks quite painful to solve, but we will do non - dimensionalization. So, that it can                 

be solved very easily. 
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So, the way we do non - dimensionalization is, as follows we basically want to avoid these                 

constants from appearing. So, we do not want these things to keep sticking around. So, we                

want to then go about in this following manner. Look at the units of q which is the flux, then                    

if you take these units, then it comes to the temperature units and you could then use that as a                    

scaling factor. 

The reason, why we are using the as a scaling factor is, because the boundary condition       k
q R0          

comes out to be very elegant. So, we define the non - dimensional temperature in this                

manner. So, that we remove the T​0 from the temperature. So, that you only get the relative                 

increase in the temperature and then, scale it with . So, that the T​* is actually non –         k
q R0          

dimensional. Now, the scaling for a radius R is quite obvious. It should be the radius of the                  

cylindrical tube that we are talking about. 

So, r* scaling is quite a straight forward now. The scaling for that z distance is a little                  

different. We could use the R itself as a scaling factor, but that would not help the equations                  

turn out to be quite messy. So, what we do here is a scale that is actually interesting. So, look                    

at the units of . So, is basically having the units, like , where is the diffusion scale.    α
R2   α

R2       τ
1   τ      

Diffusion time for a distance R, which means what you have written here is into u​m​. So             τ  um    

which means that, this is the distance traveled by the fluid in time , which is taken for             τ      



thermal diffusion over a distance R. So, this means that by the time. So, the analysis is shown                  

here. 

So, by the time the heat actually diffuses over this distance, how far did the fluid move? So,                  

this is then the z scale and this is R. So, that way we actually have a very intuitive kind of a                      

scaling here and as it turns out, that this kind of a scaling is going to give you a lot of a                      

simplification of the equation. So, the z scale is . So, you put in the reverse and then,         α
u Rm 2

         

you could see that Z​* is now, non - dimensional. So now, we see these three and then, go                   

ahead and use it to simplify the equation ok. 
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So, what we do is, first really take the left hand side term only. So, we take the LHS and we                     

see that, what we need is . So, is nothing, but and then, you could see that      ∂z
∂T   ∂z

∂T     ∂z*
∂T *       T *

k
q R0

 
 

is what should be there. 

So, ​is there and has a R​2​. So, the R and R​2 will cancel and then, you will get the k
q R0     z*                 

multiplicative factor here and this becomes the fact that comes, because we have done the               

non - dimensionalization and when we substitute, will get cancelled and therefore, the LHS              

will come out to be in this fashion, where for example, is only present on the left hand           kR
q α0         



side. So, make note of this. So, this is only the present on the left hand side and is already,                  R
R    

readily there. So, that becomes R side itself. 
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So, left hand side is now fully non – dimensional, accept of this term on the right hand side                   

term, for example, RHS. So, RHS term is going to be non - dimensionalization using same                

expression. So, what we do is at first, we look at only this term. So, and that straightaway               ∂r
∂T     

gives a , because R is already gone with the denominator. So, will give you .  k
q0           ∂r*

∂T *     k
q0  

Now, we multiply with r, and then you get the second one. Then, you would get r present,                  

because r is coming in the front and then, you look at the derivative of that. Then, we see that                    

again, r has gone because you gone to the derivative ok. 

So, again you get q naught by k. Now, the RHS will have 1 by r in the front. So, again r will                       

come in the denominator. So, you could see that you are getting the same term which is                 

multiplication on the right hand side also. So look at here, . So, this means that           k
q α0  k

q α0       

when we substitute these two non - dimensional expressions the coefficients are getting             

cancelled. So, there is a beauty of the non – dimensionalization, which we have done, which                

means that finally, the equation is going to come like this, which is quite elegant, because it                 

has no term except what we look at. 



So, what we now say, that I want to evaluate T​* as a function of r​* and z​* and then, this is                      

actually quite nice, because in this equation, there is no other quantity that is sitting around.                

Now, even the boundary conditions need to be then interpreted with respect to the non -                

dimensional way we have done, so that we will do. 
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So, when we say the inlet temperature is T​0​. So, because we have already seen that                

temperature scaling is with respect to T​0​. So, the boundary condition for inlet condition is               

that, T​* is zero and the flux condition on the wall is giving as - q​0​, which you already saw that                     

we have chosen q​0 here. So, that actually gives you a very elegant boundary condition, for the                 

wall as , as just one. So, this one is what actually makes life very simple.∂r*
∂T *  | r =1*   

 

So, when you have zeros and 1’s in the equation, the integrations become very easy and that                 

is the hindsight, that which we have actually introduced q​0 into the T​* definition and then,                

when you look at the finite condition, it is the same. We just leave it as such. So, we now                    

have the boundary conditions that are available. So, we can now pose the problem as follows. 
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So, the problem is now a purely mathematical problem, it no longer looks like any heat                

transfer problem. We say that solve this equation subject to the boundary conditions that are               

given here ok. So, this again, you can directly look up any handbook and look at the                 

solutions. We will actually see how we want to put the solution here itself. Now, look at the                  

equation. We see that, when you take this to the other side, the equation looks rather simple.                 

You see that on the left hand side, you have got only the z​* only on the left hand side, on the                      

right hand side you got r​* only. So, this means that the temperature T​* could be thought of as                   

a function, which is a sum of two functions that is, a function of  r​*​ and function of  z​*​. 

So, this kind of an approach will meet the hint. So normally, when we look at any differential                  

equation, where you could actually separate the two variables on both sides of the = sign,                

which means there is a sum of two functions of those two variables could actually work out.                 

So, we will then use that concept and propose a solution. So, the way we normally go about                  

solving these equations is, we propose a solution, then we substitute in it and then see how                 

the solution will come out. 
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So, the proposal solution which will look like this, that is a sum of two functions. First                 

function is just a linear function of z​* . So, we have already made the decision. So, remember                  

this is linear. We have made a decision, because we dropped term. So, this means that we           ∂z2
∂ T2

      

only wanted the z variation to be linear. So, that is put and this is unknown and we want to                    

know what that function is. So, this means that, the temperature variation along the tube,     ϕ             

due to the heat flux from the surface is going linearly, is function of z​*​, but there is a                   

correction term that is coming, because of the , which will give you the temperature         ϕ        

variation along the r direction. So, this is quite natural and it is also intuitive, the way we                  

know how the pipe flow will be affected by heat flux from the surface. 

So, which then we will substitute. So, we substitute this solution into the equation governing               

equation. So, when you substitute, then you would see on the . We have only C​0 and on           ∂T
∂z*        

the right hand side, you have got only . So then, we have got simpler solution now. What         ϕ           

we do is that, now that this is there, you could then integrate the left hand side with respect to                    

r​*​. So that you could get this thing off. So when we do that, r​* star goes to goes to .                  r*2 

2r*3    4
r*4

 

So, this we do by integrating once. 

But on the right hand side, when you integrate once, only this will remain and that is what is                   

actually coming here and this is the integration constant. So, now, you can see that slowly we                 



want to integrate. So, that on the right hand side, we have only . In the left hand side, we              ϕ        

have got an expression. That way we got the figured out. So, we now see that this          ϕ          

expression is available. So, we take r​* ​to the left hand side in the denominator and then,                 

integrate once more. So, that is what we do. 
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So, we have got , will give you .)/r( 2
r*2

− 4
r*4

2
r* 

− 4
r*3

+ r*
C1 = ∂ϕ

∂r*  

Then, we again integrate with respect to r​*​, then you will see that this goes as and                2
r*2 1

2δ 4
r2 

  

this goes as , that is and this goes to the logarithmic term and then, this when you   4
r*4

4
1    16

r*4
             

integrated will become just the and then, this is the constant term. So, we can see that now,      ϕ               

we have got this guy, which we wanted to eliminate and then, we say that the boundary                 

condition, which we have already decided that we do not want at r​* =0 any problem in the                  

solution. So, we say to be drop C​1​ ok. 

And then once you do that, then the solution looks a bit simpler and the boundary condition                 

that will make C​0 = 4. So, you have got these two in one go available, because ∂r*
∂T *  | r =1*   

                

when you substitute r​* =1, straight away you can see how that C​0 will come. So, this is the                   

only thing unknown. So, keeping this unknown, as it is we will look at the solution now. 
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The solution looks quite simple except for one constant, that is there and if you suspect that                 

constant should be just a number, but we want the number to be proper ok. So, we see that                   

there is no boundary condition that we have, which we can use to get the value of C​2​. So,                   

what we do is, we introduce a very special boundary condition which basically talks about the                

enthalpy balance over the entire domain. So, what we want to say is that, whatever enthalpy                

is entering the domain and leaving the difference should have come only from the surface.               

This is quite intuitive, this is what it is actually so, but we want to then express it in the                    

integral form. So, that the C​2 is available in the integral form. So that we can evaluate C​2​. So,                   

because most of the boundary conditions happen to be in definition form and that is not                

useful, because this C​2​ will then get knocked off ok. 

So, we say that the difference in enthalpy flowing out, minus flowing in that is is because               qz
q0

   

of the heat flow coming from the surface and that is basically , which is the            πrz  2     

circumference into q​0 which will be the flux, that is coming in from the circumference. So                

now, what we do is at this, we then write it as a boundary condition and then see what will                    

happen ok. 
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So, that boundary condition if you see, q​z is written in this form. q​z is the enthalpy that is                   

flowing out. So, enthalpy is given as into the area element and into the velocity ok. So,       C T  ρ p           

that is basically giving you what is the enthalpy, that is coming out the u will tell you what is                    

the rate, that is because in the z direction you have got. You will have because z over T                   

essentially and you have got this is the area element. So, you have got area and then z there,                   

is a volume x is mass into C​p into T that is enthalpy and by T means a rate of enthalpy that   ρ                    

is going out. So, similarly what is coming in is written and then, the difference of them is                  

basically T - T​0 into this entire expression and that basically is written, in this form ( Cp T-T​0                 ρ   

) x velocity x area element integrated over the entire circumferential area is going to give you                 

the total amount of heat that has come in ok. 

And this is basically the boundary condition that we want to use and luckily for us, we have                  

already a non - dimensionalized T - T​0​. So, we have those expressions that are coming quite                 

nicely. So when, we then look at how would this expression look like, when we non –                 

dimensionalize, then it would simplify in the following manner. We take the Cp to the other             ρ     

side. So, you put in the denominator and then, we would see that the boundary condition we                 

have written comes out to be a very simple one, which is looking like this. Now, this is what                   

we do, is that we put the solution of T star in. So, that is what is put in here. 



So, solution for T​* is available and rest of it is as it is and then, we will let see how we can go                        

about integrating. Now when we integrate, we see that the C​2 is still kept inside and that is                  

what is giving the value of C​2​. So, the boundary condition which is an integral boundary                

condition, is then very useful ok. 
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Now, what we do is that we especially, separately evaluated this and then keep it. So, we can                  

then see that, this is 0-1. 1 - r​2 , that is [ and that would be like            ]drr* − r*3 *       [ 2
r*2

− 4
r*4 ]  

between 0 and 1, that is nothing, but . [ 2
1 − 4

1]  

Now, this is very useful because, it comes in twice, while we integrate, become you can  4
1               

bring it twice. So, there is one that comes because of C​2 into this. So, that comes straight                  

away . So, we made the simplification and straight away we write that and then, the 4
C2                

second expression is coming to the rest of them and then, that integration is going to give you                  

. Now, this is something evaluated in a similar way, as I have drawn and written here. So,7
96                   

it is just integration from 0 - 1. So, it is quite straightforward, only polynomial integration.                

So, that will give you, though this basically gives you that, the C​2 is - ok. So, once we               7
24     

have got the value of C​2​, thanks to the boundary condition, then we can substitute in the                 

solution.. 
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And then, give the solution here, in the form of T​* . The solution is and               z r4 * + r*2 − 4
1 *4 − 7

24   

then, when we substitute these things in, then you could actually see how the solution would                

look like in the dimensional form of r,z is now available. 

So, technically our problem is solved. We have done with the solution and for the pipe at any                  

r and z, we can then find out the temperature. It is subject to the boundary condition, that the                   

heat flux on the surface is constant which is q​0​, it is also given here ok. 
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So, now what we do is that, we go ahead and use this solution to arrive at the concept of a                     

bulk temperature and Nusselt number. So, where are we? So, we have set the problem and                

this long derivation is done and we have got the solution. Now, we only need to get the                  

surface temperature and the bulk temperature concept. So, the surface temperature is nothing,             

but at R tends to capital R. So, that is nothing, but substituting that r​* = 1. So, that is quite                     

straight forward we will do that. 
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So, simply substitute here r​* = 1 and you get what is T​* . So, surface temperature is then                   

given as 4 z​* and then, this is that gives you straightaway this. Now, this when you        1 − 4
1 − 7

24          

expand using the non - dimensionalization expressions, then that gives you the surface             

temperature as a full expression here ok. 
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Now, the bulk temperature has to be introduced. So, the bulk temperature, I want you to think                 

about, how you get a warm water shower. Normally, you have got the hot water coming                

through one pipe and the cold water coming through another pipe and then, you have a knob                 

which allows you to mix the flow rate between the two and then, you have got the warm                  

water here. So, what are you doing basically, what you are doing is, the heat that is coming                  

from the hot water and the cold water is getting mixed by a ratio and then, you are getting the                    

warm water. 

The ratio depends upon the flow rate. So, as you can already see that, if the flow rate was                   

very low for hot water, then you would not mix much of cold water. You lower the fraction                  

so that you can get the warm water at the same temperature. So, these some common daily                 

life experience, that we are actually using, what is called flow average temperature? So, the               

averaging is done with respect to the flow rate and that is exactly what is done with the bulk                   

temperature also. So, bulk temperature is defined as flow average temperature and in case           u
Tu    

of a constant plug flow, you just simply multiply the velocity and that should do, but in other                  



case, for example, the velocity is a function of the R and therefore, you can actually then                 

substitute and then integrate over the entire cross sectional area. 

So, this is the integration over the entire cross sectional area and then, you can get the bulk                  

temperature evaluated. Now, the bulk temperature actually means that whenever you have the             

temperature that is varying as a function of r and z, we do not know how to put                  

thermocouples and measure the temperature. So, what we do is that, at any point at any z, if                  

you want to take that liquid out and to a container and then let it mix and then ask what the                     

temperature of that mixture is and that will be the bulk temperature basically. So, this concept                

is very useful to know what the effective temperature that is coming out is and the way we                  

evaluate is written here. 

Now, we are actually dropping the integration on the denominator, numerator because there      θ         

is no ​variation. So, you would get 2 in the numerator as well as denominator will drop it   θ        π            

and you will simplify the bulk temperature definition with only the r variation here. So, we                

have got T and then, velocity rdr, that is the averaging that is done, now velocity is only                  

available as an expression. So, we can substitute and get this. 
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So, the special boundary condition can be used to evaluate this. So, when you substitute the                

expression for T and u. So, it will be quite formidable. So, instead of getting lost with respect                  



to that particular algebra, what we do is that couple of sides back we have used the special                  

boundary condition. So, we will recollect that. So, we have got this done right. So, use this.                 

So, we write this expression, we bring it on to this slide and here, we write it and we see that                     

the expression is written and what we wanted is only with respect to the temperature. So, take                 

the rest of it onto the right hand side. So, which means that we can actually write is                 ur dr∫
 

 
T   

nothing but, then written in this form. So, to the right hand side. 

Now once, you take it to the right hand side then it is constant here. So, you can then go                    

ahead and evaluate. So, we are actually postponing the evaluation of the bulk temperature.              

We just using the expression as it is and then reusing the analysis that we have done earlier.                  

So, now, when you take to the right hand side, then you could see that the first term is                   

actually coming with a constant and this integration can be done and you have got the                

expression, the T​0 is available in the second term and then, you could then substitute the r by                  

capital R to the r​* and simplify your mathematics. So, that you could see this integral and                 

again, this integral is reused from what, we have done earlier. 

So, we have done it here already. So, we reuse that result here and say that there is nothing,                   

but 1 by 4 ok? 
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And the denominator is given here. So, when we look at these two terms, then we get T​b as T                    

naught plus some quantity. Now, this means that this is the additional rise in temperature. As                

you go away in the distances z, because of the flux q​0 and naturally, how much of rise should                   

come with respect to rho C​p and then, the time scales, etc are then taken into account by R                   

and here. 

So, this is how the bulk temperature is then derived and given as an expression. So, once you                  

have got Tb and Ts available then we can see what happens to the difference between them.                 

So, the difference is then evaluated to define the heat transfer coefficient as follows. 
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So, T​s expression we have already derived T​b expression. So, let us look at T​s minus T​b and                  

that comes to be quite simple and it comes out to be also something that we already                 

recognize. So, you see that temperature difference and q​0 are there. So, you have got q and                 

then, there is a temperature difference, if you go to the denominator. So, this is somewhat like                 

the heat transfer coefficient D​3​ is a length scale and by k. 

So, this we already see that it is a very useful kind of a non – dimensionalization, that is we                    

have done, but please note the k is of the fluid thermal conductivity. So, it is not the biot                   

number we are talking about, that is why we give a separate name ‘Nusselt number.’ So, what                 

we do is that we define heat transfer coefficient in this manner that is for the pipe flow. We                   



defined as a and if you define that, then you get this non - dimensional number to be   q0
T −Ts b

                

very simple expression as just a number  and this, we want to define as Nusselt number ok11
48  
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So, Nusselt numbers is defined in this fashion and remember that k is that of the fluid in the                   

case of Biot number, k is that of the solid. So, that the subscript for the Nusselt number. We                   

should always be looked at because, sometimes you may see an expression like this, which               

means that you are most probably talking about this and sometimes, you may have an               

averaging, which means that you may have an average to the way, the heat transfer               

coefficient was measured, etc. So, like Reynolds number you also watch the subscript and              

superscript for Nusselt number ok? 

Now, why is this concept certainly being brought in the reason is that, these correlations for                

heat transfer coefficient are not available as the raw quantity, you would actually encapsulate              

with respect to the length scale and the thermal conductivity of the fluid and then, it is a                  

Nusselt number correlations that are available. So, if you look up a handbook and you already                

have Nusselt numbers available for various situations, you can use them, look at the              

definition of a Nusselt number and then, get the heat transfer coefficient correlation. So for a                

given situation, if you want heat transfer coefficient so, you want the heat transfer coefficient               



first to get Nusselt number and then, you can go back and evaluate what would be the H and                   

then, use it as a boundary condition. 

So, it is very important in metallurgical scenario. You have situations where the fluid flow               

could be quite complex in various geometries and you do not have to go ahead and solve                 

fluid flow in all the situations, very often, the Nusselt number for those situations already               

available as a correlation. So, we can use it and get the heat transfer coefficient and then, our                  

problem will then become just a conduction problem and the reason why this Nusselt number               

derivation is important, is because it comes up in a very elegant manner. It says that Nusselt                 

number is just 48 by 11 for laminar pipe flow along with the uniform a surface flux                 

conditions. 

So, you could see that even when the surface flux is not constant, but you would have a                  

constant surface temperature then, Nusselt number will come to be constant, but be to be             11
48    

a some slightly lower number. So, you could actually look up those correlations. Now, there               

is another situation where Nusselt number turns out to be just a constant, just a number and                 

we look at it and that is a very small problem and to expose the beauty of the Nusselt number                    

correlations, let us go through that. 
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So, this is a situation of a sphere which is, let us say, hot sphere which was losing heat into                    

fluid. Now, the fluid, we say is a quiescent fluid that is its not actually having an advection.                  

So, that I will then use it to drop these guys out by either assumption 2 and we say that this                     

heat loss is taking place at steady state. So, which means that I would like to drop the stuff                   

and we want to say that, the heat flow is only in the radial direction which means that then, I                    

would like to drop this and then, we say that the fluid flow is not happening. So, there is no                    

heat generation at all. So therefore, I drop this. 

So, which means that my problem is reduced to only this term is equal to 0, which means that                   

the and can also be dropped. So, my equation is quite simple it is nothing, but α   1
r2                

. So, this is the equation, that I need to solve to get the temperature as ar [ ]∂
∂r 

2
∂r
∂T = 0                  

function of r away from the sphere and subject to the boundary condition, that on the sphere                 

the temperature is T​0 and far away infinite distance away from the sphere fluid temperature is                

T​∞ ok. So, subject to do that in the domain between r and ∞. Let us inspect how the solution                    

would look like. 
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And this is already done by us earlier. So, you could see that this can be integrated twice that                   

will give you a functional form of . So, this is a solution you can already inspect that when       r
1             

r tends to capital R then you get T​0​ , when R tends to  ∞, you get the T​∞​. So T​0​ and T​∞​ ok. 
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And this solution then can be used to define the heat transfer coefficient and then inspect                

what would be the Nusselt number. So, heat transfer coefficient is defined as at the               

conductive heat flux divided by the T. Now, the T here, is quite obvious is nothing, but       Δ    Δ         

the difference between these two. So, this is the T, which is basically T​0 - T​∞​. So, we use          Δ           

that in the denominator and the conductive heat flux away from the sphere is given that                

evaluated at r = R and this is the solution that we have for the temperature. So, we− k ∂r
∂T                    

substitute that here and then, we will see that it straightaway gives you , which means              h = k
R    

because we want to then look at what is the expression that comes out with D, becauseD
2k                  

Nusselt number has that. 

So, we can straightaway see that Nusselt number for this problem comes to be very elegant                

just two. So, you could see that there are problems in which Nusselt number comes to be                 11
48  

sometimes 2 and so on and very often; it will be a function of various quantities at the                  

correlation. So, these two cases we know what are the situations for which it comes. So, like                 

this, look out for a very elegant expression that can actually help us in get the getting the heat                   

transfer coefficient. Now, straight away from here, we have some conclusions that can be              

drawn. Now, what does it mean when we say a sphere will have a Nusselt number = 2. It                   

means that the heat transfer coefficient is given by , which means if the sphere is in         
2kf luid
Dsphere

        

micrometer size, then heat transfer coefficient is going to be very very large, which means               



that, when you want to solidify a liquid metal, without any partitioning, then if you can spray                 

this liquid metal as a tiny droplets, then each droplet would have such high heat transfer                

coefficient, that it could freeze at almost a million kelvin per second. 

And then, you will have partition the solidification, you get metallic powder that is very               

homogeneous. So, in the spray forming of a metal powder manufacturing, what we are              

actually using is that N​u ​= 2, idea to get the h to be as large as you can and thereby avoiding                      

slow solidification in segregation, etc. So, you can already estimate how the heat transfer              

coefficient B for a tiny sphere, by just knowing that N​u ​= 2 and any other change, because of                   

the fluid flow we are looking addition ok. 
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Now, there are empirical correlations that are then available for Nusselt number because we              

now know the functional form, how to go about some of these correlations are given as a                 

function of the properties. So, the property is one of them of course, is Prandtl number, we                 

call it as a property because this is basically kinematic viscosity and this is basically thermal                

diffusivity. So, the both are properties. So, basically Prandtl number is nothing, but it is a                

property of the material and we want to take a ratio of these two, because we are actually                  

looking at coupling off with the fluid flow and the heat transfer and liquid metals. The liquid                 

metals are low Prandtl number fluids ok. 



So, this is very important for us to remember and what happens is that, in many - many                  

correlations, when the Prandtl number is very small, we can make many approximations. So,              

you can say that the thermal fuel gets the set up very early and so on. So, like that we can                     

actually make approximations and there are some examples that I am just listing here. So, the                

complete list of correlations that you would find useful will be available in the course               

website, but for some examples you can see that the Nusselt number will be given as a                 

correlation like this for example. 

It will be given as a function of Reynolds number and Prandtl number, which means that as                 

the velocity changes and you can substitute and get the Reynolds number, Prandtl number for               

that particular fluid you are using and straight away you get the Nusselt number. The moment                

the Nusselt number is available, you can get the heat transfer coefficient. So, for example, if                

you say that I have changed the gas that is actually cooling the flat plate from argon to                  

helium, then how much the heat transfer coefficient will change? So, you could see that it                

comes via this because of the Prandtl number, because of the Prandtl number you have got                α  

and then, is going to be different from argon to helium. Helium is a little bit more and  α                  

straight away you can then see how the h will be changing. 

And then, if you say that the flow rate of that gas is doubled, what would happen then? We                   

say that it is a Reynolds number that is changed, then you can see how the heat transfer                  

coefficient is changing like that and for all these correlations, always remember that there will               

be validity range, beyond which you should not be using those correlations, for example, that               

external flow over a fully dropping droplet of liquid, you could say the correlation is given as                 

two plus something. We now know, where this two has come from it, is from the pure                 

conduction solution and rest of it is because an addition due to flow. 

So, we can already see, we can make meaning out of these expressions already and here also,                 

the Reynolds number and Prandtl number will tell you how the heat transfer coefficient will               

be modified as processing conditions or the fluid is changed in a situation like, for example,                

external flow over a freely falling droplet. Now, like this you can actually look up the Nusselt                 

number correlation. So, for many - many problems arrive at the values and then, get the heat                 

transfer coefficient and use it in the boundary condition for the thermal problems. 
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So, over these sessions in both fluid flow and in the heat transfer, we have come across a                  

number of the non - dimensional quantities. We have come across the Reynolds number and               

we were looking at the scaling of the new, navier stokes equation. We came across the Biot                 

number, when we wanted to see how we can choose the lamp heat capacitance method to be                 

valid or not, we came across the Fourier number in that process and we come across the                 

Nusselt number, because we then see that it comes out to be a simple number for many -                  

many problems, where the fluid flow is directly affecting the heat transfer. 

We came across Peclet number, when we saw situations where the flow is along the heat                

transfer direction and we could encapsulate the distance with respect to the velocity and the               

diffusivity and then, we also came across Prandtl number to find out the ratio of the                

diffusivities of the momentum and the thermal fluid. So, there are many more numbers that               

will be very important in this subject. We will come across them as we do some of these                  

tutorial problems, but now I think this is adequate for us to look at the heat transfer with and                   

without the fluid flow and look at the course website for notes and practice problems that are                 

numerical in nature. 


