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Lecture – 19
Heat conduction cases – Transient state

Welcome to the session on heat conduction. We take up cases of a transient state in 1D in this

session. This is part of the NPTEL MOOC on transport phenomena in materials.

(Refer Slide Time: 00:27)

So,  the outline for  this  session is  as  follows. We take  up two different  situations  of 1D

transient heat flow. We take the two extremes; one extreme being the interface dominated

heat transfer, the other extreme being the bulk diffusion limited heat transfer and then, we

will use these learnings to detect what would be the interface temperature when, two metals

at different temperature are brought in contact and in transient state we will be able to arrive

at some correlations, that will be useful for us in we what kind of combinations are good for

metal casting and then, we will go ahead and use these expressions to derive what is called

the Chvorinov’s rule, which helps in the casting designs.
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So, here is a situation where the body, which is shown in green, is the domain, also for us and

the surrounding environment is at a lower temperature. So, the body is at high temperature T 0

and  the  environment  is  at  lower  temperature  T∞ and  we  have  this  interface,  which  is

experiencing a change in temperature from high value to low value. Now, how would the

temperature profile change from interior of this body to the air outside as a function of time?

So, we can have very different profiles, depending upon the heat transfer being dictated what

is happening at the interface or what is happening in the bulk. So, let us take situations as

follows. Let us say that, this body happens to be, let us say a metal and the body is also small.

So, what would happen is that, the temperature profile would look like this. I am just drawing

schematically. So, you could have situation like this and as time proceeds, we would see that

a temperature drops and we start seeing that, we would have profiles going like that. 

You could have temperature dropping both on the surface as well as the interior and if this is

a situation, what it implies is that the surface temperature is dropping roughly, at the same

way as the interior temperature is dropping and the gradient inside the bulk is very small and

this is a situation where the material is made up of metal, which is a good conductor and you

can now see that,  the rate at  which the heat is lost  from the body is limited by how the

temperature  is  dropping  at  the  interface  and  how the  heat  is  actually  taken away  at  the

interface.



So, this becomes a limiting factor. So which means that this kind of a heat transfer is called as

the interface limited heat transfer. Now, we can take the other extreme and see what would

happen. So, in this situation, you have basically a ceramic body for example, and the ambient

air is at low temperature.

(Refer Slide Time: 03:43)

And the surface of the body very quickly cools to a temperature, but the interior is still at the

To and what we expect the temperature profiles would be looking like this. So with time, we

see that the temperature inside the bulk is still  evolving. So, you could see that the T s is

almost constant in the duration of time that we are looking at the analysis and the heat is

being lost mainly dictated by the bulk. So, the heat transfer is now diffusion limited, because

as soon as heat arrives at the interface, it is able to go away into the ambient air by the heat

transfer  coefficient.  Here,  you  have  got  Ts -  T∞,  this  is  readily  available;  however,  the

temperature profile inside is not fully evolved and very interior at the center of the body; you

see that the temperature is still To ; it has not come down at all.

So, this is a situation where, for example, you have a non conducting body like a ceramic and

which is exposed to air and then, the temperature is supposed to drop. So, this is the other

extreme and in reality, you would have situation that is in between these two; however, we

can look at the extremes and see how the temperature profile would look like as a function of

time. So, here for example, this is increasing time and this is the distance let us say x. So, we

are interested in for example, T as a function of x , t. So, how that would look like. So, we



take one dimensional case and see how the transient heat transfer would take place. So, we

will take one after other these two cases.
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So,  let  us take the  first  interface  limited  1D heat  transfer.  So,  as we have discussed the

temperature gradients are very small inside the bulk. So, that is why we see that Ti - Ts a

small number and therefore, the inside the bulk you have got a small variant and the heat loss

is in this direction and you could see that,  whatever heat flux is arriving at  the interface

should leave.  So, what comes here should leave.  So, they both must be equal, but a flux

balances because there is nothing special that is happening at the interface.

So, what heat flux comes up to the interface is given by the Fourier heat conduction equation

and then, what is lost is given by the Newton’s law and that is given here and the cross

section area is canceled out on both sides, because we are taking the rectangular case. So, we

also mentioned that, we are taking the rectangular case and we now then, approximate  
dT
dx

to be just the differences of the temperature, because these gradients are anyway small. So,

you can make this approximation. So, - k ×  T temperature on the right hand side that is, Ts -

T on the left hand side Ti divided by the distance between them Lc = h ×  Ts - T∞.

So, we just take them, minus sign inside and then we write (Ti - Ts )/(Ts - T∞ ) is then given by

hLc/k.  Now,  if  you  took,  look  the  left  hand  side,  this  is  basically  telling  you  how  the

temperature differences inside the bulk are related to the temperature differences outside. So,



outside  temperature  differences  are  basically  here given by this  and inter  differences  are

given by this.

So,  what  happens  if  this  is  small?  So,  what  does  it  imply?  It  implies  that  basically  the

temperature gradients inside the bulk can be neglected, which means that this quantity could

then be of some importance and you could see from the left hand side that, there are no units

which means that, on the right hand side also there are no units. So, hLc/k will then take some

importance and we will see how we can use that as a non - dimensional number.
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So, that number has a name and that is called as a Biot number or Biot number as you would

like to say. So, Biot number is given as (h × Lc)/k, which basically tells you whether the

temperature profiles within the bulk are having flat gradients or not. So, in situations where

Biot number is very much small less than 0.1, we can assume that inside the bulk there are no

gradients and in situations their Biot number is very large, it means that the gradients are very

steep.

And we have to alert here, the k that is here, you can already see from the derivation that the

k is coming from here, which is basically the flux that is coming from inside, which means

the k must be that of this solid. So, we must always remember that the k which is coming in

this  situation,  is  of  the  solid  reason I  am mentioning  is  because,  there  is  another  non -

dimensional number called the Nusselt number, where the expression looks identical, just the



k belongs to that of the liquid in this because the expressions are same; we should not get

confused.

So, here is  the situation we are saying that,  in the case of Biot  number being small,  we

neglect the temperature gradients. So, when we neglect the temperature gradients, we can

make on approximation. The approximation is, that the way temperature of the entire volume

of the body is dropping is related to the heat loss to the entire surface and this means that we

do not want to look at the temperature variations within the body and we want to lump the

entire heat capacity of the body into one entity.
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And that is a reason why we take up this approach and which means that, with time how are

the temperature profiles looking like. So, there is no gradient inside the body, we have just

now made this approximation which means as time proceeds. So, this first curve is basically

at time is equal to 0. So, at the next instant for example, the temperature profile would look

like that and then, you would have this way so on. So, which means that inside the bulk, the

temperature is dropping and outside the dropping temperature is then matched with the heat,

that is lost and that is of course, given by h × T which is the temperature inside, which is

same as the surface Ts - T∞ .T∞ is given. So, this makes it little simple ok?

So, this kind of an approach is what we are going to see, to look at how the temperature will

be available which means that, we no longer are looking at this. We actually look at this only



because, we see that this is not important and this is only when the Biot number is very small.

So, let us look at that extreme case and see what happens.
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So, if that is the situation then what we then, say that drop in temperature of the entire volume

of the solid which is being given here. So, ρ V is MCp × dT and then, we say that the rate at

which the heat is being lost, that will be the time derivative below is equal to then whatever is

lost in the surface. So, the total surface area is A into the heat flux from the surface is h × (T -

T∞ ). So, heat that is actually lost because of the drop in temperature is equal to what is lost

through the interface. So, this approach will then give us an expression and what we do is

that, we take this quantity and take it to the other side and this quantity, we bring it here and

then that is when we got this expression ok?

Now, once we got this expression, we are then defining a characteristic length scale Lc. So,

this length scale characteristic is very simple, just a length in the case of q, but when you look

at cylindrical or spherical cases, then there will be some multiplicative factors that will be

coming in. So, watch out else is always to be evaluated by looking at the volume and the area

and once you introduce that, then this goes to the denominator here and so we have got the

expression  on  the  right  hand  side;  giving  you

dT
T−T∞

=
−h

ρCpLc

dt. So, that we could integrate then.



So, what we now do is that, we look at only this expression and see whether we can make

some manipulations  and we do that  remembering  that,  we have hLc/k  having a  meaning

namely, we want to use the term Biot number there. So, what we do is that we see we have

h
ρC p Lc

. So, we have to have hLc. So, what we do is that, we multiply and divide with Lc. So,

we got hLc in the numerator. We need the k in the denominator.  So, what we do is that,

numerator and denominator we multiply with k. So, we have not done any manipulation, we

just simply multiplied and divided with k as well as Lc.

So, once we do that then, we recognize that there are some terms that we could gather. So, we

see that hLc/k. So, this has come out and we also see that, one more expression is coming out

k/(ρCp). So, that has come out as α. So, you could see that Biot number is there, α is there. So,

first is Biot number and then, you have got α there and then by Lc
2. So, which means that this

expression can then be replaced with this expression ok?
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So, we do that. So, we have done that here ok? So, we have then  Bi × α/Lc
2 being used for

h/ρCp × Lc and then, we look at the governing equation here. This itself is written here. Now,

what we do is that, we integrate this guy going from To at time t = 0 to temperature T at time

t.  So,  which immediately  sees  that  when left  hand side will  be log(  T -  T∞ ),  evaluated

between T0 and T and this will be  - Bi αt /Lc  evaluated between 0 and t. So, that of course,

becomes  nothing,  but



−Bi αt

Lc
2 and on the left hand side, you have a ratios and then the ratios, we can flip them to

have the way we want.

So, we see that on the left hand side we have got log( T - T∞) / (T0 - T∞). So, the logarithm can

then be taken to the other side as exponential. So, that is what we have done here and we

have defined this entire thing as θ. So, that is what is defined here as θ, which means our

solution  is  now  looking  quite  nice.  It  looks  like  this:  

θ=exp ⁡(−Bi .
αt

Lc
2
)

Now, you could also see from here that α T has the units of meter square second, inverse T

has  units  of seconds.  You will  see a  square has  units  of meter  square.  So,  this  is  non -

dimensional. So, this means that this quantity could also be a number.
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So, we need to find a name for that and that is what we call as a Fourier number. So, Fourier

number is defined as α t/Lc
2. Now, the reason why we want to define this way is because the

non  -  dimensional  numbers  allow  us  to  expand  the  scope  of  these  results,  to  multiple

situations the concept of diffusion and then,  the coupling with temp, time and length are

given in this sense here.



So, there is something called diffusion length, which means that for the amount of time t how

far the thermal diffusion would take place and if thermal diffusivity is α, the √α t  would give

you basically the length over which the thermal effects are taking place. That is the diffusion

length. You could also think of diffusion time which is Lc
2
/¿α, which means if the domain is

Lc, then how long it takes for the thermal diffusion to affect the entire domain. So, that also

can be done.

Which means that if you now use this concept and substitute what happens is that Fourier

number can be thought of as T/τ , which means that if this is small, it implies at the time that

you gave was very small compared to τ , which means that it  is in a very early stage of

thermal diffusion. The time is not enough for the diffusion to take place in the entire domain

with a size Lc which means A that must be basically the early regime. So, that is what we say.

Similarly, we can also argue what would be called as a late regime Fourier number greater

than one, means the time available is much more than τ ,  which is the time required for

diffusion of heat in the entire domain of size Lc, which means that the late regime can be

talked when Fourier number is greater than one. So, which means that this quantity which we

just now, cooked up as a non - dimensional number, Fourier number is actually having a

meaning.  If  the number is actually  small,  it  means that  we are in the early stages of the

thermal diffusion taking place and if the number is large, it means in the late stage of thermal

diffusion taking place ok?
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So, now our solution can then be written with the non - dimensional number used in the

solution expression and; that means, that the expression is coming out quite elegant, it means

that the scaled temperature θ = exp( - Bi × Fo)  and this is referred to in the method as

Lumped Heat Capacity Method, because we are lumping the entire heat capacity of the body

as having just one temperature and seeing how the temperature is dropping, because of the

heat transfer from the surface.

Now, this is valid. We already saw that it is for Bi < 0.1. Now, what are the uses of this heat

capacities method lumped heat capacitance method. So, we can use this expression whenever

the temperature gradients can be neglected or when you want to neglect or when you are

unable to estimate. So, first order estimates can be obtained immediately by using this kind of

an expression. So, if you take for example, a gear and you want to see how long it takes for it

to cool down. So, straight away you can substitute this expression and get one number or the

duration time duration, which is available in the expression for Fourier number and that will

give you first order estimate of how long you must wait when you heat it a gear and then,

drop it in water for it to cool down etcetera ok?

Now, heat treatment processes normally, we need to estimate how long it takes for us to heat

up and cool down the materials because that is the time that we need to give which cannot be

counted  in  the  isothermal  holding.  So,  depending  on  the  size  these  durations  can  be

significant.  So, we can also estimate those durations using the Lumped Heat Capacitance

Method and in situations where those durations are large, it means that the sample is too large

or the thermal conductivity is too poor so we must have this transient effects can also be

taken into account.

And when we do these kind of a calculations, substitute the properties of steel, then we would

see that for a heat treatment temperature like about 750C and to cool to a temperature of easy

handling like 50 0C , a one inch thick steel would take about an hour to cool down when the

heat transfer coefficient with air is about 5 SI units. So, this actually leads to a thumb rule that

look at  the characteristic  length  scale  of your sample being heat  treated  and in  terms of

inches,  then you just  simply multiply the number of inches and you will  get the time in

number of hours for you to wait for the sample to cool down before you can touch or handle

that particular material. So, this is the thumb rule. So, directly you can estimate from this

expression.



And  sometimes  we  have  situations  like  in  spray  forming,  where  droplets  of  metal  are

solidifying in their path through argon gas, for example, and they are cooling down to room

temperature and in such situations also you can estimate the cooling rates because they are

first of all small and metallic. So, these both together imply that most probably Biot number

is small and in such situations, you can directly estimate what with the cooling rate. So, these

are the kind of typical examples in metallurgy, how we would use lumped heat capacitance

method.

(Refer Slide Time: 20:34)

So, we see that regime, that we have to apply this method is when the Biot number is small.

So, Biot number is small is on the bottom side of the axis and it is also in situations where the

thermal diffusion is actually getting established. So, we are in this quadrant. So, we must

estimate whenever we get the answers out, evaluate the Fourier number and Biot number and

ensure that we are in this domain. So, if the Biot number happens to be large, or if the Fourier

number happens to be very small,  then this  expression may not  be valid.  So,  ensure the

validity by looking which quadrant of the map between Biot number and Fourier number the

following are in.
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So, now let us move on to the second case, where the heat transfer from a hot body is dictated

by a transient heat transfer limited by the bulk diffusion. So, which means that at T = 0, the

profile is given here, but at higher times it has to be given by a plot, that I draw here. So, it is

evolving very slowly. So, that interior temperature is still; not come down from T0. So, this is

the increasing time.

So, if this is the situation, then how would we go about evaluating and we then see that, the

temperature  is  varying  as  a  function  of  distance  within  the  bulk.  So,  definitely  we  are

interested in T as a function of x and it is also changing with the time. So, we are interested in

T as a function of x and time t. So, in this situation we want to restrict it. So that we can get

some solution out. We want to say that the surface temperature Ts here is fixed. So, it is

important because, that allows us to make some approximations and look at the solutions.

So, we want to say that, we are looking at a regime, where the interior temperature has not

dropped below T0 yet. So, that is also fixed and the surface temperature has become stabilized

at Ts value and the temperature variation is happening between these two values, that are

pegged and then, these curves that we have drawn, are what we are interested in a function of

x and t. So, that is possible.
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So, the equation that needs to be solved is written here. It is in 1D and you can already list

what are the assumptions that, when behind from the generalized Fourier Heat Conduction

Equation, it means that it is for solids, because on the left hand side there is no advection

term, on the right hand side there is no generation, though it means that there is no volumetric

generation  of  heat  and it  also  means  that,  it  is  a  1D heat  flow because  the  temperature

variation  is  given  as  a  function  of  only  x  and  not  with  respect  to  y  and  z.  So,  these

assumptions, we have written the equation and we want to look at the solution subject to the

boundary conditions  that  are listed here,  that  at  x = 0 temperatures  is  Ts at  x = ∞, then

temperature is T0 which means that our distance is counted in this manner, x = 0. Here, x →

∞ here and this is how it is counted ok?

So, T0 x tends to ∞ x is going this direction and Ts, x to 0 is given here. So, we look at these

boundary  conditions  which  will  be  useful  in  determining the  integration  constants.  Now,

when we see how to go about the solution of this problem, there are multiple ways that can be

adopted. We could actually use what are called in a variable separable method. We can also

use substitution of a new variable method and we are picking the second one. So, we are

using  the  variable  substitution  method,  the  reason  is  of  course,  when  you  use  variable

substitution method, you will get a series and the beauty of this solution is not evident unless

you plot and see. So, we are using this method because it gives us a very elegant expression.



So, we create a new variable called η and the way we have created the variable is such that, it

is a expect 2√α t. Α units are made use of here and the 2 here, is coming with hand side that

is, if you do not put then later on the expressions will have some multiplicative factors, then

we come back and then, use it here and then, we turn out that the expressions will be very

neat later on. So, you do not have to worry how we cooked up this 2 or a root. Here, it comes

out basically by iterating back and forth and once you have arrived at the variable functional

form of η , then the solution comes out quite nice.

So, we substitute this variable into the equation and see. So, the strategies as follows.  We

evaluate the left hand side and the right hand side of the governing equation and then, we

seek the solution as a function of η  and then of course, because we know the η as a function

of x and t, then it implies that we also have the solution as function of x and t. So, this is what

we seek first ok?
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So,  that  is  what  we  do  here.  So,  this  is  the  governing  equation  and  we  have  got  this

substitution that is being used.

So, ∂η/∂T , can then be straightaway seen that it will have this, straightaway coming here and

then, 1/√t  would differentiate to give  -1/2 × t-3/2  and then, when you look at the first term on

the left hand side ∂T /∂t  and then, that will be given as a differentiation by parts. So, first you

difference  with η and then,  η with respect  to  time and that  is  available  here.  So,  this  is

straightaway coming from here ok?



Now, which means that you could actually see ∂T /∂t  can be given as Ṫ  or this one. So, this

is then given as Ṫ . Now, we do the same thing on the right hand side, also with respect to the

x  and  you  see  that  ∂T,

∂η
∂x

=
1

2√αt
, because numerator is x that is gone and we do the second time, then you already

see that it should be 1/(4αt). Now, this T̈=∂2T /∂η2. So, we also note Ṫ   is this.

So, we just then substitute these two into this expression and we see the governing equation

has  modified  itself  in  this  manner  and  therefore,  we  write  now  

T̈
Ṫ

=−2ηok?
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Now, what we do is that, we want to integrate this with respect to η. So, with respect to η, if

you integrate now, you could look at this  expression to be as follows: - it  is basically  is

1
Ṫ
∂ Ṫ
∂ η

=−2ηthat is what it looks like.

So, which means that when you integrate, then this part would actually give you logarithm

and this, when you take it to other side, it becomes η2 with the minus sign. So, that is what we

write as a solution here and of course, we exponent on the both sides and we can write the Ṫ

as this expression and we have an integration constant C1. So, when we exponent, it becomes

exp(C1). So, that we call as A1. So just some integration constants on the way.



And left hand side, we now expand this expansion is given like this. Now, again we write it is

nothing, but this is equal to A1× exp(- η2) and now, if you want to integrate, then you take it

to the other side and when you integrate, you get this solution. So, we are not simplifying the

integration of exp(- η2) because we do not know how to do that. So, we leave it at that and we

want to say that entire thing is a function which is called error function.

So, we leave it at that and then write the solution as A×erf(η) + B. So, this is now the solution

available.  The reason why we leave  it  like that  is,  because error  function   is  a standard

function for which the values  tabulated  are available  readily.  So,  most of the calculators

already have this function. So, we can directly go ahead and use it. So, we do not have to

simplify the integral of exp(- η2)  at term ok? Now, A and B are integration constants. So,

they can be determined from the boundary conditions ok?
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So, now what about this error function, how does it actually get defined? So, actual definition

of errors function would have 2/√π , because of the following requirement we would like to

have a very nicely calibrated value for error function. So that when the argument goes to ∞,

the value should be 1. So, to ensure that it is 1, you have a multiplicative factor of 2/√π other

than that, there is no special meaning one can derive, that also separately. So, we can do that

in tutorial if necessary, this function, it looks like this error function at the argument zero is

zero. So, which means starting here and it is ∞, it is one. So, this is one. So, error function is

in this direction, the Η is in this direction.



So, it should look like that. So, asymptotically approaching one and on the other side it would

look like that. So, this is how the error function would look like and you could see that the

slope is given by at slope, at the zero is immediately given here and you could actually see

that the slope at ∞ would be flat, because - η2 have to. η goes to ∞ is zero and of -η2at η  = 0,

would be some number and that number is a slope, that you are seeing here and this function

is an odd function, which means that when the argument actually changes, the sign, the value

also changes the sign.

So, that is the reason why, when we go to the second half of this axis, η  is negative. Then

you get the negative values. So, this is how the error function is now. This range is the fixed

range, which means that the temperature variations we are looking at should be calibrated to

this height. So, that the functional form is given by these curves ok?
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Now,  there  is  something  called  complementary  error  function,  also  we  just  quickly  go

through that because it is nothing, but one minus of error function. It is a useful thing and

rests of them are worked out. So, you can already see that error function, complementary

error function at to zero has a value of one, because erf(0)=0. It has a value of one erfc of ∞

erf(∞)= 1.

So, erfc(∞) =0. So, you would see that, the functional form should be looking like that. So,

the complementary error function goes that, you could see that it is basically flipped version

of the error function. So, depending upon the way your slopes are, you could actually use



these  two functions  to  write  your  solution  in  any case.  You could  already  see  that,  this

difference should be fixed in the problem, only then the solution is valid ok?
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So, once you have it, then you can go ahead and write the solution. The solution is written in

this form and here, you can see that we have already used the boundary conditions to write

the  values.  So,  you  could  then  expand,  for  example,  this  you  would  expand  it  as

T=T ∞+(T 0−T ∞ )erf ⁡(
x

2√αt
). So, this is what we have written here and you could see that,

these are nothing, but the boundary conditions are the constants integration constants and you

could see that the argument is now expanded and you now, have basically this is nothing, but

what we were asking for namely T as a function of distance in time ok?

So,  we  have  the  solution  available  now  and  this  is  very  important  to  note  that,  this  is

applicable  only  when on one end of  the  domain,  you have got  temperature  is  fixed  and

gradient is changing with time and the other end the temperature is fixed, but the gradient is

zero which means that, this is valid when you are able to imagine the domain to be semi

infinite, such that the profiles look like that, as a function of time. So, as a function of time,

the gradient is changing on one end, but they are all zero at the other end and then, the values

are fixed on both ends.

So, in such situations, you can use Error Function and then, the way to do it is, scale this

difference  to  be  the  magnitude  here  and  immediately  write  down  the  answer  as  Error



Function of η. So, this is as simple as that. So, shift and scale the temperatures and then look

at the change of the sign, because this plot may be on the other side. So, if the plots look the

other way. So, let us say if the plots in this manner, so then, look at the sign difference and

adjust it. So that you can write the solution directly. So, very often Error Functional solutions

can be written by visual inspection of the appearance of the temperature profile.

(Refer Slide Time: 33:22)

Now, in what part of the domain of the Biot number and Fourier number map, do we use this

Error Function solution that is actually to be used in this part of the domain? So, which means

that we should use them when Biot number is large and also for relatively small Fourier

number. So, this is the domain and we could then expand and see what happens for other

domains?  What  kinds of solutions  are  available?  We are not  going through them in this

session, but we can already look at them.
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So, depending upon the choice of the problem, the Biot number and fluid number can be

anything  from a  very  small  number  to  a  large  number  and  then,  you  have  got  various

solutions. So, what we have done is this. What you have done is this, see that you can also

use series solutions and we could also combine the exponential error functions and then, we

can handle any part of the domain that we have. So, these two extreme situations are looked

at, because they are very common in metallurgical literature.

(Refer Slide Time: 34:21)



Now, we now migrate  to  an interesting  application  of this  particular  analysis,  namely  in

metallurgy. We have liquid metals being cast. So, very often we are interested in what would

be the temperature of the interface, when we bring hot metal in contact with a cold solid,

which  is  basically  acting  as  a  mould.  So,  we  should  not  confuse  this  problem  with

equilibration.  So  when,  we  have  two  bodies  of  temperatures  A  and  B,  with  different

properties then of course, under equilibrium, they both will act in a temperature T bar at after

long time, but we are not interested long time, but instantaneously, as soon as you bring them

into contact, then what would be the interface temperature.

So, for arguments sake, let us say, T is small. So, we would then think for example, that the

temperature profile may look like this and at the interface, there is some temperature and on

the other side is that there. So, you could say that this is a temperature B and this is the

temperature A and the interface, there is a temperature Ti, which we are interested in finding

out and we are not drawing the slopes on both sides, same the thermal conductivity on both

sides is different. So, we basically do not want to make the slopes same.

Now, we are interested in Ti, because if Ti for example, if Ti is less than the melting point of

A, then A can be a mould material for this situation. So, which means, we want to then see

whether this interface temperature, when we estimate, can be useful or not. So, let us do that

in a particular manner. What we do is that, we see that in this situation the way we have

drawn these two curves, we can imagine the error function solution available here, in these

domains with these scaling factors.

So, the scaling factor one, scaling factor comes out as Ti - TA here and another scaling factor

comes as TB - Ti here and other than that, the error function is straightaway applicable. So, we

go ahead and apply error function to these temperature profiles and see what can be reduced.
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So, we write the error function solution here of the left hand side of the domain, we write it in

this manner. So, verify that this function shows that at x goes to 0. So, you see that error

function could be zero. So, the temperature in the A side is Ti and at x goes to -∞, then you

see that minus and minus cancel, that will be 1 Ti cancels and T(A) in A.

Now, look at the problem, you see that at x = 0 and x is going to -∞, the temperatures had T i

and Ti respectively.  So that we got that character.  Now, we look at  the other side of the

domain and at x goes to zero, we see that the temperature is in the B side, temperature is Ti

and at x goes to ∞, then temperature on the B side is basically TB. So, you could see that this

is one. So, Ti cancels it is TB.

So, you can immediately see that there is the same situation at x0 is Ti and at x = TB. So, these

two solutions that way are valid. So, we can then use them or to analyze what would be the

Ti. So, we need a condition for Ti, the way we derive the condition is by saying that.
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There is a flux balance at the interface that is whatever heat is coming from B side onto the

interface is lost. So, whatever heat flux is coming from the B side, whatever is coming from

the B side or to the interface is then going away into the A side.

So, there is no special thing happening at the interface like for example, release of heat or

absorption of heat. So, flux balance can then be applied there and that is what we are trying to

do here and then of course, we know the flux expression from the Fourier heat conduction.

So, we write it on the left hand side with the expression for A on the right hand side with the

expression for B. So, we note that the solutions are to be used appropriately ok?

Now, we can then forget to these minus signs, because they are on the same side, same sign

on both. So, we can then substitute. So, what we do is that, we also remember that the slope

that  we are taking is with respect to x, but for error function,  we have got actually  as a

function of η and therefore, we have to also not forget, this 1/(2√αt ¿ as a term that is coming

in  very  often.  Students  make  a  mistake  by  differentiating  and  forgetting  that  there  is  a

multiplicative factor in factor.

So, you can see, on the left hand side for example, it is k × ∂T/∂x is nothing, but 2/√π into

this expression, which is basically TA - Ti into this one, which is basically -1/(2√αt ¿. So, this

is coming on the left hand side and into exp(-x2/4αt), but evaluated at x = 0. So, which means

that becomes one and on the right hand side, you could see that it will be kB. I am removing



the minus sign kB × 2/√π  into this expression, that is TB - Ti into, then we have got 1/(2√αt ¿

exp(-x2/4αt), evaluated x = 0.

So, you could immediately see that we can make some simplifications, this is gone because

that is one and this also is gone, that is because one and then, the time also will be gone

because it is the same on both sides and then, you have got multiplicative factors that will be

all  gone.  So,  we could  then  see that,  you are seeing k/√α .  So,  let  us  look at  how that

expression looks like, k/√α is basically k /√k / ρC p. So, that becomes basically √kρCp. So, we

can cancel √k from the denominator and numerator.

So, which means that on the left hand side, you have got √k A ρAC pA×(T A−T i) . Similarly, on

the right hand side.
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So, we do that here and then, use it expression and the minus sign is coming because, this

fellow is still  there. So, we write that expression with the minus sign, without forgetting.

Now, this quantity √k A ρAC pA with the root has a name in the casting literature, it is called the

Heat Diffusivity.  So, we should not confuse this heat diffusivity with thermal  diffusivity.

Thermal Diffusivity have the units of meter square per second, but this will have very crazy

units, but it is actually mentioned here, as a quantity because it is coming together and the



ratio  of  these  two  Heat  Diffusivities  can  then  be  given  a  symbol  p  which  is

p≡
√k A ρAC pA

√kB ρBC pB

Now, if you do that, then –p(TA-Ti) will be on the left hand side. Right hand side will be; this

have gone all the on the other side’s or TB -Ti . So, which means that when we now try to

solve this, we are to be just appearing to be very nice elegant expression, which comes as

T i=
pT A+T B

p+1
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.

Now, look at this expression carefully. What this implies is that, when p is equal to 1, what

happens, it means that Ti is nothing, but (TA + TB)/2, which means when the two materials

that are being brought into contact are the same materials, then the interface temperature will

be the average of the two temperatures,  which is something that we expect,  but if p, for

example, the p is greater than one, it implies that the Ti would be actually weighed in favor of

TA and it will be closer to A.

Now, what implies that, so you have got Ti, TA and TB. You see there it to be closer and that

is the situation when p is greater than 1. So, heat diffusivity will then dictate whether or not

the interface temperature is within some limits  or not, which means that we can actually

evaluate and estimate to see what will be the T i and when we do that with copper and liquid



steel. So, we know that the copper melting point is 1085 0C and steel in the liquid form would

have for example, a pouring temperature of 1500 0C or more. So, it will be greater than that.

So, which means that when we substitute those values with respect to the properties of both

copper and steel, then we get the value of p and then, we can evaluate and we will see that the

Ti is actually coming below the melting point of copper, which means that if you want to,

then do it sustainably, you will do it with water cooled copper and water cooled copper can

be a mould for casting steel. This is a very different conclusion than what we would do if you

did not do the heat transfer. You are pouring a liquid metal at a higher temperature into a

body which will melt at lower temperature, but it will still work, the reason is that the heat

transfer in the copper is way faster because p is greater than one and therefore, it would have

the interface temperature less than the melting point of copper, which means copper will not

melt when you pour liquid steel on top of it.

So, good news because we can then use you copper as the mould for our metallurgical casting

processes. So now, we then go ahead and use this idea that is, you are actually having a thick

mould and we are having a little metal and when the solidification is happening in a casting,

then how would we then, characterize the rate at which the casting is happening.
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And dictate that by the heat flow. So, you could see that the casting is happening in this

direction, the solid is actually growing. So, it would actually grow in this manner, this is all

solid and this is all liquid and the casting speed is in related to the ability of a heat removal



through the mould and we want to then see, whether we can use some of the solutions we

have obtained till  now to obtain the expression for S which is  the casting speed.  Divide

∂S/∂T. So, ∂S/∂T, this is the casting speed. We want to see whether we can get that in terms

of meter per second.

So, we want to then make a supposition. Here, we want to say that, we want to simplify the

problem. We do not want to have different temperatures for the liquid and solid and we do

not want to have the liquid temperature more than the melting point and so on. So, you want

to make it very simple and say that, the rate of heat extraction by the mould is giving you a

rate of casting. So, strictly speaking this is not valid because, how would heat latent heat

released in the liquid come on to the interface, unless there is a temperature gradient?

So, strictly speaking it is not valid, but we say that the gradient in the metal solid and the

metallic liquid is so small that it is negligible. So, with that assumption we can proceed to

solve this problem.

(Refer Slide Time: 45:46)

.

So, heat flux at the mould is then, given by this expression which is Fourier Heat Conduction

Equation. We are dropping the minus sign in the front, because heat is actually going in the

minus x direction. So, the casting is positive, which means it is going the plus x direction. So,

we have a sign change that is happening. So, minus is dropped there to account  for this

particular difference.



So, the rate at which the heat is evolved is given by the latent heat. So, this is nothing, but

latent heat of fusion and that is given with per kilo. So, because it is per kilo, you need to

have mass there. So, the mass is then called as  ρ × V and then therefore, we are actually

calling as a ∂V/∂T. So, basically there was a heat per unit weight that is what we are actually

using here.

Now, the thickness of the casting is S, that is given as basically volume of casting there by

the area through which heat is being extracted. So, A is area through which heat is extracted.

Now, in the case of planar cases, you do not have to worry or in the case of cylindrical

spherical cases, we need to watch out. Now, we can see this expression and manipulate to see

that,  you  take  A  to  the  denominator  there  and  you  can  see

∂S
∂T

=
km

ρ
× ΔH f×

∂T
∂x

¿x→0which means that this requires T as a function of x and maybe also

t, but we need this function form and for that, we basically lean onto the solution that we just

now obtained. We already have a solution in the form of error function. So, we go ahead and

use that, the error function solution is available here. We have written it in this form.
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So, again verify that the solution is written correctly. So, we see that this solution. How does

it look like at x tends to zero. So, you see this is zero. So, then T = T M and at x tends to ∞,

then you will see that this goes as one minus one and therefore, you would get T = T0. Now,

you see that x tends to -∞ will give you T0. So, this means that, this solution is written in the



mould here, in this sphere. So, this is our domain. So, Error Function solution is written in

this.

So, that at x is equal to zero, you have got T = TM at x tends to - ∞. You have got T = T0. So,

having a calibrated that way, we can go ahead and then look at what will be the ∂T/∂x, which

will be 2/√π into this quantity that is coming in front. So, that is used as it is and here now,

we have to put a minus sign there. Now, we evaluate this at x tends to zero. So, that goes off

as one and then, you could already see that the solution of the slope is coming out quite

elegantly, TM - T0 which is ΔT /√παt

So, then its substitute, this into the ∂x/∂T expression and we get that expression here and we

then see that,  you can integrate  this  expression.  So, you could treat the entire  thing as a

constant. So, you could pretend that is this is appearing like this is equal to some constant,

say X ×1/√t and which means that, you can take this to the other side and then, when you

integrate, then you could see that S is given by x in T. So, it comes out like that.

So, you could then use that same expression here and we write the expression here. So, S is

going as √t.
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So, that basically is also known many - many years back Chvorinov’s Rule. So, that is, the

casting speed is going parabolically. That is, it goes as a square root of time so; that means, as

you proceed solidification, the spirit which solidification happening is happening slower and



this, when you expand, what is the definition of S we already know that V/A. So, we can then

see the entire expression that is coming in front like this.

So, this actually is a direct usage of error function solution and the idea, that the flux balance

is  happening  at  the  interface  and  the  way  we  can  use  this  expression  to  understand

metallurgical  processes,  such as you know casting as follows, you can do what  is  called

estimation of thickness as a function of time during casting. So, you can already and directly

see that you substitute all the values, put the amount of time spent, then you immediately see

how much of volume of liquid metal has solidified.

Now, in hollow casting, you may want to solidify for some time and then pour the liquid out

and get the hollow casting. So, this is again a direct application of this particular expression.

You can also see this expression exposes the control of casting processes. You could see that

for example, this T0, that is the temperature of the mould, if T0 is less; that means, if you have

a water cooled mould,  it  implies that  this  entire number is  large,  which means that your

castings speed will be high and if T0 is high, which means if you have a pre heat, it implies

that you would have slower casting.

So, you could see that  you can actually  avoid cracking in alloys,  where it  is  very much

possible because of high cooling rates or high speeds of casting. If you pre heat the mould,

then you can avoid that problem. So, you could only see that the effect of parameters is

available. You could also see that, when you use a material of high thermal conductivity,

then, the casting speed is high which means that, if you use copper mould instead of cast iron

mould casting speeds are higher. So, you could see that this expression exposes the control of

casting processes by which we can go ahead and design the kind of mould you want, the pre

heats etc.  You also see that,  from this  expression we also have the shape determines the

sequence of solidification. What do we mean by that, on the left hand side we have got V/A?

So, let us say the volume is kept same and then, you see that when you change the geometry

it changes the A. So, when you see that for a sphere, you would have the smallest surface

area. When you go to cylinder, then you have surface area increased, which means that for

the same volume of liquid that has to solidify, depending on the geometry, this quantity is

going to change. Which means, the time it takes to solidify will also change. Which means

that you would have different shapes, solidifying in different sequences, which actually will



help you in designing a casting setup and the risers are actually designed in the same manner,

so using Chvorinovs Rule?

And we also can find out defects because we know that the solidification length, if it is same,

then the time is same. Which means that we can estimate by using geometrical constructions,

where are the likely defects that can come. So, I will just give you one example by choosing a

sample case here ok?
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So, let us see that this is a cast that we want to make. So, it is a poor design of casting. The

reason is evident here. Now, let us say, the casting actually proceeding from all the surfaces

which means that after a particular amount of time, the solidification is happening, such that

the thickness is same in all directions.

So, you could see that if this is going in all directions, then where would be the last to solidify

liquid that is present. It will be here, similarly it will be here and it will be here, you would

also see that this distance is small compared to the entire thickness, which means that you

would actually block this direction for liquid flow very early, which means that the last to

solidify liquid here, has to solidify and if there is a shrinkage, then that shrinkage will be

visible  here,  because  there  is  no  feeding  of  liquid  from elsewhere.  The  same thing  is  a

problem here and problem here.



So, like this you can actually identify by geometrical constructions. So, as you keep shrinking

it. So, you see that, for the same amount, same thickness has to solidify. So, the last tool

solidifies  liquid,  you  can  identify  using  geometrical  construction.  So  here  also,  you just

follow the contour and you would see that last solidify liquid will be in the center. So, you

can identify locations of casting defects by using the Chvorinovs Rule and then of course,

you can go ahead and then fix them up. So, the way to fix for example, in this situation,

would be first to avoid this kind of a curvature. So, you have curvature this way and later on,

you can machine it. That is the first thing that you would do and of course, you would have

for example, a riser with some hot mixture, hot top.

So, that the last solidify liquid would be somewhere here and not here and therefore, you can

avoid the porosity or shrinkage defects at the center. So like this, you can actually go ahead

and solve, but we will not discuss them here further, but we would actually see that, the very

fact that S α V/A is equal to S α √t is already. So, valuable and from where does it come? It

comes from Error Function Solution.  So, this is actually  showing for example,  how very

simple  analytical  solutions  that  are  available  from  transport  phenomena  can  have  very

important  effect  on  the  design  of  metallurgical  processes.  We  will  take  up  some  more

examples as we go along. So, with that we come to conclusion of this session. We will have

some numerical problems available for you to practice in the course website.


