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Lecture - 14
Simple cases in fluid flow – applications of pipe flow to porous bodies

Welcome to the session on simple  cases  in  fluid flow as  part  of the NPTEL MOOC on

Transport Phenomena and Materials. In this session we will be looking at applications of the

pipe flow equation that we derived earlier to porous bodies.

(Refer Slide Time: 00:31)

So, here we have the solution that is written already we have derived this in the previous

session where due to the pressure drop per unit length that is shown here the pressure at left

hand side of the domain is shown as pH, right hand side is pL. So, the pressure drop is given as

-Δp/L. So, therefore, that is a driving force for the fluid flow in the axial direction and the

average velocity that is which is half of the maximum velocity is given R
2

8μ
Δ p
L

 . So, this is

also referred to as Poiseuille  flow and when we look at  the mass flow rate  by the same

problem then that would be called as the Hagen Poiseuille equation. 

So, this equation should not be applied for any range of pressure drops that we like, but when

the Reynold’s number that comes out is less than 2100. So, after  we solve a problem to



determine the average velocity through a pipe due to pressure drop or body force ρg. For

example, we need to multiply the velocity with the diameter and the density divide with mu

and check the Reynold’s number that comes out is small. So, that is when the laminar flow

assumption is valid and therefore, the results will be correct. So, beyond this number then we

cannot use this expression.

(Refer Slide Time: 02:01)

So, here we want to just look at this equation in a slightly different manner the same equation

which is written earlier you can then compare that it looks somewhat like the Ohm’s law. So,

the velocity the average velocity of the fluid through the pipe is like current and the Δ p/L is a

reason why the flow of the fluid is actually happening. So, it is like the voltage or the driving

force for floor and what goes as a denominator that is 8 μ/R2that is proportional to 1/R2 that is

like the resistance to flow. So, it  means that pipes which should have a narrow diameter

would be requiring more pressure drop to have the flow take place at the same magnitude

etcetera.  So, once you compare you could already see that we have a analogue electrical

analogue. So, the current is like the flow the pressure drop per unit length is like the voltage

and we do have a quantity that comes like a resistance. So, just like one would solve the

circuits problems in electrical engineering problems then you could also do the same thing

with the pipe flows.

So, whenever you have a network of pipes for example, in situations like this for example.

So,  in  situations  like  this  what  happens to  the  flow and what  would be  the pressure set



different junctions etcetera these can be solved using the same analogy. You could also solve

them piece by piece, but that will be little more tedious.

(Refer Slide Time: 03:40)

So, when we have the pipe not exactly a circular cross section then what do we do. So, here is

a concept that could come of use for us, the concept is basically hydraulic radius. So, when

we look at the volume through which the liquid is flowing which would be given by the cross

sectional area which is πR2× h. So, that is the volume through which the liquid is flowing

through. And the wettable surface area that is the area which is actually in contact with the

fluid that is the surface area which is impeding the motion of the fluid so that would be

basically perimeter ×  h. And if you take the ratio of these two would see that the radius will

be arriving at from the volume divided by the surface area. So, volume is actually also the

void volume. So, you could actually qualify this as void volume because it is through this

void or cavity that the liquid is going through and once you have this you could actually

imagine that you can already always call the ratio of volume to wettable area as a relevant

quantity for the radius and which you would actually now define now.

So, we would like to define what is called the hydraulic radius. So, we are actually creating a

new variable called hydraulic radius now we want to define it as a ratio of the void volume

over the wettable surface area. So, once you have this then non circular cross section of the

tubes can also be handled and you could also then try and see whether the expression that we



derived earlier could be applicable when the deviation from the circular cross section is not

very much.

(Refer Slide Time: 05:29)

So, at this juncture we actually are going to apply the pipe flow equation to the very different

set of problems and see how interestingly the relationships are coming out to be similar. So,

here is  where we are introducing the new concept  called  as the porous media or porous

bodies.

In daily life these are very familiar to us we know from bread for example, these region you

can see there is low of porosity and these actually  are seen in engineering also and very

common. So, you could actually see that you have a porous body an aluminum foam which is

used to absorb a shock and it would collapse the porosity would help the material collapse

and thereby absorb the energy before it the impact is passed on to the contact body which is

behind. So, you also have situations where extended surfaces porous surfaces are available

like here which can be used to remove the heat. So, the air that is in between these solid

surfaces would take the heat and go away and thereby lead to a heat transfer taking place very

efficiently. So, lot of heat exchanges would have their appearance looking like a porous body

and you also have seen porous bodies in granular materials as you would see in bubbles or

grains or sand particles or pluses when they flow.

So, in during all these phenomenon you would see that the domain basically is a porous body

and the porous media and metallurgical scenario this is very much important because apart



from heat exchanges the filters. For example, are very much porous bodies. Basically if you

have a  bed of alumina  spheres  then you could use it  to  filter  the  draws from the  liquid

aluminum melt and therefore, you could actually use porous bodies for filtering liquid metals

liquid metals are very corrosive, so you could not use a metallic sieve to do that particular

kind of a thing. And as you can also see from the appearance that porous bodies have a lot of

surface area that is available, which also means that reaction that takes place on surfaces can

also be enhanced. So, catalytic converters are also generally porous bodies.

And you also have multiphase reactors that would have porous bodies one of the reactants

will be made as these porous medium the other ones will be like fluid going through and then

because of the extended surface area that is available reactions can take place at more area

and that can be useful in enhancing the productivity. And pressure reduces when you want to

reduce pressure across a length then introducing a porous body in between generally helps.

So, like this  there are  number of applications  in metallurgical  industry where the porous

bodies are coming across and when we have a situation where a fluid is going through a

porous body what kind of an expression can be used.

So, this is where for example, we can see whether what we have learned till  now can be

applied. So, a very generic way of representing porous body would be like this where you

have got the white regions would be like for example, the solid and the black regions would

be like the void.

(Refer Slide Time: 05:40)



So, what this implies is that when you have a fluid that is entering from one end of the body.

So, it would actually go through the void which is interconnected and eventually come out.

So, could see that the path is actually tortuous nonetheless it is available so that the fluid can

go through the porous body.

Now, it  also means that  you could also have a  bed of  spheres  each sphere made of  the

diameter dp and the black here is the void and this is solid sphere then you could also have the

situation where a fluid can go through the a void that is available to go across the porous

body. So, in both the situations for example, you could treat that there is certain amount of

void volume that is available for the fluid to go through and one situation that we want to

now use is the path that is taken can be then imagine that to be like a tube. So, we want

actually check can this path be imagined as a tube through which the liquid is going through.

So, our idea of modelling the phenomenon is basically assuming that the void interconnected

void is similar to a tube and then see if what we have derived till now can be applied for this

kind of a problem. So, let us try if this works.

(Refer Slide Time: 10:28)

So,  here  we now we introduce  some terminology  to  characterize  a  porous medium or  a

porous body so that these will be useful for our derivation.  So, one characteristic  of any

porous body is to tell how much of porosity is there. So, you should tell the porosity as the

first characteristic. If you take for example, a powder bed and then you are using a powder

metallurgy principles to centre it to a solid block then depending upon the extent to which



sintering is happening you would have porosity changing. So, as the density approaches the

theoretical density the porosity is approaching 0. So, intermediate if you stop then you do can

achieve the porosity to be something between 0 and 100.

So, like fifty percent porosity seventy percent porosity etcetera they are all possible and so

you would like to define the porosity as the volume of the void to the volume of the porous

body itself. So, by porous body what we mean is the entire body externally measured. So, if

you use a calipers and measure the dimensions then that would be the volume of the porous

body. And if you were to remove all the void then that would be this volume of the solid and

together is basically what is coming as V here, what we refer to as V. So, V  then becomesϵ

the volume of the void because from the definition V is this and therefore, V  would then beϵ

the void because of the ratio becomes V  / V that is  which is basically the porosity becauseϵ ϵ

of the porosity is one characteristic.

Now, it is possible to have porous bodies which have the same porosity, but they may be

made of particles of different diameter. It is possible to achieve that and in such situations

what happens is that a body which is made of particles of a smaller diameter would have a

more tortuous path. for the fluid to go through and which also have means that the surface

area that is exposed will be more. So, it is possible to have a same porosity, but different

particle diameter internally that would be actually give you more surface area. So, you need

one more characteristic feature so that is basically the surface area per unit volume of the

solid.

So, surface area per unit volume of solid is one another characteristic of the porous body that

you can define and this can be actually measured experimentally and so we define one more

quantity here. So, from whatever we have seen till now you could actually then use this two

quantities to arrive at what would be the hydraulic radius of a pipe which we are imagining as

basically equivalent to the inner connected void. So, hydraulic radius we have already seen it

is ratio of the void volume to the wettable surface area. So, the void volume is coming from

the first definition and the wettable surface area is coming from the second definition. So,

that RH is coming out to be an expression that involves two characteristic features of a porous

medium namely  and Sϵ o .
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So, once we have the RH then this is what we do. So, we then look at how the flow is taking

place. So, here we have drawn on the top surface the pressure is high pressure and at the

bottom surface we have got the low pressure. So, you could see that then it should lead to the

fluid flow to happen in this direction.

Now, if the pressure difference from the top and bottom surfaces is given as Δp and the

height of the porous body is L, then Δ p/L becomes a driving force which is causing the fluid

flow or the fluid to go through this porous body. Now, the porous body would have a volume

V and the ratio V and L would basically give me the surface area or cross sectional area of

the body, so we call that as A. Now, this A is the area of the body which means that it can be

measured by using calipers looking at the width and depth of the body, and this cross section

when you look at the cross section you could then see that it is also made of voids and solids.

So, you could also see a fraction you could also look at the fraction of void in the surface

there and if that is assumed to be same as the fraction of void in the entire body then we are

actually calling this particular porosity as isotropic porosity. So, what we mean by isotropic

porosity is that area fraction of void is same as the volume fraction of void. This is also the

same as length fraction of void if you draw a line in random direction and then count how

many segments of the line are falling in the solid and how many are falling in the void. So,

isotropic would mean that in any direction the way of counting actually will give you the

same void fraction. So, if that was true then A  would then be the area of the void throughϵ



which the flow can take place. So, A× 1 -  would then be the area of the solid through whichϵ

the flow cannot take place.

So, we now look at the entire volume of the fluid that can go through this body and see how it

can represented. It can be represented in two different ways, on the left hand side we have

one way of representing and here we write an expression in this form. So, there are two terms

the first term is basically the void area and which means that whatever is going through the

void is actually going at the actual velocity. So, this basically is a actual flow. So, u is actual

flow, flow into the area of cross section will give you the volume flow rate. So, that is it is

quite acceptable as we have seen till now.

However, this is not useful in the sense it is very difficult to measure the actual flow rate

through the voids because voids are very small and they are of different sizes in different

locations in the body. So, what actually is useful is to check what will be the superficial

velocity. So, superficial velocity is defined in this manner that is it is a velocity as if the fluid

is going through the entire cross section of the porous body. So, A × us should give us the

volumetric rate. The reason  why we call  this as a useful quantity is because this actually

implies I could actually calculate it as V̇  / A, now V̇ can be actually measured because you

could actually collect fluid that is coming through this porous body for a duration of time and

then divide the volume with the time and you get the volumetric flow rate. And you can

actually measure the area of the porous body by using a callipers and therefore, this can be

measured, which means that the superficial velocity of the fluid as if it is going to the entire

cross section of the porous body can be experimentally determined. So, that is actually also

determine the volumetric flow rate.

Now, the way you determine a volumetric flow rate in both ways is the same. So, it is the

same fluid that is going through. So, if you want to then draw an equivalence between these

two  then  there  is  possible  when  for  example,  the  actual  velocity  is  equal  to  superficial

velocity divided by . So, this is how we are now able to relate the superficial velocity andϵ

the actual velocity.

Now, for the actual velocity we do have a relationship available because it is going through

the void and for flow through the void which is roughly in the shape of a pipe then we do

have an expression that is giving as a relationship between the velocity and the these two the



Δp/L through the pipe flow equation. So, now, we want to relate these two and see how it

comes about.

(Refer Slide Time: 18:39)

So, we are basically now making an assumption that is if the porous body is treated as a

bundle of tubes, each connected void is like a tube then the actual velocity if it is related to

the driving force for the flow through the hydraulic radius then maybe we can use the pipe

flow expression or Poiseuille flow expression for connecting these quantities. So, we are just

blindly going to apply that equation which we have already seen earlier. Only difference is

that this is related to the superficial velocity and this is related to the porosity and this wetted

area for unit volume of the solid.

So, we substitute those expressions and you see on the left hand side it is uS/  and on the rightϵ

hand side RH = 
ϵ

So×1−ϵ
which we have already seen just as while back. So, we basically use

this expression here and then we basically are able to see how a pipe flow is applied to flow

through voids of a porous body. So, we are basically modelling the porous body as a bundle

of tubes and for each tube we are basically  able  to write  this  expression,  which actually

means that we can then take the quantities back and forth and see that we are able to relate

the superficial velocity with the driving force and it is going through a bunch of quantities

that are actually as a coefficient.



Now, this coefficient within inspect the trends when  is going towards 1 or towards 0. So,ϵ

when  goes towards 0 means there is no void which actually also should mean that it is aϵ

fully solid and it would require infinite pressure drop to lead to any velocity and that would

actually be also evident because they are coming and multiplication. So, for a given velocity

us if  is oing towards 0 then Δ p/L will blow up that is what we also expect.ϵ

(Refer Slide Time: 20:48)

So, what we are now doing is to just see if we can make a generalization of this particular

model to arrive at an equation that has a name. So, the equation that is available in exact

metallurgical literature is the Blake Kozeny equation and we will see whether we can arrive

at that. So, what we actually want to do is this entire coefficients that are there in front of the

Δp /L you want to just simply call that as K, now what happens is that what does K do. So, K

basically tells you that it is the ability of the porous body to let the fluid go through it. So, it is

basically  telling you how efficient  will  the pressure drop convert  into the velocity.  So, it

converts to give you high velocity which means that it allows the fluid to go through very

easily and if it does not do that it means that it causes lot of obstruction to the flow going

through it, which means that it is nothing, but permeability. 

So, permeability coefficient is what we want to call K, which means that we are now relating

velocity  to  pressure  drop  per  unit  length  through  permeability.  And  the  permeability

coefficient  which  is  written  with  empirically  verified  functional  form is  here.  So,  this  is

expression that has been derived separately. So, you could see that the only way place where



we actually got it a little off is here. So, we see that this is the only thing we did not get right

other than that the functional form is exactly how we have come about and this expression is

empirically obtained and verified. So, which actually means that this quantity is a correction

factor to take into account the fact that the void interconnected voids are actually not bundles

of tubes, but they do have other effects. For example, whenever you have got bundles of

tubes which are actually also interconnected then there must be some effect because of that,

so some pressure drop will be modified because of that and therefore, it must lead to some

correction factor. So, let us see that basically this is a correctional factor another wise our

model seems to work quite well.

So, Blake Kozeny equation is basically expect for this correctional factor a model to treat the

interconnected void as a bundle of tubes and then applying the analytically  derived flow

equation to it.

(Refer Slide Time: 23:31)

So, here this goes a little further. So, independently there is another equation that came about

a little earlier which goes by the name Darcy’s law and here basically the same equation we

are writing and because we are now noticing that the superficial velocity is a velocity.

So, it is basically a vector. So, we have got a vector and this entire thing is nothing, but the

coefficient and this is pressure drop per unit length. So, Δ p / L is basically in our case it is

∂ p
∂ x

if the velocity happens to be in the x direction and so therefore, it is like gradient p. So,



this is also a vector. So, from what we have studied earlier about the constitutive relationships

relating cause and effect. So, if you want to call this guy as cause and this as effect that is due

to a pressure drop and effect namely the fluid flow is taking place. 

So, if you want to think of this as cause and effect then this must be a property and as per the

tensorial relationships that we have seen that if cause and effect are vectors that is tensors of

order 1 then the property can be in most general case a tensor of order 1 + 1 that is 2. So, we

then basically go ahead and write that expression. So, this is a tensor of order 1 and this is a

tensor of order 1. So, therefore, this must be a tensor of order 2. So, that is why we basically

refer  to  the  permeability  as  a  permeability  tensor.  So,  permeability  tensor  is  a  very

generalized concept, which means that the equation that we came about by starting from the

pipe  flow equation  and then  modelling  the  porosity  and then  introducing the  concept  of

hydraulic radius then once we got that equation if we want we can elevate it to the level of a

constant into relationship between cause and the effect then we do arrive at what is called the

Darcy’s law.

So, Darcy’s law is this equation and in which the permeability is coming as an anisotropic

tensor of order 2 and you could actually call it as isotropic in situations where the medium is

isotropic. So, if the porous body happens to be isotropic then you can go ahead and write the

Kij, as K × Δij and in which case then you could actually see that us is then given by K ×  Δ ijp

that is basically K×p. So, we could see that you actually see a vectorial relationship giving

only a constant here for the case of isotropic medium. So, by Neumann principle the property

should have the same symmetry as of the materials. So, if the material happens to be isotropic

porous medium then the property also should be isotropic and in which case you get the

relationship that we have already seen.

So, in that way we can actually see that starting from one equation we are landing up another

equation which actually  all  came very early almost  independently and the relationship is

coming out quite beautifully thanks to the tensorial concepts that we have seen till now and

the models that are interconnecting these. So, now, we see that we can actually check for the

validity of these relationships. So, way to validate is the same as the pipe flow, so to look at

the Reynold’s number and checking whether the Reynold’s number is within some range or

not.
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So, the porous medium has been modelled with these quantities being a bit different the u is

basically the superficial velocity and here the Reynold’s number should have actual velocity.

So, we must then substitute properly. The diameter is basically twice the hydraulic radius. So,

we must also bring the hydraulic radius expression. So, we bring that in and we see that the

Reynold number will come out to the expression like this.

So, normally when we have non dimensional quantities then we do not want numerical things

in there because there is no point in that. So, we can actually look at the introduction of non

dimensional members has only a way to remove the dimensions. So, numerical values need

not come. So, we redefine, we redefine the Reynold’s number in this manner by knocking of

that two and to remind us about the redefinition we actually also pay attention to the sub

script which actually tell us that there has been some redefinition that has happened. So, the

Reynold’s number for a porous body is given by this expression. And the results that you

have seen till now that is the Blake Kozeny equation is valid when the Reynold’s number

with the new definition is less than 2, which you can see that it is 1000 times lower than the

Reynold’s number for a pipe flow. So, definitely our model that we have applied is applicable

only when the floor is very slow. So, the moment it increases then our model does not seem

to work.
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Now, we can then go ahead and apply the same concept to a bed of spheres that would act as

a  porous body. The only reason why we want to take it up is because we do have a simpler

expression that can come out. So, the bed of spheres is depicted here. So, the pressure is high,

on the top surface its low, in the bottom surface and therefore, the fluid flow will take place

in this direction and that is happening in the void spaces that is interconnected and coming

out. And we want to model that particular path as a tube and we are just basically going to

use a same expression. So, the diameter of each solid sphere is dp which actually makes us

assume that the bed is made of uni-dispersed solid basically. So, if we have a distribution of

sizes then we are not yet able to handle that.

And it is then also clear that the  can still be varying because once you have got the particlesϵ

you can arrange them differently to get different void volume. So, you can make them closed

packed we get less volume we get loosely packed then we get more volume. So, it is showing

that  can be independently controlled without the particle diameter is already fixed. But onceϵ

the particle diameter is fixed then the wettable area is also getting fixed and that is basically

here.
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You can see the wettable area is given by ratio of is a point of So and volume of solid and we

can see that if  there are N spheres then N into the surface area of the sphere that  is  the

numerator and N into the volume of the solid that is the denominator the ratio would give you

the So and that comes out as a 6 / dp, which means that this entire quantity is dependent only

on dp.  So,  powder diameter  is  directly  controlling  how much of  wettable  surface area  is

available per unit volume of the solid.  So, here we are actually making a very important

assumption that there is only a point contact. So, there is no loss of surface area because so

many powder particles  are coming together.  So, we assume that the area of these two is

exactly is equal to twice into this. So, there is no loss of surface area we are assuming.

So, subject to that then we go ahead and substitute wherever So is available we are actually

putting 6/dp and then we will see that the K expression would have a 4.2 × So
2 and that is

approximately 150, which means that we now have an expression also where the porous body

is  made  up of  a  uniform spheres  of  a  same diameter  dp.  So,  the  K that  is  permeability

coefficient is now available for us as an analytical expression with  and dϵ p that are there.

Now,  if we already know that it is closed packed with let us say about 68 percent packingϵ

then you already see that 32 percent that is 0.32 will be the value of  and then the diameter isϵ

available. So, dp can be substituted and with the viscosity of the fluid available immediately

we can get what would be the permeability coefficient.
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Now, once that is there then we can substitute in the Blake Kozeny equation and see how that

would look like for the bed of spheres. So, for the bed of spheres I have just flipped the

quantities  around  to  show  them  in  the  way  that  most  text  books  show.

Δ p
L

=
(150μ× (1−ϵ )

2 )us
ϵ 3dp

2
So,  this  expression  actually  is  there  in  many  of  the  extractive

metallurgical textbooks and we know from where this has come. So, this has come from our

model and the fact that So happens to be 6/dp for a bed of spheres.

Now,  this  is  varies  when  the  Reynold’s  number  defined  appropriately  for  this  problem

happens to be small.  So,  a very very lower Reynold’s numbers and that  actually  is  now

modelled here. We already see that this can be modified to 6 / dp, which we have done and we

do not want in a Reynold’s number definition. So, such things are actually not required, so

we go ahead and redefine the Reynold’s number and we pay attention to the subscript and we

see that it has been defined in a different manner.

So, with this definition of Reynold’s number then if it is less than 1 or very small Reynold’s

numbers then we can go ahead and use the Blake Kozeny equation for a bed of spheres here

and this would actually relate how the pressure drop per unit length is changed because of the

velocity  that is going through which we desire.  So, which also means that if you want a

particular amount of pressure drop to happen then you can actually see that knowing what if

be the velocity of the fluid going through then you can actually ask yourself what is  thatϵ



you would need to achieve that kind of a pressure drop. So, that way we can actually put

these things to great use.

(Refer Slide Time: 34:04)

So, at this moment we will close. The numerical problems of using these expressions will be

made available as practice assignments in the course website you could punch the numbers

and see how we are getting through.


