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Lecture - 18
Heat Conduction Cases – Steady State

Welcome to the session on Heat Conduction Cases. We take up the steady state first. This is

part of the NPTEL MOOC on transport phenomena in materials.

(Refer Slide Time: 00:26)

So, the outline is as follows; we first look at 1D heat transfer across a rectangular slab. Then

we look at the cylindrical wall and spherical shell also, and see how the functional forms will

be differing. We will take up the 2D and transient cases later on.

And through the process of looking at these 1D steady state heat transfers, we will come

across what is called the resistance to heat flow or the thermal resistance, and that is where

we bring the concept of point effect of diffusion. And then we will also apply this two heat

transfer across a composite wall which will be very useful for us, because in metallurgy we

come across the furnaces where heat treatment is done and all furnaces walls are basically

composite walls.
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So, here is the first case, where we are looking at this steady state heat transfer across a

rectangular slab. So, here the rectangular slab is shown here, and the temperature on either

ends is given as a T1 and T2, and we have attentively given the temperature profile across this

slab as a straight line. We will see that it is of course, valid and we look at the condition

where the power loss is constant. So, constant power loss is looked at here and we say its

power loss or constant heat flow. In the case of rectangular slab both are equivalent, because

the cross sectional area A is same, but in cylindrical and spherical cases so there is a big

difference between calling a flux being constant or the power loss being constant.

So,  we say  that  this  is  basically  constant  across  which  means  that  the  heat  loss  in  this

direction is constant, you know across the slab. The domain is identified, because we already

defined that our distance along the x direction is between x1 and x2 and what happens beyond,

is only coming through the boundary conditions and the boundary conditions are that at x1 the

temperature is T1 and at x2 the temperature is T2.
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So,  what  we  do  basically  is  to  write  this  equation  which  is  basically  the  Fourier  heat

conduction equation and then take the terms on (Refer Time: 02:31). So, that you could write

it with dT/dx on the left hand side. So, when we, what we do is, then we take this value to the

other side so that we can write dT = - q dx /(A k) and then we do the integration across the

domain and we saw that the domain has temperatures T1  to T2 on the temperature side and

then x1 to x2 for the distance

So, we do this integration and this will give us the solution, and the final solution is looking

here, basically it is giving you that the temperature differences are related to the distances;

that is basically the straight line. So, this expression straightaway gives you the solution as a

straight line which is already drawn for us in the schematic plot here.
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And what we see is that we do this analogy with respect to the electrical analogy, where we

look at the Ohm’s law, and what we see is that the difference in the temperatures which is

basically the driving force for the heat flow and that can be looked at as a voltage, which is

basically the driving force for the current flow and the heat flow itself is in the denominator,

which is somewhat like the current flow and the ratio of these is a resistance, which basically

is for us in the case of a thermal problem, it is basically a thermal resistance ok

So, that way we are able to then compare the ΔT the role of Δ T the role of q the heat flow,

and the role of thermal resistance Δx/(A k). So, this form depends on the coordinate system.

So, we must watch out, and in the case of rectangle coordinate system it is basically Δ x/(A k)

which then we can already look at what is the implication.

So, what it implies is that, if the thermal conductivity is increased; that means, it is able to

send the heat across very easily. So, therefore, the resistance should come down if there is a

cross sectional area; that is large; that means, the heat can go across larger area. So, therefore,

the resistance is less and if it has to go over a longer distance then that also means that the

resistance is more. So, the proportionalities are, as we can only imagine from our daily life

experience, but then we now have a mathematically defined way to look at what is called as a

thermal resistance.
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So, we can then look at the same thing in other coordinate systems as well. So, we take up

this cylindrical  wall  now. And in the case of cylindrical  wall  we again look at  the same

problem, it is the power loss which is given as a constant and then we already saw that the

power loss is q, and the flux is then given by q/area.

So, at any r the area is a cross sectional area over which the heat flux is happening, is given

by the perimeter 2 πr × L (height) of the cylindrical surface through which the heat is flowing

and that is equal to - k dT/d r, and it is a q which is constant this is constant, but not this, this

is  not  constant.  So,  this  is  where  the  difference  between  the  cylindrical  and  rectangular

coordinate systems will come, and the domain of course, is defined between R1 and R2 where

R1 is the inner radius and R2 is the outer radius of the cylindrical wall. So, now what we do is

that we look at this expression and see how the temperature profile should look like and what

we do is, we take this to the other side and right.
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So, this is how it is written, and the moment we do this then what we can do is integration.

So, we bring the d r to the other side. So, we can see that on the right hand side you have d r/r

and this can integration you should give logarithm. So, that is what we will have.

So, the Δ T is coming out straight away from here, and here you could see that this is going to

give you logarithm and rest of it,  is basically directly  applying the integration within the

limits of the domain, and which means again we get the similar expression ΔT/q is equal to

an  expression,  which  has  logarithm  and  this  entire  thing  is  basically  again  the  thermal

resistance in the case of a cylindrical coordinate system, and you can see that the denominator

does  not  have area,  it  has  2 π L only;  that  is  only the length scale  which means that  it

definitely needs to be differentiated from the rectangle coordinate system. Now, what we do

is that, we will see what happens when the inner radius of the cylindrical wall is very large.
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So, we take up the thermal resistance expression and we look at what happens in the limit of

R1 tends to infinity, which means that we take the Δ x to be very small compared to R1, and if

it is very small then it also means that R2 = R1 + Δx and also, we can also approximate R1 R2

as approximately R2
1  ok. So, if you do these approximations and then look at the thermal

resistance  expression.  So,  you  can  expand  R2 as  R1 +  Δx,  and  then  you  can  divide  a

numerator and denominator here with the R1 and therefore, you get 1 plus this, and this is

very small, and if you already know that ln(1 + ), when  is small can be approximated as ϵ ϵ ϵ

itself. So, then what happens is we write Δ x/R1 here and then immediately we can see that we

retrieve the expression which is for actually rectangular coordinate system.

So, which means that we start off, which is for cylindrical system and with the limit it, we are

able  to  arrive  at  the  expression  for  rectangular  coordinate  system,  what  it  implies  is

summarized here, it says that for small wall thicknesses and very large radii of a cylindrical

wall, then we can approximate the situation to be a rectangular slab. Now, this is going to be

useful, because in situations in metallurgy, where these things may be common, then we do

not  have  to  complicate  the  problem by going to  cylindrical  coordinate  system.  We may

approximate it to be rectangular coordinate system also and get very reasonable answers; of

course, subject to this being true.
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.

Now,  let  us  look  at  the  steady  state  heat  transfer  across  a  spherical  shell,  and  here  the

spherical shell is shown here. So, this is the wall and the inside is showing as yellow, and

outside is this blue, and the condition for which we are looking at, is again the same thing

namely the constant power loss. Now, we will look at the flux expression. So, J and we write

J = q/A and that is written as q/(4 πr2 )which is then equal to - k ∂ T/∂r, which means that we

are taking only radial heat transfer. There is a one day heat transfer and here it is the q, which

is constant, and this is not constant; the reason being that the area is changing as you change

the radius, and therefore, the flux actually is not constant when you go from R1 to R2, but the

q is constant. There is a problem that we are having at hand and the domain is limited from

R1 to R2 ok. So, what we do is that, we take this expression and this equation, we take the q to

the other side.
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And then we integrate and so we have this expression and here the d r is taken to the other

side,  and we can immediately integrate  to see this.  Now, when we integrate,  we get 1/r,

because you have d r/r2. So, this should give us 1/r with a minus sign and therefore, you can

see that expression is given as ΔT/q is equal to an expression which gives you 1/4πk into the

difference of the inverses of the radii. So, this means this is the thermal resistance in the case

of a spherical coordinate system. Now, we can see that in each coordinate system the thermal

resistance has a different expression for the length scales.  Now again; like we did in the

cylindrical  coordinate  system,  let  us  inspect  what  happens  when the  inner  radius  of  the

spherical shell is very large.
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So, we take the thermal expand, the thermal resistance expression and we subject to the limit

of R1 tends to infinity; that is very large radius, which means that R2 can be written as R1 + Δ

x and R1 R2 can be approximated as R2
1. So, we look at the thermal resistance and see that it

is here, the difference is Δx and the denominator we just simply approximated as R2
1 and

immediately we could see that 4 πR2
1 is nothing, but the area at the radius is equal to R1, and

therefore, again we see that the answer we get is similar to the rectangular coordinate system.

And so we start with spherical and we arrive at the rectangular expression in the limit that the

inner radius of the spherical shell is very large compared to; for example, the thickness of the

shell. So, what is also implies is just like we did that in the cylindrical coordinate system. We

can compare here also saying that for small wall thicknesses and large radii the spherical

shell  can  be  approximated  to  be  a  rectangular  slab.  So,  we can  also  simplify  problems,

sometimes to get the order of magnitude, estimates using this kind of a simplification.
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So, here we now write and summarize what are the thermal resistance that we came across in

the  case  of  rectangular  system.  We  got  the  thermal  resistances  Δx/Ak  in  the  case  of

cylindrical, we got it as ln (R2/ R1) /2 πLk, and in the case of spherical system we see it as 1/4

πk into the difference of the inverses of the radii.

Now, it implies that at large, at large radii, then we see that all three expressions should give

you the same value as a rectangular case, which I again see that all the three curves for these

three functions I will sort of merge at very large radius, but as you come towards the small

radii,  you  can  see  start  a  divergence  between  these  values.  So,  you  could  see  that  the

rectangular case is flat, the cylindrical one is drooping down and the spherical one, it droops

the much more. So, what this implies is that, the resistance actually is changing and it is very

small for the spherical case, intermediate for this cylindrical case, and it is constant for the

rectangular case and the resistance is going into the denominator of the flux term, which

means that we can say that the flux itself is changing in the inverse manner.
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So,  what  this  implies  is  that  at  large,  this  is  actually  large  radius  of  curvature  which  is

approximately  basically  a  flat  wall,  and when you take  a  flat  walls,  all  three  coordinate

systems will give you basically the same flux across the shell, but when you look at highly

curved walls, which means at low radius of curvature, then you see that the three fluxes are

different, and for any such value, if you see that you would see the rectangular case will be

flat. Here cylindrical one will be here and in this spherical one will be here. So, which means

that the three values are going to be different and the spherical one will have a higher flux.

Now, this effect that, because of the curvature the flux is changing for the same ΔT is called

as a point effect of diffusion, what it implies is that when you have situations like this; a slab

versus a cylindrical surface versus a very spherical one; so as the curvature is increasing then

you have a flux; that is large and here it is moderate flux and this is basically constant flux.

So, what happens is that, as this a location from where the heat transfer has to take place. So,

it is actually accessing more and more space into which the heat has to go away and that

extent of space; that is available for heat to go away is basically leading to the higher value of

flux, and this is manifesting in the form of the mathematical expression which is different for

the spherical versus rectangular coordinate system.

So, which means that we are, basically we come to conclusion that the flux is proportional to

the extent of space available for diffusion. Now this point effect of diffusion has already been

noticed in many other phenomena. And in the case of metallurgy for example, we notices as



sharp objects are losing heat very fast and we say that the corners of a casting will solidify

fast.  So,  that  actually  is  nothing,  but  an  application  of  point  effect  of  diffusion,  which

basically says that amount of space available for diffusion dictates, how fast the diffusion can

take place.

Now, we look at  the composite  wall  problem and here the ability  to draw the schematic

temperature profile across a composite wall would already solve the problem half of it and

later  on when we plug in  the  numbers  and do the  simple  analysis  of  the  solving  linear

equations and we got the solution.

(Refer Slide Time: 15:59)

So,  the  wall  is  going  to  look  like  this,  most  of  the  furnaces  in  the  metallurgical  for

metallurgical laboratories would look like, this is the furnace inside is hot and the ambient air

is cold or at room temperature 25 oC and the inner wall of the furnace, what is facing the hot

air is usually ceramic and the outer shell which is containing this furnace is basically steel,

and  what  separates  between  the  ceramic  wall  and  steel  is  glass  wool.  Now  glass  wool

basically is a very poor conductor of heat. So, this must be very poor conductor of heat. So,

that the heat does not go from the ceramic brick onto the steel container, because whatever

heat comes to the steel container will go into the ambient air, and that will tell you how much

of power loss is happening, because this furniture furnace is kept at a high temperature over a

period of time.



So, how much power you draw from the socket, electrical socket, once the peak temperature

has achieved. It depends upon how much heat is actually going out of the furnace through

this composite wall, which means that we can design the wall to dictate the thicknesses of

these different layers, as well as the properties of these three layers in such a way to minimize

this heat loss, so that we draw less amount of power to maintain the furnace at the same

temperature.

So, we normally see that the thermal conductivity of the glass wool is very small compared to

the ceramic, which is again smaller compared to the thermal conductivity of steel. So, the

steel will have the highest thermal conductivity for this kind of a configuration. So, we will

look at how to go about drawing these schematic temperature profiles across the furnace.

(Refer Slide Time: 17:41)

So, for that what we do is, first let  us look at how to draw the situation when there is a

constant flux across the slabs. So, we take rectangular case, which means that constant flux

and constant heat flow are same, and we say that, that is basically q which is going out in this

direction and that is constant ok. Now, what we do is that, let us assume that the first case k1

is the thermal conductivity.

Second case k2 is the thermal conductivity, and let us assume that k1 is greater than k2. So, if

this was the heat that is going. So, we would write that q=
−k1
A
∂T
∂ x

across the first wall and



that is also equal to  
−k2
A
∂T
∂ x

 across the second slab. Now, we look at this expression and

realize that you could; for example, simplify the situation, saying that the cross sectional area

is same which is true here, and we approximate the dT as ΔT, the temperature difference

across, because at steady state the temperature profile is anyway linear and this basically is Δ

x which is the thickness of the slab.

So, which means that this expression will tell you that Δ T1/Δ x1 × k1 = k2 × Δ T2/Δ x2. Now

we again look at the situation where you can think that these two walls for example, are at

different thicknesses, then you can approximate and see what is the answer, but let us for

moment ignore the Δ x thicknesses and see what would this conclude.

So, here we can see that Δ T1/Δ T2 = k2/k1. So, which means that if k1 is larger, its going to the

denominator. So, T1 should be smaller, so which means that the layer with larger thermal

conductivity will support smaller ΔT. So, that is what you can conclude from this expression.

So, which means that here k1 is larger. So, the thermal differences between the one end of the

first layer to the other end should be smaller ΔT, because k1 is larger and k2 is smaller. So, it

can support larger the ΔT.

So, what happens is that when we draw, you can draw with the two slopes; such that the

shallow slope. So, we say shallow slope for layer with larger k, and we will draw steep slope

for layer with smaller k. So, which means that the layer which has poor thermal conductivity,

will be able to withstand high temperature differences across it. So, this is a straight forward,

the conclusion that we can draw from this steady state heat flux balance, assuming that the

heat that is arriving from the left. For example, the heat is arriving from the left; the same

amount of heat is also going so there is no accumulation of heat at the interface.
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Now, what we do is that we will use this analysis and see what happens when there is an air

gap. So, let us say the same situation is happening; only thing is at the contact between the

two layers  is not very good, and we zoom in this region and see that what happens here is,

there is an air gap. So, this is air and assuming that these two blocks are basically metallic

and so which means that thermal conductivity of air is definitely much less than either k1 or

k2. So, what this implies is that, this gap now when you try to plot the temperature across a

location like A B what happens is like this A B. So, if you look at the layer differences. So,

this is the first layer and this is the second layer this is the air gap

Now, you would see that the temperature plot should actually be like this. So, that the surface

temperature on the second wall surface, temperature on the first wall are different and they

will be quite steep; that is because the air that is between them is able to withstand that large

temperature difference, because its thermal conductivity is very poor.

So, basically this straightforward application of what we have discussed just a slide back.

Only thing is that the difference the gap between the two walls is not constant, somewhere it

is large and somewhere it is small, but definitely it would withstand a large temperature gap.

So, what this implies is that, if you were to then drop the temperature profile across this wall,

assuming there is an air gap. So, here let us say there is an air gap, then how do we draw the

temperature profile. So, for that what we do is, draw it in this manner.



So, we draw it here for example, the k1 is large. So, we put this way, and the k2 is high. So,

what we do is that, we make it in this manner. So, that there is a ΔT that is basically, because

of these ΔT. Now which means that when you look at the heat that is going in this direction.

In this direction it has to go through this gap, which actually should also be modeled. So, we

then write an additional  term here.  So, this heat that is going through the bulk up to the

interface  would  then  be  proportional  to  k1  ΔT1/Δx1,  but  the  interface  resistance  is  then

modeled as h × Δ T, and then in the other wall again from here, it would be k × ΔT2/Δx2.

So, we can then see that the interfacial resistance can also be taken into account, only thing is

that instead of directly matching these two quantities, it goes via this quantity. So, that the

thermal resistance also is coming into a picture. So, for most of the situations in metallurgy,

we have to ask, is there thermal resistance or not in the case of situations like continuous

casting. This actually plays a very big role. We do actually have this air gap between the

caster and the metallic material; that is solidifing and inside this air gap, we try to introduce

ceramic materials to control the thermal conductivity and thereby achieve different cooling

rates to avoid cracking etcetera. So, we must pay attention and in these model problems we

may ignore, but we must know that we are making a very conscious decision that there is no

air gap which actually is not reality in most of the situations.

(Refer Slide Time: 24:49)

So, let us a for moment we ignore this particular aspect, we do not want to talk about the air

gap at all, and want to only draw the schematic temperature profiles across the furnace wall.



So, between each of these walls that are in the composite wall, we say that there is no air gap

with that assumption, let us see what happens. So, here I want to just show how we go about

drawing this schematic profile, knowing whatever we have discussed till now. So, furnace is

hot. So, which means that the temperature on the left hand side, very far away inside the

furnace should be flat, because it does not know that heat is being lost through the wall and

ambient air is cold. So, which means the temperature profile far away in the air is low here,

and its not knowing that there is a furnace out there keeping heat. So, the temperature is flat.

So, these curves should come in and what we do is that we know that the temperature of the

wall of the furnace is not the same as the temperature of the furnace. So, you few then were

to  look  at  what  will  the  peak  temperature.  The  peak  temperature  if  it  is  here,  the  wall

temperature is somewhat here and therefore, we should draw it is like that. So, Ts surface

temperature  would  be  something  like  that,  and  we  asymptotically  take  it  to  the  peak

temperature in the furnace and this difference Tp - Ts is what is actually driving the heat flux

into the inner wall of the furnace and outside also the same thing.

So, if you were to then note down what would be the T∞, which is far away temperature and

the outer wall would have a temperature slightly high, and you would have asymptotically,

this is how the profile should look like and this is the difference Ti - T∞  is a temperature

difference over which the heat transfer is taking from the outer wall of the brick that ceramic

brick, and between these two if you have assumed that the steady state heat flow is taking

place in 1D then you could join them. So, this is how the temperature profile would look like.

So, you could see that what it implies is that the heat flux; that is actually going here is given

by the heat transfer coefficient; that is for the inner wall into Tp - Ts × area, and the area we

are assuming to be constant and what is actually going out from here is basically heat transfer

coefficient for the outer wall into Ti - T∞, and here what is actually coming from the one end

of the ceramic wall to the other end would then be given by k of the ceramic × T s - Ti divided

by the thickness of the ceramic.

So, we can then see that these three expressions should then be matched if you want steady

state, and that is how we can go about solving the wall temperatures for a given form level.

So, now, we have drawn this schematic. So, I want to again inform you that this asymptotic

should be such that far away into the furnace, the temperature profile should be flat. So, the

curvature inside the hot should be like this and not like this. This is wrong, the reason is the



temperature cannot keep on increasing, because far away into the furnace the temperature has

to be equilibrated. So, this is correct and this is wrong. So, watch out the curvatures when we

draw the schematic temperature profiles.

Now, that we have drawn this for one wall.

(Refer Slide Time: 28:19)

So, we increase the layers and see how this should be drawn when you have a composite

wall, and then while drawing that we already know are practicing. So, we realize that the

ceramic is having a better conductivity compared to the glass wool. So, we say that the glass

wool should withstand a large gradient  and then the ceramic should withstand is smaller

amount of gradient, and then we see that this has to go something like that and this has to go

something like that.

So,  we now see that  this  is  how we can draw it  schematic  temperature  profile  from the

furnace interior into the ambient air, far away and we could then give symbols if you like and

Ts and the Ti and you have some Ta. So, you can give symbols. So, here for example, the two

temperatures are matching and that is, because there is no air gap here. So, here we say no air

gap. So, with that assumption we can then draw the schematic.
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Now, when we have one more layer, the process of drawing is that similar except for that.

Here we realize that this steel has the thermal conductivity, it is very high. So, it would not be

able to withstand much of the temperature differences. So, practically that is very flat. So,

you will draw it very flat like that, and then for the glass wool it can be started very high

temperature gradient, and for ceramic there is somewhere in between. And therefore, now we

could draw in this manner and flat temperature profile here and goes flat here. So, Tp here, T∞

here, this will be interface temperature, this is surface temperature inside, if you like Ta and it

is like Tb etcetera.

So, we can choose these symbols as we like, but the profile is like this, and we see that the

steepest temperature gradient is maintained by the glass wool which is protecting the heat

from being lost into the ambient air, and the overall heat flow is in this direction which you

can see already that from the slopes you already know which way the heat is going.

So, you can see that the heat is going down this, because of the gradient down this, because

of the gradient down here, because of the gradient down here and down here into the air. So,

this is how the heat flow is happening, and that is if it is steady state, then the slopes have to

be adjusted according to the thermal conductivities for the respective shells ok. So, when we

now  want  to  write  expressions  for  each  of  these,  we  already  know  that  for  this  first

expression you write h × Tp - Ts here, the last one it will be h. So, this is inside this is for



outside into Ti - T∞ and so on. So, if you write those expressions they would look like that, so

the first one.

(Refer Slide Time: 31:03)

So, the first this expression would look like this, and this expression would look like this, this

expression would look like this, this would look like this and here would look like this. So,

you write expressions for all the 5 locations across which the heat flux is being written. and

once  you write  you can  then  see  that  when you add,  you would  see that  these  will  get

cancelled, and you can write To - T∞ is equal to this expression in which we have taken q/A as

common out and you can see that 1/hb + Δ xc/kc etcetera

So, we could see that we have essentially seen that when you do this addition, we are actually

seeing that  we are adding the thermal  resistances.  So,  which means that  we are actually

taking the (Refer Time: 32:01) analogue and then simply adding them, as if they are in series

and then finding out what with the temperature difference which means that when it comes to

composite wall problems, we can go ahead and use the resistance analogue for the thermal

field also and then solve the problems

Then  when  we  have  some  situations;  like  for  example,  what  would  be  the  maximum

temperature a furnace can withstand. So, normally the glass wool would have some melting

point of the glass. So, let us say, it is given as let us say 800 oC, which means that the hotter

wall;  that is in contact with glass wool shall not exceed 800  oC and which means this is

subject to a maximum temperature of 800 oC. So, this implies that Tpeak is fixed, once you fix



the geometries and the materials automatically Tpeak is fixed, which means that knowing what

will  be  the  melting  point  of  the  glass  wool,  we already  see  that  what  is  the  maximum

temperature the furnace can be operated

If we operate at higher temperature than that then the glass wool would melt and then there is

then no support between the ceramic and steel, and then immediately you can see that the

heat loss will be not balanced the way we have planned and that would lead to; for example,

accidents and fire in the furnace and so on. Now, you can see how this expression can be

modified if the furnace happens to be different ok.

(Refer Slide Time: 33:22)

So, if it was actually a tubular furnace, then cylindrical coordinate system has to be used and

you could see that the thermal resistance would then be different and you see that instead of

Δx, you see that its logarithm that is coming etcetera. So, this we have already seen that each

of the expressions would be modified, but the way you solve the problem would be the same,

and  therefore,  you could  also  go  ahead  and do the  same estimate  for  To -  T∞ which  is

basically sum of all the thermal resistances and with the q that is coming in front.



(Refer Slide Time: 33:52)

So, let us say that we have used this problem and let us say then we can see how this can be

applied. So, here i am giving a practice problem. The practice problem is as follows. Let us

say that there is a fish that is actually living under the lake and the lake is frozen on the

surface, because of cold air and we want to drop a thermal profile across the entire system in

the vertical direction, and prove that the fish can survive even in the cold winters, and this is

actually really life experience in northern parts of Europe and so on.

Now, how do we go about drawing the profile here? Now the way you draw the profile here

is identical to the way you draw in the furnace problem also, because you do have different

layers  of  different  thermal  conductivities,  and you could  then  start  off  by  fixing  tongue

temperatures that we know. So, how do we go about?

We know that  cold  layer  unless  it  is  much lower than  0oC ,  it  will  not  actually  lead  to

formation of ice. So, the temperature must be very low on the cold layer sink and along the

depth if you see there must be no variation, very much high in the sky, because it does not

know that there is a lake; that is absorbing all these chillness and therefore, it should be flat.

And way below the bottom of the lake, you must have a slightly higher temperature for the

fish to survive. So, you may have the temperature profile that is actually flat with respect to

the depth.

Now, one temperature that we know is that the interface between the ice and the water is at

0oC.  So,  which  means  that  somewhere  here.  So,  this  entire  layer  which  means  that



somewhere here you could draw the axis and we say that this is 0oC , so this point we know.

And then; that means that the surface has to be lower than that so you draw like that.

So, which means that immediately you can draw the profile in this manner, and then here, so

which means that you can now estimate what would be the heat coming this way, what is the

heat coming this way, what is heat (Refer Time: 35:53) way. So, here the first one would be

for example, heat transfer coefficient I here the inner side into for example, Tbulk and then T

this is 0  oC, which is Tm. So, Tb - Tm and here it would be like for example,  the thermal

conductivity of ice into Δ T/Δ x and the Δ T itself is given as Tm - Ts, so this is Ts, and this is

T of the air. So, this heat that is lost would be then h outer into Ts - Tair. So, you can already

see from the values that Tair must be much less than Ts, so that the heat can go in this direction

and then you can then get a balance.

So, which means that depending on the temperature of the air you can already estimate by the

balance of these fluxes, what would be the thickness of the ice layer thickness, what would be

the ice layer thickness, so that this balance can be there. Now that actually tells you whether

the ice layer is thick enough for somebody to skate on the lake or something like that. So, you

can actually take the same principles and apply two totally different scenarios, but in all these

situations what we are doing is basically 1D steady state heat flow in rectangular systems. So,

with that we can actually solve some of the numerical problem. So, we will do that as a part

of the tutorial that will also be there in the course website.

So, with that we close the session and you can look up the course website for notes and

practice problems.


