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Lecture – 15
Simple cases in fluid flow - Spherical coordinate system

Welcome to the session on simple  cases  in  fluid flow as  part  of the NPTEL MOOC on

transport phenomena in materials. In this session, we will be taking up a problem in spherical

coordinate system.
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So, problem we are taking up is flow around a sphere; now in a spherical coordinate system

even simple problems tend to be quite tedious because of the algebra involved. So, you may

pause this lecture time to time workout some of these steps so that it will be clear at the end

how we went about these derivations.  So, we will  take up the problem of flow around a

sphere and once a solution of the velocity components are available; you will derive what are

called the drag terms namely the force acting on the sphere because of the velocity gradients.

And then we will see how we can arrive at the Stokes law which is very important in the

metallurgical industrial problems where the terminal velocity of particles is used in extractive

metallurgy problems.
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So, this is the strategy that we are adopting for this problem. So, we are actually going to start

off  with  a  problem  statement  as  we  normally  do  in  most  of  the  transport  phenomena

problems.  And  then  we  will  be  writing  the  boundary  conditions,  but  here  we  make  a

deviation from the other problems we have done in previous sessions. We will be writing the

boundary conditions using the stream function.

So, this is because the solution it will be accessible if we use the stream function for this

particular problem. And then we will write the governing equation also in the stream function

form which we have looked at already in an earlier session. And the analytical solution will

be sought and once the solution is available as a stream function then we can again get back

the velocity components because we have the definition of stream function already available

with us.



(Refer Slide Time: 01:58)

So, here is the problem; the problem is basically it is a solid or sphere which is smooth and

rigid and the liquid is flowing around that.  So,  the direction of the liquid flow is shown

vertically upwards and you may want to call the velocity vector as U which is in the upward

direction.

So, what this  problem will render is that the spherical symmetry is now lost because the

intersection between the spherical, symmetry and the vertical velocity will be cylindrical. So,

we will actually use single point system, but for an axisymmetric case. So, that is what the

makes the problem a little tedious with respect to the algebra and we will see how best we

can come about this limitation.

Now for the domain has to be defined; so, as we have discussed in an earlier session about

the domains, the domain in our case will be the entire space around the sphere which means

that in terms of the R radius if you take the radius of the sphere to be R, then the r small r

above capital R; that is anything that is above the sphere is a part of our domain. And the θ is

of course, varying in the complete range that is 0 to π which means that θ is going in this way

and r is going in that way. So, the entire range of θ is a part of the whole domain.

Now, the boundaries are actually defined at two locations the first is quite straight forward, it

is on the surface of the sphere. And then we have also a boundary condition available at the

far field; that means, far enough from the sphere which is basically the limit of the radius

tending towards infinity. And the problem we are going to look at is in the regime of fluid



flow where the Reynolds number is very small; so, this is also referred to as a creeping flow.

So, that is the liquid is going to follow the curve of the entire the sphere very closely and it

does not actually separate out. So, that makes the problem a little easier to handle and we will

give us a analytical solution in the end.

(Refer Slide Time: 04:11)
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So, here is the concept map of how this derivation is done; so, each of these boxes contain

some aspect that was discussed either earlier or will be discussed as part of this lecture. So,

this is how we go about we have already seen the general form of the Navier Stokes equation

and  we  can  actually  make  a  special  form for  the  specific  case  of  the  Newtonian  fluid,

incompressible fluid and in a coordinate system that we are interested etcetera.

So, we do have special forms of Navier Stokes equation available and we already have seen

what  is  the  continuity  equation  that  is  the  mass  conservation  and  using  the  continuity

equation and the idea that when you have two velocity components you can perhaps to create

a function that will capture these two into a single unknown variable. So, stream function for

example, so that idea is also going to be used

And we can realize that the Laplacian operator is different in different coordinate systems.

So, you then see that for the coordinate system that you choose; operators are different and

combining with the axis symmetry that we have then we see that some of the terms of the ∇2

operator  will  be different  and therefore,  we create  the E2 operator.  And we see that  this



problem is actually for an external flow around a sphere and we make the velocity to be

unidirectional.

And the domain to be around a sphere and the regime to be applicable for creating flow. And

then we put all these things together to arrive at the governing equation which is called the

Stokes equation and then we seek the analytical solution; so this is how we go about. So, here

we take up one at a time and one thing that we take up is generally highlighted in the yellow

background. So, we take up the stream function first; the definition that will be refreshed for

us to the use at this moment.

(Refer Slide Time: 06:04)
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So, the axisymmetry is being imposed which actually implies that the  component of theϕ

velocity is not there. So, there is nothing happening in the direction and which means that you

can reduce the continuity equation to only two terms.

And whenever there are equations of two terms then you could use that as a constraint to

create a function which actually will satisfy this equation and also give you the components

of the velocity. So, that is a function that we are referring to; so, there is a stream function ψ.

So, according to then this equation you could see what kind of a function would satisfy.

So, there is a sin θ there; so, we watch out and we have already seen which component of the

velocity should be the positive and negative. So, this is actually from a convention that we



have already seen earlier. So, this is the definition that we have and we are going to use this;

so, we write our equations inside.

But we always look up this component definition whenever we want to translate from ψ  to

Vr and Vθ  and vice versa. So, I would leave it as homework to check that when you substitute

to these 2 velocity components into the continuity equation then the equation would satisfy.

(Refer Slide Time: 07:19)
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So, now we look at the boundary conditions. So, so the boundary conditions are to be written

as follows; so, the solid sphere is impenetrable and it is smooth with the no slip condition on

top. So which means that the velocity components are 0; so, the Vr that is the radial velocity

on the surface. So, this means that on the surface of the sphere; so, that is 0.

And similarly, the θ component also will be 0 and this is basically no slip condition and in

impenetrable wall condition. And if you look at the definition then this; when you inspect

then it should also imply a condition on ψ . And that condition as you can see that if V r work

to 0; at r is going to capital R; that means, 
∂ψ
∂θ

also should be 0 at the same condition.

So,  this  is  the  one  boundary  condition  we  get  from the  first  condition.  And  using  this

definition  for example,  you could then combine  here and then we will  get  the boundary

condition with respect to the R and θ. So, you do have these two coming up and which means

that we now seek; so, our problem will become seek ψ  in a form that satisfies these things.



So, we must have a ψ which will actually obey this kind of a form; so, that it makes sense for

our problem.
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So, we can then go further and see what we can also look at as a boundary condition far

away. So, by far away we say that it is basically it implies basically when r tends to infinity

and of course, applicable for all θs.

So, again we look at  the definition  and look at  what kind of a;  boundary conditions  are

coming out.  So,  if  you see Vr definition  and combine  with  this  then  you would  get  the

condition that would be coming up here. So, how did we write the Vr as Ucos θ? You could

actually see that the θ is varying in this manner and we are actually looking at the vertical

velocity.

And which means that at this point θ is 0. So, velocity is U that will be coming up matching

here and below it should be - U. So, cos π = -1 and that will be matching; at this position the

velocity is 0 in the vertical direction which also will come as U cos (π/2) is 0. So, you could

see that this way simply taking a component variable to write the Vr which is far away. And

this will be actually all 0 on the surface, but at these respect to θ positions far away; this is

how the velocities are the written. So, similarly you could also see how it has been used; θ is

used so that you could actually combine with the boundary condition. And then, we would

arrive at the far field condition for ψ ; so, we now have two sets of condition on ψ , the



differentials when r is going to the capital R on the surface of the sphere and then r goes to

infinity that is far away from the sphere. So, we have got four conditions on ψ.
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So, these are 4 are listed here and then we can see that when we combine these 4; that is; so

you have got the 1, 2, 3 and 4. So, when we combine these then we can suspect what kind of

a form of the ψ could satisfy. So, you could see that perhaps we can actually look at a form of

this nature so that when we take a derivative with respect to θ; then you still have r square

and then in r goes, you can actually see that it would actually give you the satisfaction.

So, you have this functional form that would be reasonable and we want to then see what is a

generalized form that would actually solve the equation and so, you could actually seek that;

perhaps it  should be function of r.  And then see what kind of functions will  satisfy.  So,

because this is only at r is equal to; this is far field, but this we see at any r. So, what kind of a

function f(r) is suitable such that at far field, it will give you this kind of a value; so that is the

solution that we are now requiring.

So, what we normally do in all the integration and differentiation that we do in engineering

problems is that whenever we want to propose a solution, then we insert that solution into the

differential equation that should be satisfied and then see what form of the function will be

reasonable. So, that is what we are going to do here also.
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So, here we have then come up to the usage of the stream function. So, we now move on to

introduce the E2 operator.

(Refer Slide Time: 12:32)
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And the E2 operator is basically in place of  ∇2 or del square operator that is the reason is

basically because we are actually using the axisymmetric case. So, directly by looking up the

∇2 operator; laplacian operator for single coordinate system would not help.



Because we have already constrained it to the axisymmetric; so, sometimes we will drop out

and therefore, this is the operator we are going to use. So which means that the equation will

have to be then looked at; now so, this is done, this is done. And when we see the Navier

Stokes equation, we have we seen that you have got the terms that would have the Reynolds

number with the diffusive term. And here you have got the transient and the advective terms

and we have got the pressure drop term and then we have got the body force term.

So, which means that in the limit Re; tends to 0 then you could see that when Re is taken to

the left hand side and right hand side on the numerator, then you would see that only the

diffusion term will survive. So, we will see that we can actually take a special form of the

Navier Stokes equation which is also called as a Stokes equation and use that as a governing

equation for us.

(Refer Slide Time: 13:58)

 

So, the form of that is here. So, this we have already introduced in an earlier session. So, this

is basically its equivalent in the rectangular system would be for example ∇2U = 0; so, that is

the equivalent. But we already have used the stream function; so, when you use that it would

then give you a fourth power and this is how the equations looking. And we have already

seen that the E4 is nothing, but E2 acting on itself. So, it is actually nothing, but to the E2

operator coming twice and that itself here actually already seen what is the form. So, we have

seen the form here E2.



Now, the functional form we are proposing the solution to be is here. So, what we see is that

when we insert it into the governing equation, it should satisfy. So, here we are asking what

form of f(r ) would satisfy this equation; so, that is what we are asking basically. So, once we

have it then we have the solution available.

(Refer Slide Time: 15:11)

So, what we do is that we now go ahead and substitute the form that we have and see if you

can simplify. The reason being that the form we have chosen is already separated in terms of

the variables. So, f(r ) and the sin2 θ are separate; so, therefore, we could actually see if some

simplification is possible. So, what we do is that we substitute and act the operator on this

function and then we will see that if you look at how this part is acting on here.

Because if you see  ∂2/∂ r2would not act on sin2θ; so, it is only on the f(r). So, the second

differential is only  
∂
∂θ

; so, it should act only on the sin2θ. So, if you now look at these two;

so,  what  would  happen  is  basically  you  have  got;

sin θ

r2
∂
∂θ

(
1
sin θ

∂
∂θ
sin2θ). So, that would actually give you 

sin θ

r2
∂
∂θ

  and you have got 2 sin θ

cos θ/sin θ.

So, then you would actually ruled out these and the 
∂
∂θ
cosθ  that would actually. Give you

sin θ/r2 and this will give you -2 sin θ. So, it will actually give you -2 sin2θ/ r2; so, sin2 is then



taken as a common; so, - 2 / r2 will come. So , - 2 / r2 has come here; so which means that we

have now a simpler form of the E2 operator; so, the E2 operator with the θ differential is here

and E2 operator without the θ differential is here and we were able to do this because our

solution has a special form; namely of this form that is we are seeking a solution which is

actually in two parts and that reason why we are able to make this simplification.

So, we now see that we have a simpler you know situation of only differentiation with respect

to r and what kind of a solution we can seek for f (r)?

(Refer Slide Time: 17:25)
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So, we propose that we seek a solution of f (r) as a possibly a polynomial. So, r n and see what

values of n would help satisfy the governing equation. So, the governing equation is here; so,

what kind of a values of n would satisfy. So, we go ahead and substitute that f(r) here as the

rn.

So, when you act first time; so, you have basically ∂2. So, when you act first time, you have a

∂2/∂r2; rn  that would basically give you n × n- 1 ×  rn-2. And then the second equation is

nothing, but 2 r2 × rn /r2.

So, you basically arrive at this; so, that is n × ( n – 1) - 2 that is coming here. Now when you

act the same thing the further for the second differential on this function, then you would

actually see that you got one more set of quantities that are involving n. And then we knock

off the r because we want to see for what values of n this is satisfied.



So, if this is satisfied then we got n available. So, the lens can be used to then expand the rn

and then you have got the solution. So, we multiply and check the functional form; so, we

have got a polynomial form and luckily for us this polynomial can be factorized and the

factors actually look like this. So, straight forward from these factors you can already see that

the solutions r for n = -1 then + 1 + 2 and + 4.

So, we can see that the solutions are readily available and we can note that the functional

form that we have rn can take any of these ns which any of these values which means that a

combination of those that should also work as a solution; so, that is what we do.

(Refer Slide Time: 19:34)
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So, we take a combination of all those forms. So, the n = - 1 is giving the B term the = + 1 is

giving the C term and so on. So, A, B, C, D are numbers or quantities which would actually

be multiplied and then this summation actually is a possible solution; so, this is basically a

possible solution.

Now it is only a possible solution, but we need to ensure that it actually satisfies the boundary

condition and we already have a boundary condition requirement here; that is in the limit of

far field velocity you must have this particular equation that has to be satisfied. So, which

means that when if you want to use f(r)  here, then it means that if you compare with this f(r)

; in the limit of r tends to infinity should give you r2U/2, And which means that 1/r2 f(r)

should give you U/2; so, we now have a constraint on the f(r).



Now if you look at f(r)/r2 then you would see that it would be A r2 + B + C/r + D/r3 and now

it in the limit of infinity.

You would see that these three will not give you a problem because C and D will vanish. So,

these will drop, but this will blow up. So, which means with the only way we can actually

have a meaningful solution is if A is 0. So, because of this condition we say that A is 0; so,

that removes the problem for us. And B straight away we can see that f(r )/r2 should be taking

a value of U/2; so, B must be U/2. So, we have got a two of the constants determined in this

manner.

(Refer Slide Time: 21:30)
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And now we see that when you substitute A and B values. So, your possible solution form is

now simplified like this;  we now have boundary conditions  also for the velocity;  on the

surface of the sphere and that actually will also be useful. So, we have seen these boundary

conditions already and this actually gives you when you substitute there are two equations

and these two boundary conditions solved together; they give the values of C and D which

are basically the integration constants or solutions of this particular equation that we have

written.

So,  which  we  do  it;  so,  you  can  do  it  by  multiplying  the  second  equation  with  R  and

subtracting and then so on. So, if you do that then you arrive at the value surface C and D; so,

please do that, so that you are getting these expressions the same way and we also when

spend time on these expressions and then you can also commit them to your memory and that



will be easier to remember the final form later on. So, now, we have got all the four values

determined.
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So, we have got the solution available, but solution is this; the solution is available to us and

the ψ  the stream function is f (r) ×  sin2θ . f (r) is already available to us. So, we now have the

entire ψ form that is available here.

Now, we already know that contours of stream function show how the flow takes place. So,

what we have done here is a small one line MATLAB mathematica script to show you. So,

you can see that we have actually seen this function that is nothing, but the f (r) and then we

are actually converting the coordinate system from the polar to the x y here and when plotting

them in a range. And you are you can immediately see that the contours look like how we

have imagined. So, to just show you clearly the sphere is of radius 1 because we have taken

the value of U to be 1.

So, this is the sphere and we can see that the velocity should look like that this is how we

already imagined how it should be moving. So, it should go around the sphere and far away it

should have the unidirectional velocity. So, you can already see that the far away the velocity

is unidirectional.  So, this is how we can actually see that the solution we obtain actually

makes sense.
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And once it is available. So, we basically now have the solution.
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So, we now can get this is in the form of size. So, we can get see then how the flow field is in

Vr and Vθ. So, that we will do now the ψ  is available and so, then we use the definition of Vr

and Vθ here and then substitute this ψ  solution we have got and substitute that into these

expressions and then we are able to get the components straightaway.

So, it is a simple differentiation that we are doing nothing and there is no step in between to

wonder  at  all.  So,  substituting  the  expressions  of  course,  for  ψ  you  get  Vr and  Vθ



straightforward. So, we now have basically the velocity components that are available. So,

this is basically the analytical solution the exact analytical solution for the Stokes equation for

the limiting case of creeping flow.

So, for creeping flow over a sphere; so you can see that the number of steps that are taken to

arrive  at  the  velocity  components  is  way  more  than  what  it  had  taken  for  problems  in

rectangle  coordinate  system,  which  is  also  the  reason  why  we  must  try  and  reduce  the

dimensionality  of  our  problems.  So,  to  see  whether  some  estimates  can  be  made  for  a

rectangular coordinate system already and in case the situation does not allow we can then go

ahead and make it a simpler problem in a coordinate systems like cylindrical or spherical as

the requirement makes us do.

Now we have achieved up to here; so analytical  solution is available.  So, technically the

problem is over, but we now want to take this a little bit further up because of a particular

metallurgical application that we normally or familiar. So, what we do is that we will use

these flow fields to arrive at the pressure and shear stress distributions. So, both the τ and the

σ; that is basically the r θ and r r and here pressure, so we want to look at these quantities

also; and how do we get these? This is basically via the linear constitutive equation namely

the Newton’s law which is actually connecting the shear stress and the velocity gradients.

So, we will use and get those things and then from there we will get the drag terms and then

from that we will get the Stokes law and finally, the terminal velocity concept which is very

useful in many of the metallurgical problems.
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So, the solution is already available to us and the pressure and the stresses are then displayed

here. So, we you can see that the pressure is actually in this direction and if you want to look

at the rr then that would be in the opposite direction.  So, because of the convention that

pressure is in the direction of compression and therefore we have got those things like that.

So, we want to determine these; what are these expressions and once we have them then we

can look at what would be the components of forces that are acting on the sphere in the Z

direction and then look at the summation etcetera.

(Refer Slide Time: 27:54)
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So, for that what we need to do is go one step back and look at the Navier Stokes equation,

substitute the velocities and get the pressure distributions. If you have noticed in the previous,

session we have already done that; to see how the pressure variation will come once we have

the  velocity  components  available.  So,  you  want  to  do  that  here  also;  so  the  velocity

components are available. So, then we substitute that into the Navier Stokes equation.

But keeping the pressure variations intact so that we can get some functional form a p,. So,

we do that; we substitute and see that we get a condition which we need to integrate to get the

p. So, we got the condition for pressure variation in the radial direction given that the radial

velocity component is so and so; also so, we have got one term there.
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And similarly we substitute the θ component here and we substitute that also here and we

have substitute the r component here and we can then get the variation in the θ directions. So,

once these two are available  we can then see what kind of a pressure form would let  us

combine both. So, do try out by substituting the velocity components in this equation and

arriving at the pressure variation as that is written here. So, that is a couple of steps of algebra

that quite straightforward.
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So, these are the two conditions and from here we seek a form for the pressure. So, we want it

to be a function of r and θ and we only know that differentiation is respect to r and θ. So, by

looking at them we have to guess what kind of the form would allow us to get this.

And this solution is then suggested as follows and C1 is basically the integration constant. So,

it is easy to see that once we have got the suggested form when we differentiate would you

get these two variations that you can verify. And the integration constant is determined by

looking at the pressure variation as a function of distance, we already know that from static

problem. So, ρgh as the hydrostatic head is already known to us, po is the reference pressure

atmospheric pressure; you can take for all practical purposes po to be 0 and then solve the

problem that is not a problem at all; so, z direction that the distance is rcos θ and we are that

here.

So, which gives us basically the pressure form function of r and θ is available; so, similarly

we can get the; this is done.
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So, similarly we now seek what would be their shear stress distributions.
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So, for that we again look at the just the connection between the stresses and the velocity

gradients.  So,  that  is  available  here  for  the  spherical  coordinate  system and the  velocity

components are there. So, we can substitute and you have a 2 here; why is there? Because we

see that the stress is actually a symmetric tensor.



So, when we have the same index if then you have see that the same term is it will being

added. So, you can actually when substitute and they get σrr and σrr is then available in this

particular form. So, you now have pressure and σrr which means that we have the normal

pressures that are acting on the sphere pressure and stress that are acting and therefore, its

vertical component can be taken.
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Similarly  the  shear  stress  can  also  be  looked  at  and  you can  see  that  it  is  written  in  a

symmetric manner using r θ and you can see that these two terms are available. And you have

the r component and the θ component of the velocities that are present. So, you can then

substitute them and get what is the τrθ. So, the functional form for τrθ can also be obtained

readily by plugging in.

So, once we have the velocity components so then you can see that the pressures; the normal

stresses as well as the shear stresses can all be obtained. Technically, now you have all the

terms to write for example, σ  is equal to what. So, you can write it in a matrix form because

all the terms are now available, but we only are requiring the r θ and r r components for this

particular problem.

So, once we have; so, which is there, then we have to see how to calculate the drag. Drag is

nothing, but basically the integration of stresses that are acting on a solid surface over the

entire  surface.  So,  we will  get  basically  when you integrate  stress  with an area;  you get



basically force. So, that sum of all those forces is basically the drag; so that is what we are

going to look at now.
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So, now we have already seen that the θ variation in this manner. So, if you look at how the

normal stress has to be computed in the vertical direction you could see that here and the

pressure would come straight away as -p and cos θ is 0. So, -p it will come.

And the  σ  is actually going to be + σrr and here actually it will be 0 and here it will be again -

direction. So, you could only see that this part is basically taking the stresses and giving a

component which is in the component in the z direction. And now this is a stress component

that is acting in the z direction; on an area element that area element is given in this form. So,

Rdθ Rsin θ d   is the area element for a sphere of radius r. So, this is already available whenϕ

we integrate this alone over 0 to π for θ 0 to 2 π for ψ  then you already get the surface area of

a sphere.

So,  we already  know this  from the  high  school  geometry  problem.  So,  so  we can  then

substitute this part and we are going to integrate this entire term to get the force that is acting

in this direction because of pressure and the normal stress. Similarly for the tangential, you

can already see the components are actually sin θ. So, this tangential is normal; so, if this is

cos θ it will be sin θ here and this is the area element.
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So, when we integrate this you get the normal in direction what are the forces that are acting.

So, the pressure in  σrr are available; so, you substitute those and then the cos θ is taken and

then this is the area element and integration is over the sphere.

So, when you do the integration which again is not very complicated; when you go through

that you will see that the normal force in the z direction is given by this. So, you can only

recognize immediately that this term is coming out of with the volume× ρ at the mass into g.

So, you can already see that this is coming because of this fellow. So, you can readily verify

that when you take this term and then integrate over the entire volume you can already get

this, but the rest of them also will be and giving you these quantities.

So, this actually is the buoyancy force because it is basically caused by the gravity and this is

called the form drag.



(Refer Slide Time: 35:12)

.

And you can do the similar kind of a integration for the tangential stresses to give you the

normal force or vertical direction force, so r θ is available. So, the r θ is τ rθ is substituted and

then this is the area element and then when you integrate it over the sphere, then you get the

Ft as 4 π μRU. So, this is actually called as a friction drag.

So, there are two components of drag that are acting on the sphere because of the flow that is

happening around it the form drag and the friction drag. And as you can see the form drag is

coming from the normal stresses, the friction drag is coming from the tangent shear stresses.

So, when you add these two; so, what happens?
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So,  you have  got  these  two;  when  you add there  is  when you get  this  Stokes  law.  So,

basically  the  normal  and  the  tangential  components  of  the  forces  in  the  z  direction  are

available. So, when you then add them up; it should actually match the weight of the solid in

case the total forces cancel and the solid is actually falling down at a velocity U which is a

terminal velocity. Alternatively the fluid is actually moving upwards in the direction and the

solid is a stationary.

So, it is only the relative velocity that we are looking at. So, when you put these two and the

substitute into this then you can get this equation which tells you that of course, this can be

taken as delta rho. So, which basically tells you that because of the density difference the

buoyancy is actually compensated by a force and that force is actually going as 6 π μ×R× U

Now this U is then called as the terminal velocity. So, U is basically the terminal velocity; the

terminal velocity when this balance is happening so if this balance it does not happen; then of

course, you still are able to work with the fluid flow variations but it is just that this flow

pattern has not stabilized and you still have the solid body accelerating etcetera and this is

also given a name the Stokes law.

So, Stokes law is actually then valid only for creeping regime which means that the Reynolds

number has to be very small. So, this is a validity range and whenever we want to arrive at

with the velocity of the solid that is falling in the liquid column and if the solid is having a

radius r and the liquid is having a viscosity μ; then we want to find out what is the U then use



this  formula we have to ensure that calculating the Reynolds number, it  would give us a

number that is very small. So, that is only when the creeping flow regime is valid.
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So, we have then finally, arrived at the end of our concept map; we could see that we started

off by looking at the stream function definition, the E2 operator we have introduced and we

have seen that the Stokes equation is being used for our solution because we are actually in

the creeping flow regime.

And then from there we sought the solution of the stream function ψ  and then that gave as

the velocity compounds Vr and Vθ. And then from there we got the τrθ and then the  σrr, then

you got the pressure from there we have got the forces and from there we got the balance

with respect to the gate of the solid and then we got the Stokes law. And the velocity at which

the forces are balancing; we actually are calling it as a terminal velocity; U∞ very often or in

our problem it is just U.

So, like this we are able to now cover the entire problem in the complete depth that we need

and in the sample problems; in the course website you will have some numerical problems

given where we are going to apply the Stokes law.
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So, these are actually of very high importance in the extractive metallurgy problems. So, to

know how these equations came about and which analytical solutions made this possible is

important and I hope this session would have clarified the entire process of arriving at that.


