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Welcome  to  the  session  on  energy  transport  as  part  of  NPTEL  MOOC  on  transport

phenomena materials. This topic is also referred to as heat transfer in most of the courses.

(Refer Slide Time: 00:27)

So, in this course we are going to take up heat transfer after the fluid flow sessions mainly,

because there is a strong linkage between these 2 phenomena. And in this session we are

going  to  look  at  the  enthalpy  change  from the  thermodynamic  principles  and  argue  the

spontaneity of heat transport and then motivate the linear constitutive relationship which we

will be using here. Then derive the generalized heat conduction equation, which will be the

governing equation for heat transfer.  Then we will  introduce the concept  of heat  transfer

coefficient boundary conditions in problem statements that would basically be the starting

point for us, to solve some of the problems on heat transfer that we encounter in metallurgical

phenomena.
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So,  the  enthalpy  change  is  going  to  be  discussed,  motivated  from  the  first  law  of

thermodynamics, where we write the change in the internal energy as written here, which is

basically the difference in the amount of heat that has come in and the work that is done by

the system. So, we write for example, the differences with a different symbol here Δ, because

these 2 are path functions.

Whereas, here you write with d, indicating that its a state function and we restrict the work to

be the pdV work. So, that we will later on look at the constant volume and constant pressure

situations, and see whether these terms will survive or not. We can also take the chemical

work, but at this moment we are not going to take those into account.

The enthalpy as a thermodynamic function is defined here. So, we write this with a triple

equal to sign, because this is actually the definition. And once we write, then we can actually

look at the change in the enthalpy, as related to the change in the internal energy and the rest

of the parameters. So, we write by straightaway taking the differentiation by parts for the p

and b. 

So, once we write this, we basically combine this equation with the first law and realize that

we can express the change in the enthalpy to the amount of heat that has come into the

system, and at constant pressure we see that the second term will drop. So, this is exactly the

idea.  Most of the engineering situations,  the pressure is actually  kept at  one bar and ray.

Often we also are using the condensed systems that is liquids and solids where the pressure



effects are very minimal. So, therefore, most of our discussion will be with the heat transfer

at constant pressure. So, once we write, then we can also see how the change in enthalpy can

be expressed further on.

(Refer Slide Time: 03:05)

So, here we are proposing that the enthalpy can be written as a function of temperature and

pressure. So, for any function; that is a function of 2 variables, you can actually write what

would be called as an exact differential. So, this is actually a mathematical concept, saying

that the differential of enthalpy, if it is written as a function of temperature and pressure, can

be expressed in terms of the partial derivatives and the differences of respective variables.

Now if this is so then what we can do is, that compare this equation with the one that we have

derived. So, this equation when we compare, then we can already see that this term would be

here comparable, and then we could also see how we can express the amount of heat that has

come into the system to raise the temperature by a small amount.

So, then we can give some name for this particular quantity and there so we are actually

introducing. So, we basically call that as the heat capacity and per unit weight or per unit

volume or molar heat capacity etcetera, is depending upon the variable that is in front of it.

So, this is how we define, but remember that it is all valid, when we are taking the pressure to

be constant. So, basically motivated from the enthalpy, we basically say that the amount of

heat that has come into the system, is actually leading to directly a change in the enthalpy,

and that can be related to the temperature change via the heat capacity.
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So, once this is there, then we can see how this actually applicable for most of our systems.

So, if you take many of the materials, pure materials for example. If you take pure iron and

then the melting point is indicated here. So, as you increase the temperature at the melting

point, there is a certain amount of heat that has to be given to break all the bonds between the

atoms in the solid state, to make them into a liquid state. So, here we have got the solid state

here and this is the liquid state and this is also called as a latent heat of fusion or enthalpy of

melting and so on.

And you could see that this actually makes the expression for enthalpy a little complicated,

because there are changes of slopes, but as long as you are not changing the phase; that is if

you are sticking into only the solids are the liquids, then you can have a direct proportionality

relationship between the enthalpy and the temperature, and the enthalpy change as you go

along. This curve is given by the integration; that is written here. So, you could apply this,

either in the solid state or in the liquid state, but when you do a cross, then you will also need

to look at the latent heat of fusion without forgetting, because that is an addition that will

come, because of the change of the phase.
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So, assuming that there is no phase change, assuming that you do not have a phase change,

then you can straight away use this straight line approximation and write that the enthalpy is

related to the differences in the temperature, where the slope is nothing, but mCp, and if you

were to, then also apply it for a given domain that we know that the mass of the entire domain

depends upon the geometry, and in transport phenomena we have been generally using the

control volume approach..

So, that we write the expressions for a given control volume and then we just integrate for the

whole volume, depending upon the geometry than the integration can give you the results.

So, we do not want to write the quantities for a entire body, but actually where a control

volume. So, we write the enthalpy per unit volume here divided by the volume, and you can

see I am using a small h to say that it is enthalpy per unit volume. So, you have ρCp × ΔT.

Now, the T reference is basically some reference point to indicate the scale of the enthalpy to

start at zero, and usually you take it as a 298 K as a reference. So, you could also take it as

any  other  reference,  but  remember  that,  its  always  differences  of  enthalpies  that  we are

interested in very often. And from here you can already motivate that for any given body,

because if you integrate the density over the entire volume you get the mass. So, you can

already motivate that, the enthalpy change is nothing, but integral of the enthalpy per unit

volume over the entire volume.
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So, once that is there then we will actually use that concept later on to derive some of the

expressions. So, here we bring about what we mean by thermal equilibrium, because heat

transfer is basically a tendency of the system to go towards thermal equilibrium, and we say

that there are 2 bodies here; one and 2 and these are at 2 different temperatures T1 and T2, and

if they are actually at thermal equilibrium what we want to then conclude is the T1 should be

equal to T2. So, which means that the measure of the equilibrium is basically given by the

temperatures. So, that is how we want to define the thermal equilibrium as.
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 And if you now take 2 bodies, that are at 2 temperatures T1 and T2 and if they are different

and if they were to reach the equilibrium over a period of time. So, initially T1 is not equal to

T2, and later on they reach in equilibrium, and if these 2 bodies are identical. There are 2

identical bodies, they have the same amount of mass and their contact is perfect contact. So,

we say that the contact is perfect. So, that there is a good amount of heat that can go across to

make the equilibrium be achieved.

And if  that  is  for the (Refer Time:  08:27).  So, then we can already see that  the average

temperature that will be seen in both of these bodies, is given by (T1+ T2  )/2. This actually

makes us that the intuition, that the heat actually is going in this case for example, if you were

to tell that T1 is a low temperature and T2 is a high temperature. So, we say that the heat is

going this way. So, that the T2 is reduced to T́  and T1 is actually increased to  T́ , where T́  is

basically the average of T1 and T2.

 Now this actually makes us come to a conclusion that heat is actually going from a location

of high temperature to low temperature, and I want to just quickly remind you why would

like  to  call  this  spontaneous  process.  So,  here  is  where  we  remember  something  from

thermodynamics; any process that increases the entropy would be spontaneous. So, if in this

process  of  temperatures  being  equilibrated  if  the  entropy  were  to  become  positive;  that

means,  it  is  a  spontaneous  process.  So,  that  we  basically  discover  the  cause  and  effect

relationship,  which we then use for the linear constitutive equation that we need for heat

transfer.
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So, you write the entropy change for the entire body in this manner. So, you say that the

entropy change for the first body is ΔS1 and for the second body is ΔS2. This is going from T1

to T́ , this is going from T2 to T́and you could write the ΔS is basically ∫ dS and that we write

as δ q /T and we already know that δq is given by for example, mCp × dT.

So, therefore, we can write here the ΔS as mCp dT/T and if you want to go from T1 to T́ , then

you could write it  as mCp ln T evaluated between the limits  T and  T́  and that would be

mCpln( T́ /T1). Similarly you can then see how you could write it for the other expression also.

So, you then see that it is coming here. Similarly it is also evaluated for the second term and

then you can get the sum of the 2 entropies like this.

 Now when is this process spontaneous? The process is spontaneous when the total entropy

change is greater than or equal to 0. So, that is when it is spontaneous. So, we inspect whether

it  is spontaneous or not, by looking at  only this term, because these are actually  anyway

multiplicative factors, and if this term that I am highlighting, if that is greater than one then

what happens the logarithm of a quantity more than one will give you positive number and

therefore, the entropy change will be positive. If this number happens to be less than one; that

means it will  give you a negative number when you take logarithm and then the entropy

change will be negative, which means our process is not spontaneous. So, we will only look

at this term, and to evaluate whether that term is positive or not.
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You look at the expression here. So, as long as the T1 and T2 are 2 temperatures, if they are

different you know that whether the T2 is more than T1 or less than T1 the difference square is

always positive, and therefore, we say that it is greater than or equal to 0, because T1 and T2

will be equal then you get 0 there. And you expand (T1 – T2 )2  and then take the 2 T1T2 to the

other side and then add 2 T1T2 to both sides, then you see that you can write this expression.

Once you write this expression you to take this 4T1T2 to the denominator and then you can

write that the entire expression is greater than or equal to 1, which means that the logarithm

of that is greater than or equal to 0, which actually means that the entropy change for this

entire system is given as greater than or equal to 0.

So, which also means that in the process that T1 went up to T́  and in the process that T2 went

down to  T́ , it is actually that entropy change total is actually greater than zero, which implies

this is actually a spontaneous process. And in this process what is happening is that the heat is

actually  going  down  this  direction.  So,  heat  going  down  the  temperature  gradient  is  a

spontaneous process; that is exactly what is our conclusion from here, which means that we

are now able to propose a constitutive relationship, where we can talk about the cause and

effect relationship if the cause is the temperature gradient then the result will be the heat

flow, and the sense of it is that the heat will be flowing down the temperature gradient, and

that is exactly what we are writing here.
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We are saying that here, J is the heat flow. So, in per unit area heat flux and this is the

temperature gradient. So, we want to use this minus symbol we should say, down the gradient

ok. So, we are saying that the heat flux is down the temperature gradient, and then if you

want to look at these 2 as vectors and they should be related by a property and from the

tensor relationships that we have discussed earlier in the beginning of this course, we know

that the highest tensorial order for the property that can relate, these 2 vectors will be a tensor

of order 2 and that is exactly what we also want to call as thermal conductivity tensor, which

is of order 2.

So, that is what we can conclude here. And we have seen this linear constitutive relationship

actually  come out  with a name Fourier  heat  conduction,  where the heat  flux is  given as

proportional  to  the  temperature  gradient  where  the  proportionality  constant  is  k.  Now

normally k is taken as a constant, but we know that the most general form of writing this

relationship is, k is actually a tensor of order two, k is actually symmetric one also as we have

discussed earlier, this is because of the Onsagar’s principle. So, kij is a symmetric tensor. So,

we will look at problems, where k is actually a tensor of order 2 with 9 components reducing

to 6, because of symmetry and for different process symmetries how different values of k are

required.
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So, we will take that discussion separately and see how we can actually write this expression

for  isotropic  material.  So,  for  isotropic materials  k is  just  one number and that  we have

written here, and in the rectangular coordinate system you could write the heat flux related to

the thermal conductivity in this manner where we have written the gradient. So, the gradient

is written here in the rectangle coordinate system, and if it is cylindrical you can write it with

respect to the r θ and z components of the gradient and you can see that it is written here.

And for spherical coordinates of course, you write it for r θ and  directions, the variation ofϕ

temperature in those directions and we can write the (Refer Time: 15:45) like this. So, (Refer

Time: 15:47) into the thermal conductivity with a minus sign is giving you the heat flux and

that is what is basically called as a Fourier heat conduction ok.

So, in the realm of most of the engineering scenarios we normally encounter only Fourier

heat  conduction,  because  the  non Fourier  heat  conduction  is  out  of  the  purview for  our

course. It normally happens when we have laser pulsing at time skills that are very small like

pico  second  or  so,  but  most  of  engineering  problems  where  the  heating  is  done  at  the

expected  rates  and  pulsing  is  done  in  milliseconds  or  so,  or  even  more  then  Fourier

conduction equation is valid and that is what is written here.
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 Now we need to have a governing equation derived. So, the template for the governing

equation is exactly the same as what we have done for the Navier stokes equation and that is

given as follows. So, we start off with a balance equation. So, for Navier stokes equation we

start by the balance of the linear momentum. So, in this case for heat transfer we start with

the balance of heat or balance of energy. So, we started a balance equation, and then we apply

this equation for a control volume. So, we write mathematically for a control volume, and

then normally when you write it for a volume you would have the bulk terms, we volumetric

terms as well as the surface terms.

So, the surface terms are going to be then converted to the bulk terms by using the divergence

theorem. And then once you have that returned then you would actually look at only the

integrand and then change it by using a constitutive relationship so, that the cause and effect

relationship is used, and finally, we have the governing equation. So, this template will be

applicable for all the transport phenomena, and usually if you follow this we are also very

conscious of what is our starting point. So, it is a balance of enthalpy that is the basis for heat

transfer governing equations. So, that is something that we have to be very clear, because

there is a starting point for us.
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So, what we do is first we state the balance. So, balance is stated as follows. So, the rate of

increase  of  enthalpy  in  a  control  volume  is  because  of  heat  generation;  that  is  done

volumetrically in the control volume and the influx of heat from all the phases. So, if the heat

is coming in and also there is a heat that is generated. So, therefore, then it should lead to the

increase in the enthalpy of that particular control volume. Enthalpy being a thermodynamic

function  is  any way related  to  temperature,  so  we would  see  that  it  eventually  leads  to

increase in temperature, but the balance is written for enthalpy. So, we would write that ok.

(Refer Slide Time: 18:17)



 And we write it  now in mathematical  form for a control volume, and we are then very

consciously using the Eulerian frame of reference which we have discussed in detail in an

earlier session, where we use a material derivative to look at the rate of change. So, rate of

change with respect to the time, is used with capital D which is a material derivative; the

reason being that this is for a control volume, which could be in a fluid also and in a fluid

when you go whatever is the function that you want to write.

So, this entire thing for example, is a quantity let us say capital Φ, then capital phi at any time

limit Δ T goes to 0. So, this is what we actually mean when you look at this quantity. Now

here we see that at T + Δ T is the control volume elsewhere compared to here. So, the reason

being that there is a velocity that is actually present and the control volume will actually

move around.  So,  then if  you use  the fact  that  you could  actually  use the  chain  rule  of

differentiation, then you would actually get the velocities also, and that is what we discussed

when we came about the material derivative.

So, please refresh that concept before we continue further, and then we will be able to write

the rate of change of enthalpy as material derivative of this integral, and this integral what is

there is basically the enthalpy of the entire control volume, and that is equal to the volumetric

heat generation. So, g is the rate of generation of heat. So, rate of heat generation per unit

volume that is written as g, and that would be basically watt per meter cube and then the

influx of heat.

So, the influx of heat we always write with a minus sign. The reason is as follows; the J is

actually  by our  convention  is  an outward  vector,  and when it  is  dotted  with the surface

normal of any phase that is also outward. So, when you dot it  you get a quantity that is

positive if the flux of any quantity j that is represented is going out of the control volume. So,

you must actually then put a minus sign to indicate that we actually saw about the inward

flux. So, that is why we say that, if this is the amount of heat that is going out of the phase

that is indicated here then with a minus sign that actually then represents the influx.

So,  what  we  have  written  in  this  particular  equation  is  that  is  a  mathematical  form of

whatever  we have said here.  So,  this  is actually  this. So,  these 2 are identical;  one is in

English and other is in the mathematical expression. Now, what we do is that we then go on

to manipulate this expression further on to arrive at the governing equation.
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So, that we do as follows. So, we write the same expression here h, but h is then written with

respect to the expression that we have already seen, it is ρ×Cp × (T - Tref) So, that is what we

write here, and integrated over dV that will give you the enthalpy and then the rate of change

of enthalpy is indicated by this, and that is equal to the integral of the rate of heat generation

volumetrically and the influx. So, we wrote that again neatly by expanding the small h.

And then we see  that  is  bit  awkward,  because  there  is  a  differential  here outside  of  the

integral and the rest of them are actually integrals. So, we must take that in, and what enables

that possible is the Reynolds transport theorem, which again has been discussed earlier and

we know that it can be taken in at that position by this Reynolds transport theorem for any

arbitrary scalar function, and luckily for as, temperature is a scalar function and therefore, we

can directly do that.

 And here we have basically integration which is over the entire surface of the control volume

and  if  you  want  to  then  change  it  to  the  volumetric  integral,  then  we  must  apply  the

divergence theorem. So, divergence theorem is over this index i. So, this basically whatever

you have written is J dot dS and we know that that can be converted to del dot J dV integral

over the volume and this is what actually we apply.

So, we have then taken the  D/D t material derivative inside here it has come in and in here

actually converting the, we are converting the surface integral into a volume integral here by

taking the divergence. Once we write then we recognize that all these three terms are actually



having the integration over the same domain, namely the volume of the control volume, and

therefore, if this equation were to be true then it also means that the integrands are also equal.

So, whatever I am highlighting that is all the integrands and they must also be following the

same expression. So, that we then indicate here.

So, which means that  we now have expressed the balance  of enthalpy without  using the

integrations  by  writing  it  for  the  control  volume  and then  adjusting,  the  term such  that

everything is over the same integration. So, we now have basically a governing equation for

the enthalpy balance, but we still need to do some more, because here we write J which is the

heat  flux,  which  needs  to  be converted  into the  temperature  differences,  and that  we do

basically by using the linear constitutive relationship.

(Refer Slide Time: 23:49)

But before we proceed we just let us look at the operator D/Dt material derivative and that we

have already come across; that is expanded here. So, we expand the material derivative here,

and if you then want to consider that this is constant, which means that it is not a location

dependent quantity then you can take it out. What it means is that in problems where you

have location dependent properties, then do not do this manipulation you can use the equation

as  it  is,  but  in  case  of  homogeneous  media  then  you  can  take  the  location  dependent

properties, if they are not relevant then you can take this guy out, and then you can collect to

the  properties  aside  and  then  look  at  that  the  material  derivative  is  acting  only  on  the

temperature..



So,  this  entire  thing  is  basically  d  D/Dt  of  the  temperature,  material  derivative  the

temperature that is all, and that is equal to basically g which is the rate of heat generation

volumetrically and the divergence of the flux. So we then write this expression in vectorial

form saying that material derivative of temperature with a property is equal to the rate of heat

generation, and the total influx which is given by the divergence of the flux.

(Refer Slide Time: 25:07)

Now, the flux is then expanded, and we expand the flux in this manner, where we basically

already have talked about it, it is basically the Fourier conduction, Fourier heat conduction

equation, the flux is equal to -k × ΔT, and the k for example, here is a tensor of order two,

then we want to make a simplification that for isotropic materials we want to consider it as an

isotropic tensor and therefore, we can write it as k × Δij.

. So, look at this expression. So, you look at only this expression, if you write kΔ ij and then

∂T /∂x i, then we know the principle that whenever the kronecker Δ is coming for the match

matching index you can then manipulate and then this can be written as k ×∂T /∂ x i. So, this

is what we have written and that goes here. So, this comes straight away here. So, rest of it is

here. So, which means that we can actually look at the last term, and recognize that it can be

written ask ×∇2T . So, which is basically Laplacian that is coming in, and on the left hand

side we have basically the ρCp and then this is the material derivative.

So, we can see that upon introducing the Fourier heat conduction equation, the minus sign is

actually taking care and you have got a plus sign here, because you have got 2 minuses here,



these 2 getting canceled out. So, we now have the governing equation for heat transfer. So,

we write it in a different manner. So, we already see that the properties are being assumed

constant. So, constant thermal conductivity etcetera.
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So, we can then take it to the right hand side and write it as follows. So, when you take to the

right hand side k/ρCp comes, and k/ρCp can then be called as the thermal diffusivity, which

has the units m2/s, and we already saw some quantity of this nature and ν in mass transfer

also, earlier the momentum transfer we look at what is called as the momentum diffusivity

and that is basically ν kinematic viscosity and that has also the same units ok.

So, we then substitute that here and g/ρCp comes about because ρCp is taken to the right hand

side. So, now, this is basically the governing equation for the heat transfer for us, with the

advective term and the partial derivative at the time, all of it coming because of the metal

derivative on the left hand side.

So, this first term goes by the name transient term and the second term goes by the name

advective term. These 2 together are coming, because of the material derivative, and that is

because  we have  used  Eulerian  specification,  and  this  term is  called  the  diffusive  term,

because it basically tells how the temperature variations are getting evened out. If we will see

the result of that shortly when we solve some problems, and g is basically volumetric heat

generation term and therefore, that is called as a source term.



So, we can see that the terms are very similar to that of the Navier stokes equation, you do

have a transient term, you have advective term, you have a diffusive term, you have also

source term. The only thing that was missing is in the Navier stokes equation you have the

pressure gradient term, which is not relevant in heat transfer, but otherwise the four terms are

there. And the way the terms actually interact on the equation to get you the solutions of

different types is also similar and so, some of the solutions can already be guessed by looking

at what kind of solutions are possible, if the equation looks like this.

This equation has another name, you could also call it as the so called convective diffusive

equation, and this basically means that these 2 terms are being taken into account and so, in

mathematical  literature  sometimes  what  people  refer  to  as  convey to  diffuse  equation  is

nothing, but this generalized equation that we have written, which falls into a template into

which the Navier stokes equation or which analyzed heat transfer equation also can be cast.

So, its a very broad template that is widely used ok.
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.

So, the Fourier heat conduction we now then expand. So, what we do is this equation we

expand.  So,  we  expand  these  terms  in  different  coordinate  system.  So,  for  rectangle

coordinate system we expand the advective term, we can immediately see that this can then

be expanded here, and ∇2T can be expanded here. So, this is the first and this is the second,

first operator and second operator.



.  So,  we can  see  that  the  most  general  form of  the  Fourier  heat  conduction  equation  in

rectangular coordinate system will have for example, these many terms. And you would see

that the velocities are directly coming here and you have got the diffusion term on the right

hand side. And the same thing can be also written for cylindrical coordinate system where the

velocities  are actually  ur uθ and uz and you would also have the Laplacian  looking a bit

different. So, watch out the Laplacian term different for this system. So, you can see first of

all here ok.

So, the  r ×∂T /∂ r,  1/r  here. So, this is a very important difference that you need to note

down, but in the z direction by enlarge it looks the same. So, we can look up these operators,

for different coordinate systems and substitute, which means that if you knew how this has

come about  and that  is  adequate.  So,  from here to  here you could basically  look up the

operators and substitute and figure it out. So, that is adequate.

 and we have written this equation for isotropic materials why do we say that, because here

we are taking it as a constant and this is nothing, but k/ρCp, and k is constant and that is

because you are taking about for isotropic materials,  and why do we say its for constant

properties; that is, because we have already correlated these constants k and ρ Cp you have

taken  from the  left  hand  side  and  taken  it  under  this.  So,  which  means  that  it  is  only

applicable,  when  the  properties  are  not  spatial  coordinate  dependent,  that  is  also  an

assumption that we have written ok.
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And for a spherical coordinate system. So, the equation looks like this. So, you have got u r uθ

and uϕ  coming in, and the Laplacian term for spherical coordinate system is looking like this.

Notice that the power of r is different from the cylindrical coordinate system in cylindrical it

is r and here for a spherical it is r2 that is coming in ok. So, other than that you can actually

look up these from handbook and substitute directly ok.
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And these are going to affect the heat transfer in the following manner. So, you could see that

you have got the temperature and also you have got the velocity. So, how does the fluid flow

affect the heat transfer and vice versa. So, that is the concept and we are not going to go in

depth, because we would have coupled problems being solved later on, but at this point I

would mention that the fluid flow is going to affect. We would say that the fluid flow is going

to affect the heat transfer mainly via the advective term. So, this is how mainly it will happen.

So, the advective term is already visible here. So, this is advective term. So, advective term is

what is going to cause an effect of the fluid flow on the heat transfer.

, but there was another way by which it can affect and that is through viscous dissipation; that

is because when the velocity gradients are very steep, and that would lead to basically release

of heat and that would also be affected and that would come by the g term. So, that this term

is coming from viscous dissipation is possible.

So, in situations  where there is  a  very narrow gap of liquid.  For example,  in lubrication

situations the velocity gradients are very steep and viscous dissipation can be quite high, and



that also can lead to heat transfer. So, the way fluid flow effects heat transfer is by mainly by

advection  term,  and  sometimes  when  steep  gradients  are  present  also  by  this  viscous

dissipation.

Now, how does heat transfer affect the fluid flow that would actually affect via the properties.

So, you could see that, it is actually affected via the temperature dependent properties. So, if

you have for example, ρ that is dependent on temperatures. So, then it will lead to what is

called buoyancy flow, and if you had for example, surface tension that is the dependent on

the temperature, you would have what is called the marangoni fluid flow etcetera.

So, like that heat transfer can lead to fluid flow and fluid flow can lead to heat transfer, and in

such a coupled situation how do we go about. So, we do it step by step, we take one at a time

and at this juncture, we basically take heat transfer alone and avoiding the advection term and

that is when we write the equation for solids.
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So, we write, for solids, isotropic solids how the equation should look like. So, on the left

hand  side  you  could  see  that  we  have  dropped  the  adjective  term,  mainly  because  the

velocities are zero. So, the Fourier heat conduction equation for solids is appearing to be very

simple and this if you write it in the way that normal is seen in the books you could write it in

this fashion. So, it is as small as this. So, you are actually expanding the Laplacian here in

this equation, and in cylindrical coordinate system it is expanded here, and the Laplacian is

actually here, and in spherical coordinate system, similarly it  has been expanded. So, for



Fourier heat conduction in solids which are isotropic, then you can see that the equation is

quite small and that can be solved out.
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Now, what  kind of simple  solutions  are  possible? So,  this  is  something that  we need to

inspect, because upfront we can actually already get some insight of how the heat transfer is

taking place. So, consider these equations and look at the simplest situation possible, when

for example, you are looking at steady state. So, you do not want to look at that and we say 1

D. So, you do not want to look at variation in other dimensions and without heat generation

you do not want to have this term.

Which means that you have only one term; that is set as 0 and what kind of solutions are

possible, and you can already see that this kind of a equation would give you a line as a

solution. So, we could see immediately that straight lines are valid solutions of temperature

under one dimensional steady state heat flow without heat generation. So, mx + b , Ax + b is

definitely one of the solutions that is possible.

; however, when we go to cylindrical coordinate system, the same thing when you apply to

for example, here, then it will be logarithmic variation and in spherical coordinate system you

look at this term you would see 1/ r variation. So, you could already see that steady state heat

flow in 1 D without heat generation can appear to be straight lines or logarithms are 1/rs all of

these are valid solutions. So, we can then imagine how the temperature profile would look



like in a given problem, draw some schematics and thereby evaluate how the entire thermal

profile should look like. So, that it will help us posing the problem properly.
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Now,  here  is  where  actually  all  these  three  coordinate  systems  are  going  to  be  useful

metallurgical scenarios. So, in metallurgy we have heat treatment; that is happening for you

know many components, and that is one problem where the heat transfer is directly used in a

solid state, and so we have basically the furnaces where the heat treatment is being done.

So, we do have what are called box furnaces, cube furnaces and muffle furnaces or even pit

furnaces. So, normally box furnaces can be modeled using rectangular coordinate system,

tube furnaces can be modeled using cylindrical coordinate systems, muffle furnaces or pit

furnaces where the sample is very small compared to the volume of the heating zone that is

around it, then you can actually consider it as a spherical coordinate system. So, we have

scenarios of all these three coming up in metallurgy, which means that ability to solve heat

conduction equations in rectangular cylindrical and spherical coordinate system is something

that all metallurgical engineering students should be able to possess ok.
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Now, when we solve these problems we have to pose the boundary conditions, because that

would only make the problem unique or a well posed problem. So, there are many boundary

conditions that we can write. The first boundary condition we come across goes by a name

Neumann boundary. So, Neumann boundary condition is where the heat fluxes specified at

the boundary. So, the heat flux is given already by the Fourier’s heat conduction equation

here,  and  we are  evaluating  at  s  which  means  that  it  is  evaluated  at  the  surface  or  the

boundary. So, the heat flux that is evaluated the boundary is given as a constant. So, Jo is

basically a number. So, once you have the heat flux as a number then; that means, that you

are actually using what is called as a Neumann boundary condition.

So, sometimes you may say that the surface is insulated. So, there is no heat that is a getting

in are getting out. So, in such situations you can use what is called as a no flux boundary

which is a special case of Neumann boundary condition where Jo is zero. So, when Jo is 0 you

can drop k and you can say that the temperature profile would have a maximum or 0 slope at

the surface, and that would be a no flux boundary condition.

And Dirichlet  boundary  condition  is  when the  temperature  is  specified,  the  value  of  the

parameter  is  specified  not  the  slope.  So,  slope  is  specified  is  called  Neumann boundary

condition,  the  value  is  specified  is  called  the  Dirichlet  boundary  condition.  So,  the

temperature at the boundary is specified it is called the Dirichlet boundary condition, which is

also quite popular.



So, usually these are very popular, because you can achieve the insulation to give this. This

actually requiring some task because you need temperature controls, and therefore, these are

not very easy to achieve. These are actually also easy to achieve, because you actually have

external heat sources that can give heat flux at a particular rate to the body. So, if you have

metallurgical scenarios, usually it would be encountering any of these things coming in as

boundary condition. So, we must inspect the problem and see which boundary condition is

suitable at which location of our domain.
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And we also have, very often the flux condition not specified as a constant, but as a function

of  temperature  and  very  common  boundary  condition  like  that  is  a  radiative  boundary

condition.  So, bodies that are exposed to radiation from outside or which are losing heat,

because  of  radiation  can be basically  specified  as  a  flux  at  the  boundary  losing heat  by

radiation given by Stefan Boltzmann law and; that means, that the flux at the boundary s

indicates that  the surface is specified by the heat  loss by radiation.  So, the fourth power

should tell you that its a radiation equation. So, this is the Stefan Boltzmann constant and

this.

So, σSB is Stefan- Boltzmann constant ,   is emissivity and Fϵ 12 is basically called as the view

factor which is indicating, whether the radiation is actually able to go away or is it being

shadowed etcetera. And normally radiation is treated not as a heat transfer mode within the

domain,  but  only  as  a  boundary  condition.  So,  the  reason  is  as  follows;  most  of  our



metallurgical problems involve the domain to be either solid or liquid, and when you have

solid or liquid then they will attenuate electromagnetic radiation given by the beer lamberts

law, here that is given.

 now that it is exponentially the intensity of the radiation going through the condensed matter,

is  going to  down go down as  a  exp(-mz).  This  m depends  on  the  density  of  absorbing

particles or atoms, which means that it is proportional to the density of the material, which

means  that  in  gases  you would have radiation  going to  the complete  domain,  but  if  the

domain is made of not gas, but solid or liquid, then within a short distance, because m is

proportional to density which is very high for the solid or liquid, m being very large means

that the Iz will be 0 very soon which means is that the radiation is going to be absorbed only

within a first few microns of the body, which means that mainly is a boundary condition.

So, that is a reason why radiation is treated as only a boundary condition in metallurgical

problems. Of course, if I am going to model a furnace the interior of the furnace then its not

true, but most of the time we are actually having the domain not as a furnace, but to the

sample that is inside the furnace and therefore, this kind of a thing is applicable. So, radiation

is only a boundary condition ok.
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So, here is where we want to then look at what happens if our boundaries where you have got

a fluid in contact. So, what happens is that, when there is a fluid and if you are going to look

at  hot  body  in  contact  with  a  cold  fluid,  then  you  know that  far  away  in  the  fluid  the



temperature is low. So, you can see here the temperature is low, and this is at T∞, and the

interface is at Ts that is given here. So, we see that the temperature may fall in this manner.

The reason why we draw it parallel to the axis far away is, because the interface is far away

and so, the heat loss is not felt very much away from the interface.

So, which means that the temperature profile has to be drawn in this manner, asymptotically

going towards T∞ when every hot bodies in contact with cold fluid. If it is a cold body in

contact with the hot fluid we actually also make it as asymptotic, but going to a high value.

So, asymptotic manner is always drawn, and this kind of a heat transfer would indicate for

example, in this case the heat transfer is going in this direction, in this case heat transfer is

going in this direction.

So, in these kind of situations it is very difficult to ascertain what will be the slope of these

variations so, the reason being that they depend upon the fluid flow. So, if you have the liquid

that is convicting, then it would change the slope and very difficult to find out what is the

slope here. So, because of that what we do is that, instead of expressing the heat flux at this

interface as slope what we do is, we just take the difference of the temperatures and then

express and that is where we actually come across the definition of heat transfer coefficient.
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So, we say that in boundary conditions you may also have a situation where you want to call

it is a Newton’s law of cooling and the heat flux at the boundary, which is given by x= 0 is

written as h× (Ts - T∞). So, difference of temperatures into h and we also need to remember



that  h  is  always defined  to  be positive,  which  means  that  from this  expression  you can

immediately see that h is defined with an absolute magnitude of this particular quantity; that

is flux you take it this is a positive or negative, whether it is going towards the left side or

right  side take  the magnitude  divided with the temperature  difference  and that  would be

giving  you  the  heat  transfer  coefficient.  So,  h  is  what  we  now  define  as  heat  transfer

coefficient, which is watt per meter square ok.
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So, heat transfer coefficient is then defined once here. So, we should not confuse that to be a

physical property the reason being that, it depends not only on the thermal conductivity of the

fluid that is in contact with the solid body, it also depend upon the velocity. So, that are there

in the liquid, the geometrical structure of the interface and so on. So, therefore, is basically a

dump factor. So, you can think of as a dump factor whenever there is a boundary in contact

with a moving fluid. So, the fluid property like thermal conductivity plays a role. So, if you

have a fluid that have a higher thermal conductivity then h will be higher and so on.

It is also very often used to model what is called contact resistance or interface resistance,

what we mean by that is as follows. If you have 2 bodies, then if their contact is not perfect, if

you were to then zoom in here. So, you see that between them there is an air gap, and this is a

solid 2 and this is solid one.

So, which means that the temperature profile across this body for example, could be like this,

which means that the temperatures at these 2 ends will be different, which means that the heat



flow this way should be dependent also on this gap. And this air gap is what is causing the

contact resistance, and very often this air gap is a function of this surface roughness etcetera

which is very difficult for us to model. So, the entire thing can be dumped and say that this

leads  to  a  h  which  is  at  the  interface.  So,  heat  transfer  coefficient  can  also  be  used  at

interfaces  where  there  is  a  contact  resistance  that  is  present,  and for  situations  like  spot

welding resistance spot welding, this plays a very big role.

You also can use this concept to do what is called linearization. So, in radiative heat flux you

can also use it for linearization. So, you could look at this for example,  × σ × Tϵ 4 – T4
∞. Now

this is a fourth power law, and if you want to then convert it into a linearized equation you

could write it in this manner (T2 + T2
∞  )× (T + T∞ )×(  T - T∞).

So, you could see that these both are equivalent, and then this entire thing can be written as

heff × T - T∞. So, you could actually linearize a fourth power equation into the heat transfer

coefficient kind of a scenario, where the effective heat transfer coefficient can be given as

σ× (Tϵ 2 + T2
∞ )× (T + T∞). So, that way we can actually linearize using this. So, h can be used

for multiple purposes, it can be used for linearization, it can be used to model the air gaps,

contact resistance and it can also be used as a dump factor, whenever there is a fluid with

unknown fluid flow that is taking place ok.
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And we need to then now move on to make a couple of problem statements. So, we will do it

only for 2 domains and 2 situations and then the problem becomes well defined and therefore,



we can start to solve the equations. So, this is the generalized heat conduction equation we

have written,  for the domain  which will  have solid  and liquid  etcetera.  So,  we have the

advective term, we have the steady the transient term, the advective term or the diffusive term

and the source term that are present.

So, we make statements about the problem to make it little more well defined. So, if you say

that the problem is under steady state heat transfer. So, the moment we say steady state; that

means, we drop this and make that, because of the assumption one and we say that, let us say

it is for a solid domain. So, the moment we see a solid domain you know that u1 and u2 and u3

are all zero. So, the entire thing can be dropped and this is, because its a solid domain.

Then we say unidirectional heat flow. So, we let us say in x1 direction, which means that

along the x2 and x3 directions there is no variation of temperature. So, we can then use that to

drop these.  So, as per the assumption 2 we can drop those.  And if  you say that  no heat

generation;  that  means,  we  can  drop  in  this.  So,  like  this  we  can  actually  drop  terms,

depending upon the problem it’s not necessary that all these assumptions should be there in a

given problem,  but  we should look out  whenever  these  assumptions  applicable  and they

accordingly reduce the number of terms in the equation, to help us integrate and arrive at the

solution.

 Sometimes we may also have situations like this constant power loss. So, which means that

you may have situation like J can be thought of as q/area, and q is then given as a constant,

and J is already written we know that k × grad T. So, you can think of that this, means that - k

× area × area × grad T is constant. So, this can be an assumption,  also that can be given

which  can  also  simplify  the  problems.  So,  we can  actually  reduce  the  number  of  terms

depending upon any of these assumptions.
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.

We can also make these problem statements for liquid domain. So, four liquid domains you

already see that these things should be present, and that is because advective term is present.

Now steady state would mean that you could drop this. So, first term can go. Plug flow. By

plug flow we mean constant and unidirectional velocity, which means let us say u1 is equal to

constant, which means that you can drop u2 and u3 if it is a plug flow. Plug flow along x1

direction would mean this is a constant and u2 and u3 has zero. So, you could think of that.

In case if it  is written as unidirectional  steady flow, you could also think,  if it  is a third

assumption then u1 could be a function of x2 for example, that is allowed, but u2 and u3 will be

0 in case the directionality of flow is along x1 direction. So, you could actually simplify the

problem by these kind of statements if the flow is along or normal to the thermal gradient. So,

what we mean by is as follows; this equation that you have written. So, look at the terms

u1
∂T
∂ x1

+u2
∂T
∂x2

, let us look at only the first 2 terms.

Let us say that the temperature variation is allowed along the x2 direction, but its only the u1

that is actually present, which means that both the terms will get dropped, there is reason is

that, this will not be present and this will not be present. So, like that sometimes depending

upon the velocity and the direction of the temperature gradient, you may actually have some

of the terms on the advective term being dropped ok. So, when do these terms is survive,

when for example, the velocity that you have specified and the gradient, they are aligning



with each other.  So, only when such situations so along so, only then the terms survive;

otherwise there will be known as survive.

Sometimes we may have viscous dissipation being present or not. So, if you say that the

viscous dissipation is not present; that means that you can actually drop this term. Like this

even in a liquid domain, you may have the governing equation for temperature having less

terms, because of the assumptions that we make.

So, using these problem statements we start off, first of all with the generalized Fourier heat

conduction equation, then using these assumptions, we reduce the number of terms and then

we have a simplified partial differential equation which when we integrate, and then using the

boundary conditions as the integration constants we then arrive at the solution of temperature

as a function of distance. So, this is how we can arrive at the thermal profiles in a given

problem. So, with this we close this session and then look at the practice problems for any

numerical problems that you could work with in the course website.


