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Lecture – 13
Simple cases in fluid flow – Cylindrical coordinate system

Welcome to the session on solutions to the Navier-Stokes equation. We will be taking up

simple cases and in this particular session we will be taking up the  cylindrical coordinate

system. In the previous session we have done the rectangular coordinate system and this is as

part of the NPTEL MOOC on Transport Phenomena in Materials.

(Refer Slide Time: 00:38)

So, in this session we will be first looking at simple interesting case of a fluid statics whereby

we will  be  contrast  of  the  pressure  term also  being  varied  as  a  function  of  the  special

coordinates.  Then  we  will  look  at  how  the  3  different  components  of  velocity  in  the

cylindrical coordinate system namely the radial component, the axial component and the θ

component can be solved for in 3 separate problems. So, we will be taking up unidirectional

flow in this session. So, we will take up only one component at a time in each problem.



(Refer Slide Time: 01:12)

So, here is a depiction of how the components are looking like the, what we refer to by axial

component is this which is along the z direction which is along the axis of the cylinder and

the radial component is here, so it goes from the centre towards the periphery of the cylinder,

and along the θ direction is the θ component. And we have problems in which one or more of

this components will be present and we will take up the problems one after other to see how

the equations can be solved for.

As you can see that the θ component is pegged at the end of the r⃗and as a function of θ which

I am showing here the location of the vector vθ would be changing. So, this actually means

that in the cylindrical coordinate system the Navier-Stokes equation will have terms that are

in addition to what normally are expected from the rectangle coordinate system and we must

be conscious of those terms while solving the equations. So, here are the equations that we

have shown in the earlier session on how the Navier-Stokes equation would look like for

different components of the cylindrical coordinate system.

So, I was drawing your attention to essentially terms like this.



(Refer Slide Time: 02:38)

For the r  component  you have this  term which is  coming in and you do have for the θ

component also some term that is coming in. And in addition the laplacian also would have a

special appearance where you have got 1/r going in and here also there is an additional term.

So, it is not directly substituting xyz with r θ z, but we need to watch out how the coordinate

system transformations  are  being  used.  So,  pay  attention  to  this  terms  so  that  are  being

highlighted.  So,  that  we  can  notice  that  the  terms  are  looking  a  little  different  in  the

cylindrical coordinate system. So, we will take problems so that we will use these equations

one at a time.

(Refer Slide Time: 03:28)



So, first problem is about statics problem namely the situation where we are only looking at

how the pressure would change as a function of distance. So, here is a situation where you

have a container of liquid which is made to rotate about its own axis. So, this is the rotation

that is happening and because of this we expect normally that the liquid will be pushed away

from the centre so it would climb up the wall little bit and it would take the free surface

would take a shape.

Now, we are interested in determining this shape just from the statics. So, from the statics

what we know that this shape is given by the condition that if because it is a free surfaces, so

you say that this is a free surface. So, it means that atmospheric pressure is what is acting on

the liquid  at  that  location,  which we determined here as a  condition.  So,  p=po.  po is  the

atmospheric pressure and if we choose Ω then depending on the magnitude the zo also would

change. So, we indicate that in the problem here zo . So, we want to assume that there is no θ

variation it is an axisymmetric problem. So, we now have a situation where pressure is a

function of r and z and we want to determine that. So, the equations are here.

(Refer Slide Time: 04:52)

Now, this equations are going to be very trivial because we do not have velocity components

except  in  the  θ  direction,  because  r  velocity  is  not  there,  wherever  u r is  there  those

components will be all going off. So, I  strike off all those and we also know that we have

chosen the axisymmetric situations. So, we strike that off also and there is no body force term



along the radial  direction,  which means that we have got only two terms which we have

indicated here as the first equation which will give you the radial variation of the pressure.

So, similarly for θ we say that it is steady state and there is no u r and there is no uz and here

also there is no ur and axisymmetry and we say that again from the axisymmetry and ur is not

there and there is no z variation of velocity in the θ direction. So, it basically leaves us only

one term and we also want to say that there is no axisymmetry also makes the p not varying

along θ and there is  no body force acting in the θ direction.  So, we have a very simple

equation that have only on term. So, that comes here.

Now, the boundary condition is such that the linear velocity at the end of the container is

given by rΩ. So, that if you plug in then you see that the equation is satisfied, so vθ can be

taken as rΩ which we can substitute and see that it satisfies. So, in the case of z direction also

the velocities are actually not there and so you have those terms going away and you see that

this must be the body force which is basically the gravity term and this must be the pressure

variation because of the z direction having a different heights of the liquid as you go along

the r. So, you have this equation. So, you now have these two equations which are need to be

solved. So, that we can get the p as a function of r and z and we substitute v θ  expression into

this equation.

(Refer Slide Time: 07:10)

So,  we  do  that,  then  we  arrive  at  to  these  two  equations  which  need  to  be  solved

simultaneously.  So, there will be some integration constants that we are actually deriving



from the fact that atmospheric pressure po is there on the surface of the liquid, which when

we plug in then we can clearly see from here itself that the first integration will give you r 2/2.

So, there is this and second integration will give ρ g z that is this term the remaining ones are

coming from the integration constants.

So, which means that the pressure variation in this particular situation where the liquid is

being  turned.  So,  this  pressure  variation  is  given  by  this  particular  functional  form and

therefore, wherever p = po will give you the curve this particular curve. So, the free surface is

then given by a functional form like this. So, z is going as r2. So, z going as r2  would imply

that we have a parabola which means that when we rotate a container of liquid about its own

axis at a velocity angular velocity Ω then depending on the magnitude of Ω the parabola will

be a deeper high higher magnitudes and this kind of a situation will be used to make actually

parabolic mirrors. So, we see that the idea of parabolic shape as come out only from the

statics problem when there are no velocity components at all and by looking at the equations

in the  Navier-Stokes equation for the cylindrical coordinate systems. So, this is interesting

and we are actually now seeing that the pressure variation can also be derived from these

equations. So, now, let us look at the 3 components, we will take one component at a time.

(Refer Slide Time: 08:57)

So,  the  radial  component  is  being  taken.  So,  radial  velocity  component  is  ur and  the

continuity equation needs to be satisfied and also the Navier-Stokes equation. So, we saw that

if  you look at  only the continuity equation we already can guess what kind of forms are



allowed. So, we see that if it is a unidirectional flow. So, then this functional form should

give us that ur should go as a function of 1/r. So, that it can satisfy the continuity equation.

And when we plug in this into the Navier-Stokes equation and look at situations where I

know it is a simple situation like a steady state and you do not have a uθ and you do not have

uz and there is no θ variation and there is no uθ and there is no z variation. So, you could

already see that here again you could see that this is already satisfied. So, this would go off,

but what you see that these terms would still survive. So, which means that even if you want

to drop this term saying that there is no body force along the r direction you can see that there

must be a pressure variation as a function of r if you want to use a simple form of radial

velocity like this. So, this can be immediately plugged in and you can derive it. So, I would

leave that as homework for you.

But  it  just  shows  you  that  when  you  actually  plug  in  the  functional  forms  for  the

unidirectional velocity is that you can conclude from continuity equation then you may have

actually pressure variations also to be taken into account as we call off.

(Refer Slide Time: 10:41)

So, we now look at the second component of this velocity in cylindrical coordinate system

that is the axial flow. So, that is uz, along the z direction. Now, for that we choose a problem

that is very standard that has to be learnt by all students who are studying this particular

subject namely flow through a pipe.



So, you have a pipe and liquid is actually going through that and the reason why it is able to

go through that is because either there is a body force that is acting along the length of the

pipe, so within in situations where the pipe is vertically kept because of the gravity the liquid

will flow through that that is one way another way is actually there is a pressure gradient

along the pipe. So, when you have a high pressure here and when you have low pressure

there, because of the negative slope of pressure then you have basically velocity is in the

positive z direction. So, that is what is indicated here in terms of pH and pL. So, you have got

these two situations and so the flow is due to one of the two terms or a combination of the

both.

So, Fz is a body force term that is g and   
1
ρ
Δp
L

 is basically the term correspondent to the

pressure drop. So, because of one of these two reasons the flow is happening along the axial

direction that is along the z direction in this particular tube.

Now, the inner walls of the tube are assumed to be rigid smooth and. So, on and. So, the

boundary conditions that are applicable are that the velocity at the inner wall is 0 this is from

the no slip condition. And we also want to say that along the diameter there is a symmetry

which would mean that the velocity profile should have a finite value at the r = 0 or you have

a slope that is 0. So, both would actually mean the thing when we are solving the equation,

but we need to use one of those two principles at the centre that is either the symmetry or the

velocity being (Refer Time: 12:44).

So,  what  is  the equation  that  we need to  write  for  this  particular  problem? So,  we have

basically the equation Navier-Stokes equation for the z component of the velocity. So, that is

what we are going to write.



(Refer Slide Time: 12:49)

So, we have already written the equation which means that we have already made these 3

assumptions and more than that we are also going to make assumptions. So, we are going to

strike out the first term because of the assumption 4 steady state and we are saying it is a

unidirectional velocity along z. So, there is no ur, and then there is no uθ also and. So, that

would be gone and we say that the velocity variation is only along r. So, variation along θ

direction is being dropped. So, that would be assumption 6. Along the z direction we say that

it is a fully developed flow. So, we want to strike that off saying that it is because of the

condition 7, then this two will be gone.

So, then we also want to say that there is an axisymmetry of course, that would also make this

go away. So, one of the functions will actually you know take that is taken care. The constant

body force term when means that this is actually constant that is only to make the integration

easier  for us otherwise there is no need for a that to be constant.  So, you now have the

Navier-Stokes equation having only two terms and that would look like that.



(Refer Slide Time: 14:15)

So, when we now integrate, so take this term to the other side. So, we get a minus sign and

then  you integrate  once.  So,  then  you can  get  the  r  coming  in  and then  the  integration

constant is C1 and when you integrate once more you can see that this would actually give

you log term. So, that would be a problem because at r = 0, log r would actually blow up and

you want the velocity at the axis centre to be finite, which means that we do not want C1 to be

present because C1 /r will actually will give you a problem when we integrate the next step.

Another way to say it is because of the symmetry we want that the velocity profile will be

having symmetry along the diameter. So, which means that at r = 0 the slope of the velocity

profile in the r direction will be 0. So, which means that again this term should be 0 because

if this is 0 at r = 0 then this must also be 0. So, either way we are arriving at we conclusion

that C1 is 0.



(Refer Slide Time: 15:24)

So, we substitute that and integrate once more. So, we get a functional form what looks like

this. So, this is basically the solution of the z component or the axial velocity component in

the cylindrical coordinate system further list of assumptions that we have mentioned. And

when we apply the boundary condition that at the inner wall of this pipe you have 0 velocity

because of no slip then we can determine what is the C2, some of the C2 is then determined

here and when you substitute you get the optional form or the velocity which is appearing to

be like a parabola because you already see that there is a r square variation that is coming

here.

And what would be the maximum velocity? When you substitute r is equal to 0 you get the

maximum velocity,  which means that let us say you have got only one of the variations,

because of only pressure drop. So, if only pressure drop is present then the maximum velocity

is then given by 
1
4 μ

Δ p
L
×r2and you could also write for example, as   ρ gr

2

4 μ
. So, in the terms

can be added if both of them are acting simultaneously.

Now, when we want to look at the velocity profile just by normalizing the velocity so that we

only look at the shape of the velocity profile then it would come out on the right hand side

with only profile form which means the scaled radius if you use that just courses 
1

1−r2
. So,

which basically means it is a parabola and this actually is already encountered in a similar



problem in the rectangle coordinate system as well. So, this functional form is very important

because this will be then used in many many situations as we go along.

(Refer Slide Time: 17:20)

Now, when we plot this parabola it would look like here. So, this is the plot we are trying to

show, which means that in the tube at this centre is the maximum velocity and at the walls it

is 0 velocity and the slope at the centre will be 0 and the parabolic is a nature of the velocity

as a function of r in the tube.

Now, you can already see that from the Newton’s law slope of the velocity profile should

actually indicate what kind of shear stress is present at that particular location. So, you can

already see that this slope is 0 here which means that the shear stress is 0 and then the slope is

actually here, so it appears as if the slope is changing the sign when we go to here to here, but

please remember that this is actually a cylindrical case. So, this is r and this is also r. So,

because of that the slope actually is having the same sign on both sides and that is negative.

The reason why it is negative is evident when you actually mathematically show here and

then the plug in. So, you can actually see that from the expression for τz r going as μ
∂uz
∂ r

  for

unidirectional component. So, you can already see that it comes out as minus r and from the

convention that we have already seen we can actually apply that.

So, the layer at higher r and higher r is basically the wall or the layer at lower r and that is the

liquid. So, the stress that is acted upon by the layer at higher r on the layer at lower r that is



the stress acted upon by the wall on the liquid if it is actually along the positive z direction

then the stress is positive. But actually as we can see here it is actually trying to stop the

velocity from taking a magnitude at the wall and therefore, the stress is actually acted upon in

this direction that is opposite to the positive z that is in the negative z, therefore, the stress has

to be negative. So, that is how the convention actually is also you know coming out neatly

even  in  the  cylindrical  coordinate  system  from  what  we  have  written  earlier.  So,

mathematically what I shown if you plot it  actually also makes sense with respect to the

partial form that they have given.

(Refer Slide Time: 19:53)

And what is the average velocity? This is very important because we want to determine the

flow rates through pipes and junctions of pipes etcetera. So, the average velocity is always

generally over the area through which the flow is taking place. So, you know that the area

element is generally given in the cylindrical coordinate system as r dr dθ and, you just take

that area element and integrate over the entire circular domain and, which means that the θ is

0 to 2π and the domain is defined by this and in the numerator you actually have a functional

form from z. So, that also if you substitute then you do have expression coming a little more

elaborate.

So, we go through that algebra it is quite straightforward you can just substitute and integrate

its  just integration of only r and r3.  So, if you substitute you basically  then arrive at  this

conclusion  that  the  average  velocity  is  half  of  the  maximum  velocity.  So,  now,  this  is



interesting  because  in  the  rectangle  case  where  we  had the  parabolic  flow variation  the

average was coming to be two-thirds of the maximum velocity, but in the cylindrical case the

average is coming to be half of the maximum. So, the reason of course, is because the domain

is in cylindrical coordinate system like this. So, the r that is going in is actually making this

integration little different from rectangular phase. So, we then can use this to flip between the

two quantities that we want to know. So, very often maximum velocity is not given average is

given and then we can actually then determine the maximum velocity and then use that as a

scaling  factor  for  the  functional  form and  therefore,  get  also  the  velocity  variation  as  a

function of r.

Now, often the volumetric flow rate is actually asked because we can actually you know

collect the liquid that is coming through the pipe for a given duration and then from there

determine what is the  V̇ . So, how is the  V̇  related to the average velocity? It is basically

average velocity into the area through which the flow is happening that is the  V̇ and if you

substitute it comes out to be this expression.

So, this is something that we need to use and if you multiply the volumetric flow rate with

density then you actually have the mass flow rate and that is also straightforward you can use

it here the average velocity into the area πR2 × ρ . So, that would be giving the mass flow

rate. So, mass flow rate has a name, Hagen-Poiseuille equation. So, this equation actually is

quite popular and if you plug in the number and get the average velocity then that can be used

to determine the flow variation.
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So, we now move to the axial flow, but in a small deviation the earlier had a type with the

circular cross section, but in this situation we want to have annular cross section. So, we have

our domain little different. So, the domain is looking like a (Refer Time: 22:53). So, the

domain is defined in this manner. So, if you have kR as the inner radius, so this is a domain

and the liquid is actually going in the annular region like this and in axial direction. So, it is

still in the axial direction only. So, boundary conditions will be as follows.

So, the liquid is actually flowing because the inner shaft is being pulled out at a velocity vo

and because the liquid would get stuck to the both the walls because of no slip condition. So,

there will be a shearing of liquid. So, velocity gradients are being setup. So, the boundary

condition on the upper wall this is at r is this. So, this is giving you axial velocity to be 0

because the outer container is stationary. And at r going to kR the velocity is given by vo

because the situation is that of a moving wall. So, both of them are actually no slip conditions

only. So, the flow is happening not because of any driving force, but only because of the

moving walls. So, if this is a simple situation how would we go about arriving at the solution.
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So, that is quite straightforward, we basically have the say equation that is written and we

take the steady state assumption and unidirectional velocity along z. So, the θ is no there and

θ uθ is not there and then ur is not there and then the velocity variation is only along the r. So,

variation along θ should be knocked off and along the z direction also to be knocked off. And

axisymmetry also implies that this is gone and fully developed flow would actually I want

you to drop this say term and then these are not there, so 0 because we say that the flow is

because of only the boundary conditions and not because of anything else. So, we just drop

this. So, which leaves us with only this term and so that term we basically write it and this is

now the trivialized form of Navier-Stokes equation for a z component and when we integrate

twice then we get the logarithmic term.
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Now, in this situation we are not actually dropping that logarithmic term because there is no

domain is actually not containing r goes to 0. So, we do not have a problem. So, we have this

as a functional form. So, when we integrate twice. So, we get 1/r and then second term we get

ln r and the boundary condition will be used to determine the values of C1 and C2. So, they

are written here.  So,  you just  have to  substitute  and then if  you sub subtract  the second

equation in the first equation you will get the value of C1 and you substitute the value of C1

then you will get the value of C2.

(Refer Slide Time: 26:02)



So, once you get then you can write the uz as a function of r and then simplify it and then it

looks like this. Now, here can this equation be used for pipe flow that is situation where here

we say that inner and outer, r inner and r outer. So, r inner actually is k × R and r outer is R.

So, if k tends to 0 what does it imply? It means that you are actually making the angular

region look like a cylinder pipe flow that we have come across earlier. So, can we use that

equation for that say problem? So, evidently not, because we actually kept the logarithmic

term with us when we did this integration and in the process actually now the solution has

logarithm so when you actually  want  to  reduce  the domain  then  at  the  axis  you have a

problem. So, one should not blindly use this in such a situation.

So, that is what I want you to alert, saying that when we use a boundary condition while

arriving at the equation then anything that actually violates that particular condition should be

watched out for. So, a boundary condition in this  case is that at r tends to 0 there is no

problem and,  but  then when we extend the  domain  then there  will  be a  problem if  you

actually apply it for a cylindrical pipe flow case. So, we should not use it. So, the solution for

annular case should be used only for annular axial flow.

(Refer Slide Time: 27:34)

Now  we  can  actually  see  under  what  circumstances  this  particular  flow  form  can  be

approximated to a planar case. So, what we do is thus this annular region. So, what we try to

do is that this distance alone we want to express and say that it goes, so going from here all

the way from 0 to δ. So, we defined in such a way that δ is nothing, but the distance here and



y is going from 0 to δ, so from either outer surface to inner surface or inner surface to outer

surface. So, we define that way, which means that in the way we have defined r = R - y

would mean that it is going from outer to inner and that is a distance that we are taking up.

So, what we do is we just substitute these two forms into the solution that we have obtained

and then you see that the scaled form uz by vo is coming out to be this.

Now, here in situations where the δ is small, if δ is small you know that then δ/R as well as y/

R are very very small. So, if they are very small what happens is that logarithm of 1-x can be

approximated to -x and so if you do that for both numerator and denominator. Then you have

a situation that is stimulating what happens when k is tending towards one of course, you

should not plug in k = 1 because you have a problem that will come in the de denominator,

but in the limit you can actually see that it comes to be basically a ratio y and δ. So, what it

implies is that when the δ is very small. So, this is the same as saying that k tends towards

one this actually is a same as the gap is very small compared to the dia. So, under these

situations we can see that the velocity profile can be given by linear relationship. But we

already know this solution we already know that this solution is applicable for a problem

where here is what we have originally  looked at.  So,  this  is  for a problem that we have

already come across, which means that the axial flow problem can also be reduced to planar

problem in situations where the gap is very small compared to the diameter if the cylinder.

So,  some problems you do not  have  to  actually  use a  cylindrical  coordinate  system just

because a domain is actually having a cylinder in it we can actually approximate it to be

planar problems, but remember that is applicable only when this kind of limits are applicable.

So, you know only in extreme situations such approximations can be made.
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Now, we take the last component of the velocity the cylindrical coordinate system named the

uθ now uθ of in this particular problem is actually called as the solution for the Couette flow.

So, the situation is as follows. So, you have got two cylinders that are rotating and the inner

and outer velocities are different and the radii are also different r i and ro. So, which means

that ri - ro  will be the annular region and the velocity is now not axial in the annular region,

but actually along the θ direction. So, what we have drawn is basically something like this.

So, the two cylinders are rotating above the centre axis and their velocities are different. So,

therefore, the liquid between these two cylinders is getting sheared. So, this kind of a problem

can now be looked at.

So, the flow is actually happening not because of any term we do not want to consider any

body force any driving force there and we want to say this flow is happening only because of

Ωi and  Ωo that  is  inner  and  outer  angular  velocities.  So,  the  boundary  conditions  are

straightforward the no slip conditions are applicable. So, for the outer wall the linear velocity

uθ is  given by ro Ωo for  the  inner  wall  it  is  given by ri,  Ωi.  So,  these  are  the  boundary

conditions at inner and outer walls.



(Refer Slide Time: 32:10)

So,  the equation that  we need to  solve is  here.  So,  we already wrote the equation  for a

Newtonian  fluid  an  incompressible  fluid  which  also  has  a  constant  properties.  So,  that

equation is already assuming the first 3 assumptions. So, we assume that the steady state is

applicable and then unidirectional velocity along θ, which means that ur is not present and uz

is not present and we want to also say that there is a velocity variation only along r. So, along

the z direction it is not there and we also want to say that this is an axisymmetry. So, the θ

variation is also been dropped. So, and this also because of axisymmetry and we also want to

say that these terms constant and they are 0. So, because we say that the flow is not due to

any of those terms it is only because of the boundary conditions, which means that we have

got a very equation that is coming in here. So, that equation is written here and we then

integrate. So, when we integrate twice then we get a functional form which goes as r + 1/r.
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So,  there  are  two  integrate  integration  constant  C1 and  C2 and  when  we  substitute  the

boundary conditions we can determine. So, the inner wall boundary and outer wall boundary

conditions are listed here. So, what we do is at the first one if you multiply with ro the first

second equation if you multiply with ri and then if you subtract then you could see that you

would eliminate the terms and then start to see the solutions.

So, the solution for C1 and C2 are available and then when you plug in you have got the

velocity with the θ direction.

(Refer Slide Time: 34:02)



So, though the there are number of terms you can see that the functional form is essentially r

and 1/r that is coming in.

Now, we want to look at under what circumstances such a solution can be simplified. So,

again like we have done just now what happens if the gap between the inner and outer walls

is very small compared to the diameter of the inner cylinder nor outer cylinder for that matter.

So, we want to make the simplification like this. First of all we want to consider that only one

of the walls is actually moving that is just to make it simpler. So, Ω i is taken as 0, and the

outer wall we want to determine the linear velocity and we want to give a symbol, so u o . So,

ro Ωo  is uo .

Now, the annular distance is being defined in the same way like we have done earlier. So,

earlier it was like ri and ro . So, we want to define the distance as follows. So, we want to now

say that this capital R and from here onwards it is basically y and the total distance here is δ.

So, when we want to define that way then we say that for the case we want to do this for the

case where δ is very small. And when δ is very small it also implies that r i ro are both very

close to r and which also means that ri + ro is very close to 2r and so on. So, we make those

simplification and look at how the vθ is varying. So, we just straight away plug in and then

and get this equation and then simplify this. So, in the denominator ri
2 - ro

2 you write it as (ri +

ro )× ( ri - ro ) . So, then they will be looking like 2 r × δ. So, that we write and then the

equation would look like that ok.

(Refer Slide Time: 32:00)



Now, in the limit that ri and ro are very similar to each other then we see that this can actually

go as a unity. So, it tends to unity, which means that the vθ /uo goes as y/δ. So, again we have

come to the same equation as we have done earlier. So, which means that in a situation where

actually this is what is happening then you can look at the domain and imagine that this

domain  is  linear  situation  like this.  So,  flow would be like this  and which means that  a

situation where you have to got a very small gap between the two cylinders compared to the

diameter of either inner or the outer cylinder then the cylindrical problem can be reduced to

planar problem. So, for small domains this is applicable.

So, you can already see from the solution that these simplifications are possible. So, it is not

necessary that you have to solve problems in the cylindrical geometry by using the cylindrical

equations under suitable situations you can actually reduce the complexity.

(Refer Slide Time: 37:27)

So, at this moment we just close this session. And in the course website you have got notes

and practice problem where some numerical problems also will be available for you to plug

in and see how these equations can be applied.


