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Friction factors

Welcome  to  the  session  on  friction  factors  as  part  of  the  NPTEL MOOC on  Transport

Phenomena in Materials.

(Refer Slide Time: 00:25)

So, in this session we will be looking at the definition of friction factor; the friction factor is

go by names of different ways of modelling them. And we will be taking up what is generally

default one handled in many of the metallurgical textbooks. We will take four problems and

then derive the friction factor expression for these; the analytical solution for the velocity for

these four problems has already been covered in this MOOC.
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See the definition is as follows; friction factor is this quantity f that we have written here and

it is defined as the expression here F capital F which is a force is equal to small f ×  area A ×

K; which is the kinetic energy per unit volume. So, if you see this K and if you multiply with

the volume then you will get the kinetic energy half mv2.

Now from this definition, we can already see that there is a meaning for this f and we will

come to that interpretation in a moment. The force is generally to be modelled as follows; it is

to be taken as the pressure drop that is across the domain that is causing the flow into the area

over which it is acting. So, which means that it is normally the cross sectional area and this is

not the same area as a that is written here because that is modelled in two different ways for

two types of problems.

So, what are called as the internal flow for example, the pipe flow is an internal flow where

the wall is in the surroundings and so, such problems we take the wetted area. So, here the

wetted area in the case of pipe flow for would be for example, the perimeter × the length that

is πdl. Now in the case of external flow that is the flow over objects like for example, flow

around a sphere; then we take the projected area..

So,  projected  area  in  the case of  a  flow over  a  sphere  would be for  example,  the  cross

sectional  area  of  the  sphere  itself  which  basically  is  πr2.  So,  you do  have  for  example,

different ways of defining A and so we need to watch out which type of flow we are looking



at  and  accordingly  take  that  expression.  And  the  u  is  again  the  velocity  that  is  taking

representative; so, very often it is an average velocity that we are considering.

(Refer Slide Time: 02:48)

So, here the interpretation the meaning of this friction factor F. So, here if you see the way

we have written the expression it is basically seeing that how we are able to convert the

pressure that is applied over the cross section into the kinetic energy of the liquid that is

flowing through. So, it is basically the efficiency by which we are able to convert the driving

force for flow into the actual flow itself. And when a friction factor is taking a very small

value, it actually implies if you can see this expression; this is small it implies that if this is

remaining constant then you would require less force to achieve the same amount of kinetic

energy.

Which means that getting to flow regimes in which friction factor is small would be good

because that would be more efficient.  And we have to also look at  to the definition of a

friction factor that is different in the different models, but by and large; we can say that when

nothing is told then it is this way that we are considering the friction factor.
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So some of the applications of friction factor why do we need this concept at all? So, we have

already seen that we have the analytical solution for the velocity. So, if you have u and you

already have u as a function of r, u as a function of r and θ, u as a function of y and so, on.

So, usually these are basically spatial variations that are available and very often the spatial

variation  is  not  relevant.  For  example,  in  situations  like  in  turbulent  regime  the  spatial

variation is actually  a function of time. And there is  no point  in for example,  describing

elaborately what would be only a transient in nature. So, it would be good for example, if we

can take what would be time averaged velocity over the entire domain and see how that

magnitude of the flow can be determined. So, the correlation for such magnitudes of flows

can be derived for the analytical flows that we have already. So, we will be doing that, but we

can use the same model to extend such correlations into turbulent regime.

So, in other words you can say that we actually use friction factor where, we are interested in

the magnitude  of  flow, but  not  necessarily  the variation  of the flow.  So,  you cannot  for

example, get the spatial variation of flow; if you take the approach of friction factor, the way

we are describing here .And we are also then conscious that it provides a means to extend

what  we have  learnt  our  expressions,  extend our  results  from the  analytical  solutions  to

turbulent regime that is because then we actually have in some way by which we can use

those expressions for some industrially useful problems.



And we do have for example, situations where there is geometrical complexities for example,

there is a pipe flow problem the pipe is actually not of exactly circular in cross section. So,

then what do we do? So, we need some way by which we can handle that deviation as how it

is affecting the pressure drop in our problem. So, we need a means and here again we are

having that possible because we can handle that. For example, the pipes may not be smooth;

it may be rough inside because of corrosion and how does that affect the pressure drop..

So, we will have those things handled because once we have a way to have the correlation of

friction factor then we can add more terms to it as the industrial situation demands. And we

also have situations where assumptions can be also deviated and given as a correction factor.

For example, the pipe is actually straight line and we are actually saying strictly axial flow in

the quasi flow problem we have discussed earlier..

Now for example, the pipe is exactly not straight, but it has some bends. So, each of the

bends will involve some amount of change in the efficiency of the flow that will be taking

place. Because there are these gradients that are taking place; so, the horizontal velocity has

to come to a stop and the vertical velocity has to start.

So, those gradients are all going to dissipate the energy and therefore, some way by which

each of these bends it because of the θ angle bend should relate to some pressure drops. Now

how are we going to get these? So, these also can be modelled using the concept of friction

factor. So, that way this concept is very useful in handling the real life problems and we will

then see how these expressions look like.
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So, the first problem is reuse of the pipe flow problem that we have done earlier. And we

have already seen that the pipe flow problem where we are looking at  the axial  velocity

because of a pressure drop per unit length that is taking place.

And you see that such a flow is already modelled by us and here is the result for the average

velocity.  The velocity  expression  itself  is  given as  parabolic  that  we have  already  come

across. And we have seen that this kind of a result is applicable when the Reynolds number is

less than 2100. So, the whole idea is one when what do we do about that number.

So, that is where we are actually headed and let us see for the range that is valid how does the

friction factor appear using the method that we have seen. So, what we do basically is look at

the terms that we have taken up. So, the pressure is Δp over which the domain entire domain

is actually experiencing the driving force of flow into the area over which cross sectional area

over which the Δp is acting.

So, that becomes the force term and the solution of the average velocity is already given here

and that if you simplify then what we can do is eliminate. So, you can eliminate Δp between

these two expressions. So, when you eliminate then what happens is that you can get what is

the  F.  So,  F is  this  is  F,  but  you can eliminate  Δp using  this  expression;  so,  when you

substitute that you will get the expression for F and then the wetted area.



So, we know that the wetted area is nothing, but the perimeter into a length and that is given

here and the kinetic energy per unit volume is here.

(Refer Slide Time: 09:17)

So, once we have all these expressions then we substitute these. So, we put that term here and

the wetted area here and the kinetic energy per unit volume here. So, immediately we will get

what the friction factor; interestingly once you evaluate you would get the friction factor to

be  like

f=
16μ
ρDú

and immediately you can see that in the denominator this is Reynolds number that is

sticking.

So,  which  means  that  you  actually  have  the  friction  factor  is  coming  as  a  function  of

Reynolds number. And this was actually the design behind the formula that we have actually

decided. And once we have this then we would see how very interestingly similar kind of

forms will come in other problems also. Usually we can see from the units that the friction

factor should not have any units at all; it is a non dimensional quantity. So, it must be also a

function of only non dimensional quantities you normally do not encounter a friction factors

as a function of for example, length or diameter etcetera.

They must always be normalized with quantities of similar dimensions so, that you basically

have non dimensional quantities and very often in many of the problems it is a function of

only the Reynolds number.
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So, for the Reynolds number less than 2100; the friction factor is given. Now we can then use

the same approach that is in a given experimental problem, we can actually measure what

pressure drop is causing what kind of a velocity and make a correlation and then get F and

they make their correlation with Reynolds number as the regression variable and then see

how the friction factor should evaluate. And that actually is given in many open literature is

that  are  available.  And there  are  some results  that  are  actually  for  a  very wide range of

Reynolds numbers and therefore, they are also very popular.

So, this relationship for example, is applicable for turbulent regime and it goes by the name

Blasius equation and the friction factor is then given as a power of Reynolds number to raised

to -0.25. Normally you would see that here for example, friction factor is going as a Reynolds

number estimate of -1. So, you would see that the power here this quantity generally is small;

if you look at the magnitude small for the turbulent regime and it is a large for a laminar

regime which means basically that once you have these expressions, you can already make a

guess which expression could be for what kind of a regime.

But nevertheless you must always look up the exact range of Reynolds number over which

such a correlation has been fitted. So, please remember that this is empirical which means

that it has been derived from experiments and this is basically theoretical because it has been

derived  from  analytical  expressions;  it  turns  out  that  of  course,  this  is  also  valid  for

experimentally you know similar problems over the wide range of Reynolds number up to



2100, but nevertheless you must know the origin. So, there are things that are from theory

and there are things that are from experiments.

Now the problem of a deviation from assumptions, we have assumed in the pipe flow that it

is a smooth rigid straight pipe. And in case it is a not smooth; if there is a roughness that has

been developed inside because of the corrosion etcetera then what do we do? So, we then

define  this  ζ  variable  which  is  basically  called  as  a  relative  roughness.  So,  a  relative

roughness is basically defined as the roughness itself which is basically Δh divided by the

diameter. And Δh is basically usually RMS value that is a root mean square value. So, if you

look at a pipe and inspect the region which is the inner surface then that region would appear

to be a rough like that.

And this profile if you then what to see what is the root mean square value. So, this Δh is

what is given as a roughness; in other words the roughness is nothing, but in length units and

you can say roughness  of  50 microns  roughness  of  half  an mm, roughness  of  1  micron

etcetera.  And if  you divided by the diameter,  we get the relative roughness;  so, this  is  a

relative roughness, so it is basically non dimensional. So, we have basically the friction factor

made as a correlation  for not only the Reynolds  number,  but also the relative  roughness

which means that even for rough pipes we do have a way by which we can go ahead and

evaluate what would be the pressure drop required if you want to push fluid through it at a

particular velocity.

And for the velocity you evaluate the Reynolds number and then plug it in with the roughness

and you get the friction factor that will give you what if the Δp look like etcetera. So, like this

we can actually solve real life problems by using these kind of a correlations. And when we

plot these three friction factors over a complete range of Reynolds number, we see something

interesting we plot it to using log log plot.
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So, you notice here that it is log and the log plot. So, remember that it is always made a log

log plot and the log log plot of a function that looks like f is equal to something by Re, you

would be naturally have a negative slope of one which is 45 degrees in the negative way,

which you can already see that is visible here.

So,  at  this  region  is  coming  from  this  expression  and  this  region  is  coming  from  this

expression. So, you could see that in the left hand side of the log log plot of a friction factor

as a function of Reynolds number; you would have basically a straight line for the laminar or

analytical derived the friction factor and you would have fairly flat region; so, you could

actually see that straight line drooping downwards and fairly flat region for the laminar and

turbulent regimes respectively..

So, we will see whether this kind of a trend is replicated in other kind of domains or so. So

we will see that and that would be something as a learning as we go along. So, I am actually

showing you how to plot multiple functions in different regimes; in a mathematical notebook

by taking a screenshot here.
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So, the strategy to solve numerical problems once you have these correlations is as follows.

Basically  up  front  once  we  have  a  problem  where  the  pressure  drop  required  is  to  be

determined and then we do not know for example whether the flow is in laminar regime or

turbulent regime. So, we do not know; so upfront what we normally do is look at the diameter

of the pipe and if it  is large if it  is large in centimetres or more then maybe it would be

turbulent and go ahead and start with the turbulent regime expression.

So, in other words we have to basically assume the regime of the Reynolds number and pick

the friction factor from that. Once you pick the friction factor expression which means that

then you could use it to solve for the velocity. So, the velocity solution would then require for

example some iteration depending upon the complexity of the expression.

For example, if you take the rough pipe expression; you do have the logarithm term. So, there

will be some iteration that is required and usually if you use a software like MATLAB or

mathematica, you can directly solve for it; otherwise you could also use a calculator and use

what is called single point iteration scheme and then get to this kind of solution.  So, we

would have some practice of such problems in a tutorial anyway, but once you solve for the

velocity without forgetting; we should always evaluate what we do the Reynolds number?

And see that there whether Reynolds number that is coming out is in the range that we have

picked. So, if it does not fit in the same range if it is not in the valid range of the Reynolds



number; then what we have to do is that immediately change the expression to another range

depending upon what range we have got.

So, to just illustrate that point let me tell you here; you see that if you assume this problem

and you get the range that is actually very small which is less than 4 × 104; then you go to the

other expression here. So, like that you basically change the expression so, that you pick the

correct friction factor and then we can again repeat the same scheme.

So, usually you would converge to one of the regimes as long as the problem is well defined.

And once you converge then what happens is the Reynolds number you get would be in the

same range as you have started for the friction factor  and then you can just see that the

velocity that you got is actually valid and then you can see that the problem is solved. So, one

needs actually an intelligent guess to pick the correct range for a solution, but even if you get

it wrong; it does not matter because as you keep going through this cycle, you would be

actually coming closer and closer to the correct solution.

(Refer Slide Time: 18:32)

So, now let us move on to a problem which we have solved earlier the flow over a sphere.

And as you have seen it is a very tedious a derivation, but in the end we will see how the final

velocity; terminal velocity can then be used for correlations. So, here is a situation you have

got a sphere and you have got the flow that is going around. And this far field velocity is u,

which sometimes we write u∞ also, terminal velocity and in case the solid is actually falling



down and liquid is stationary then you call a terminal velocity, but the problem would still be

same namely flow over a sphere.

And this is in the creeping regime; the analytical derivation we have done is for the creeping

regime which means that the Reynolds number; critical Reynolds number is very small is 0.1.

So, I have extremely small values of Reynolds number only you can use this. Now the way

we have derived the Stokes law; we have already done the integration of the pressures and

stresses that are acting on the sphere and arrived at the force. So, we directly can use a force

we do not have to do any more manipulations there and because the flow is external we will

be using the projected area so, that gives you πR2 and then the kinetic per unit volume is

already there kinetic energy per unit volume.

So, you then substitute those and then you would go over to the f. So, f is available here; so

you can see immediately  that  f  is  coming very similar  to  the expression which we have

derived in pipe flow; there it is 16/Re and here it is 24/Re. So, which means that the way we

are going about derivations seems to be a fairly universal in its application.

(Refer Slide Time: 20:14)

And we can then see how fiction factor was modelled in an experimental correlations for the

rest of the Reynolds number regimes. So, this is a laminar or actually strictly speaking it is a

creeping regime; creeping flow regime.



And these are the basically  in turbulent  regime; so, you could see that the friction factor

expression is given in different manners in the different regimes. So, you could see that for

intermediate range that is basically for the Reynolds number less than 6000, you are actually

using an expression which seems to fit  both the low Reynolds number regime as well as

high..

Because at low you are actually having 24/Re which is already repeating here which means it

is something like a hybrid function; to span across a large Reynolds number range. And for

intermediate, you do have a more accurate function that is available which is made from the

regression. And as only you can already see from the power that here is a power is -1; here is

power is -0.6.

So, as you go into the turbulent regimes; the power of Reynolds number for the regression

that is done in the empirical correlations is generally tends to be small. And interestingly, it

has  been observed  that  at  very  high  Reynolds  numbers;  you do have  the  friction  factor

coming out independent of the Reynolds number, it comes out as a constant and that also will

be Newton’s law; there are a lot of things that go by Newton’s name and we must not confuse

between these.

So, friction factor being a constant is also observed in this domain.
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So, when we plot again all these things you could see that they also follow the same trend.

That is you do have a straight line on the left hand side of the log log plot of friction factor as

a function of Reynolds number. So, the left extreme at very small Reynolds number you have

basically drooping down straight line plot and as you go to high Reynolds number you have a

flattened profile that is coming out. So, it is very similar to what we have seen in the pipe

flow and the functions we colour is for what is given here; so, the first step thing is red line.

So, I write here there and then you have got the blue guy. So, 0.44 is here and the green line

is here the hybrid expression; so, hybrid expression is actually able to cover part to the flat

region as well as the straight region. And you could see that the behaviour is a very similar

which  means  that  when  we  do  not  know  anything;  then  we  can  perhaps  make  some

assumption on how the friction factor could be varying, the exact numbers we may not get it

right because we need their correlations for it.
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But we can get the trend and the trend is as follows; the trend is that when you take a log log

plot  of  a  friction factor  as a  function of  Reynolds  number.  Then for very low Reynolds

number that is in laminar regime, you see that it is a function of 1/Re that numerator can be

different for different problems depending on the geometry, but it will be function of 1/Re

which means that when you are going to take ratios and compare that the relative values then

you  do  not  need  the  constant  in  the  numerator;  so,  you  can  go  ahead  and  make  this

assumption and already come to some solutions of the problems.



And at  a  high  Reynolds  number  regime  which  is  turbulent  you could  actually  make  an

approximation  that  the  friction  factor  is  constant.  What  value  that  would  be  is  again

something that we need from the experimental correlations, but we can make an assumption

that is a constant and make already use of such things for some problems.

So, we will have few such problems already using these trends in the tutorial and its very

good idea to have this particular image commit to our memory; that is friction factor as a

function of Re will be sloping downwards as 1/Re and then becoming flat at very high a

Reynolds number. So, this image if it is there in our mind then there are many problems that

can be solved directly to get the trends.

Now, let us then see how we have modelled the porous medium flow. So, porous medium

flow was modelled as a bundle of tubes.

(Refer Slide Time: 24:36)

So, that is how you got the analytical solution here which we gave a name  Blake Kozeny

equation  and the bundle of tubes would mean that it  is  actually  internal  flow; so, this  is

important. The model that we have chosen is that it is an internal flow which means that even

though the porous body is made of spheres, where actually the liquid is going outside of the

sphere; it is still not treated as an external flow, it is treated as an internal flow because of the

void is being modelled as a pipe.



So, that is exactly a mistake that many students make while applying these expressions. So,

be watchful the model is very important at to arrive at the expression we thought of it is a

tube  and  therefore,  is  an  internal  flow  expression.  And  these  expressions  are  valid  for

Reynolds number defined for the porous medium in this manner; that is the reason why there

is  a  subscript  that  is  given.  So,  Reynolds  number  less  than  2  is  where  this  particular

expression is valid and this is the expression. So, we have got a Δp here connecting with the

superficial velocity.

And we are going to use superficial  velocity  only for all  these porous medium approach

because  we know that  the  actual  velocity  is  of  no relevance  for  us.  Because  difficult  to

measure and superficial velocity can be measured experimentally and therefore, that is what

we are going to use.  So, when we say u in porous medium; that means,  it  is  superficial

velocity. And the force term is nothing, but Δp into the cross sectional area over which the

pressure is being acted on, which we extended the model as a πR2 because it is a tube, cross

sectional area is πR2, but for R; we take the hydraulic radius. So, the expression for hydraulic

radius is only available; so, we basically use this expression into that.

And the Δp actually we eliminate using this expression. So, then we will get what will be the

value of f for the force. And once that force is available then we can then substitute it in here

and the wetted area is taken here for the area term because it is actually internal flow. And the

kinetic energy per unit volume; the u is basically same as us, which is superficial velocity. So,

when you substitute all these things a very beautifully many of these things cancel out and

you would get basically  the friction factor as 4.2/Rec.  And this  actually  also will  elegant

because  the  only  constant  that  is  sitting  here  is  what  is  actually  coming  from  the  by

expression from the Blake Kozeny equation .

And then  the  functional  form is  again  very  similar  to  the  other  problems  namely  1/Re.

However, the Reynolds number is redefined for this particular problem using hydraulic radius

and the rest of the quantities as applicable.
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.

So, how does this expression then change when we go to other regimes? So, it is again seen

here that friction factor is defined for less than 2 Reynolds number. But when you go to

turbulent regimes these are all turbulent regimes; so, this is basically creeping flow regime, so

for turbulent creeping flow or laminar regimes.

So, for turbulent regimes you do have correction and again like the Newton’s laws that we

have seen for flow over a sphere at very high Reynolds number, we see that the friction factor

turns out to be constant. So, which again means that when we take a porous medium flow and

it is told that the flow is turbulent; then we can just straightaway it take f as a constant and

then go ahead and see how the pressure drops can be connected with the velocities.
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And  when  we  plot  these  using  the  mathematical  notebook,  we  will  see  that  the  three

expressions are appearing to be the same. So, the log log plot has a the friction factor as a

function of Reynolds number is appearing to be straight line drooping downwards on the left

hand side for the low Reynolds  number and a  flat  region on the right  hand side for the

turbulent regime.

So, you could see that the 0.292 is appearing here; so 0.292 is here. So, you have got the

hybrid expression that is here; so, the first expression, the linear expression is here; the hybrid

expression is given here in between and the expression for the turbulent regime is given here.

So, you could see that the hybrid expression is a producing; the behaviour at laminar regime

quite well on the lower side and the flat on the higher side quite well.

So, this is a very useful expression here 4.2/r + 0.292 and you could actually see that it

behaves the same way as we have discussed earlier; which means that here it is basically

slope downwards and a straight line and you could see that here it is basically flat. So, when

we do not know any expression about these things; then we define the friction factor the way

we have seen earlier. So, when we write like this then this behaviour is already known it is in

a same fashion namely straight line on the left hand side and flat on the right hand side.
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So, the expression for porous medium which is made of a bed of spheres is actually identical

to the porous medium you have seen earlier; except further to the So is taken as 6/dp; though

the reason being that when you are assume that the spheres are all  touching at the point

contact.  And  then  you  can  directly  get  the  wetted  area  per  unit  volume  of  the  solid

analytically and that comes as a 6/dp; where dp is the diameter of the spherical particle that is

consisting in the bed.

So, we have redefined; then the Reynolds number to accommodate this. So, So is replaced

and then we have redefined the Reynolds number and that is where the subscript is changed

now which is E and so which means that for a laminar regime that is within 10, then you have

an  expression  that  is  available.  So,  we  have  got  4.2  in  the  Blake  Kozeny  equation;  we

multiply with 36 because the So is coming as a square. So, you see that 150 will come in there

and we basically  eliminate  Δp between  these  two and the  expression  that  comes  in  you

substitute an f.

And then the wetted area is going there and the kinetic energy per unit volume is going there

and when you substitute and cancel our terms then you get the friction factor for flow through

a porous bed of spheres as 150/Re; which is a very elegant because you can see that it is also

similar to the other expression except for the factor of 36 and we already know where that at

36 coming; it is coming from here.
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So, the friction factor expressions are given here for the laminar regime, you do have them

analytically derived. And for the turbulent you have them as empirical correlations and we

have got a hybrid expression and if a constant value. So, constant value is of course, for a

very large Reynolds number which means that for a very varity of industrial problems; we

can go ahead and use this assumption and solve some of the problems..

So, we have now got the strategy, we have got the expressions which means that we can now

solve some numerical problems by using these expressions which we will do it in tutorials as

part of this MOOC.
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So, at this moment we will close this session and the course website will contain the notes

about some more details about these and also some numerical problems for you to practice.


